Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 415-421    https://doi.org/10.1007/s11705-013-1360-3
RESEARCH ARTICLE
Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines
Rekha M.1, H. Kathyayini2, N. Nagaraju1()
1. Catalysis Research Laboratory, St Joseph’s College Post Graduate and Research Centre, Bangalore 560027, India; 2. Centre for Emerging Technologies, Global Campus Jain University, Bangalore 562112, India
 Download: PDF(127 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two catalysts, alumina and manganese oxide supported on alumina, have been prepared by calcination and precipitation-impregnation methods, respectively. The catalysts are characterised by the following techniques: Brunner-Emmett-Teller-N2 adsorption-desorption for surface area, temperature programmed desorption of NH3 and n-butyl amine back titration methods for surface acidity, powder X-ray diffraction for textural properties, and Fourier transform infrared spectroscopy for the anionic radicals. The catalytic activity has been determined under heterogeneous conditions in the condensation reaction between o-phenylenediamine and benzil. The product purity is checked by thin-layer chromatography and melting point. The products are also analysed by LC-MS and 1H-NMR techniques. The yields of the products have been found to be good and catalysts exhibited excellent recyclability. The effect of changing the reaction parameters such as temperature, reaction time, amount of the catalyst, nature of solvent and molar ratio of reactants on the yield of the product has been studied. The surface acidity of the catalysts plays an important role in activating the reaction.

Keywords alumina      manganese oxide deposited on alumina      quinoxaline synthesis     
Corresponding Author(s): Nagaraju N.,Email:nagarajun@yahoo.com   
Issue Date: 05 December 2013
 Cite this article:   
Rekha M.,H. Kathyayini,N. Nagaraju. Catalytic activity of manganese oxide supported on alumina in the synthesis of quinoxalines[J]. Front Chem Sci Eng, 2013, 7(4): 415-421.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1360-3
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/415
Fig.1  Reaction of benzil with -phenylenediamine to synthesise quinoxaline derivatives
EntryCatalystSurface area /(m2·g-1 )Pore size/(?)Pore volume /(cm3·g-1)Surface acidity/ (mmol·g-1)*Yield/%**
1Al2O3262.8136.550.2401.1071
2Mn/Al2O3209.6744.970.2351.2595
Tab.1  BET surface area, pore volume, pore diameter, surface acidity values and yield of the product in synthesis of quinoxaline derivative using AlO and Mn/AlO
Fig.2  TPD ammonia of profiles of AlO and Mn/AlO
Fig.3  FT-IR spectra of AlO and Mn/AlO catalysts
Fig.4  PXRD patterns of AlO and Mn/AlO catalysts
No.SolventYield/%Time/min
1Ethanol9440
2Ethanol-water (1:1)9540
3Methanol9345
4n-Propanol9145
5Acetonitrile8145
6Acetone7445
7THF6765
8DMF6565
9CHCl36175
10CH2Cl25975
Tab.2  The effect of various solvents on the isolated yield of the product and duration of the reaction
Fig.5  Recyclability of Mn/AlO catalyst in the synthesis of quinoxaline derivative starting from -phenylenediamine and benzil
EntryRTime/minYield/%m.p./°C (observed)m.p./°C (literature)
1H4095127-129126-127 [27]
2CH36067116-118116-117 [27]
3Cl9055115-117115-116 [27]
4NO212037190-192193-194 [27]
Tab.3  Yields of the reactions of substituted -phenylenediamines with benzil
CatalystReaction Temp. /°CTime /minSolventIsolated yield /%Reference
Mn/Al2O35045 minEthanol-water95Present work
Ga(OTf)3RT15-30 minEthanol-water85[28]
I2RT35 minDMSO95[29]
Zn2+-montmorillonite K10RT2.5 hH2O-CH3CN89[30]
ZnCl2-5 h-80[31]
CoCl2-5 h-59[31]
Cellulose sulfuric acid-60Ethanol90[32]
o-iodoxybenzoicacida)RT5 minAcetic acid98[33]
Tab.4  Comparison of the catalytic activity of Mn/AlO with literature catalysts in the synthesis of 2,3-diphenylquinoxaline
1 Ma Y, Tong W, Zhou H, Steven L S. A review of zeolite-like porous materials. Microporous and Mesoporous Materials , 2000, 37(1-2): 243-252
doi: 10.1016/S1387-1811(99)00199-7
2 Nagendrappa G. Organic synthesis using clay and clay-supported catalysts. Applied Clay Science , 2011, 53(2): 106-138
doi: 10.1016/j.clay.2010.09.016
3 Kamiya Y, Okuhara T, Misono M, Miyaji A, Tsuji K, Nakajo T. Catalytic chemistry of supported heteropolyacids and their applications as solid acids to industrial processes. Catalysis Surveys from Asia , 2008, 12(2): 101-113
doi: 10.1007/s10563-008-9043-7
4 Oosthuizen R S, Nyamori V O. Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions. Platinum Metals Review , 2011, 55(93): 154-169
doi: 10.1595/147106711X577274
5 Thomas J M, Thomas W J. Principle and Practice of Heterogeneous Catalysis. New York: VCH Weinheim, 1997
6 Chorkendorff I, Niemantsverdriet H. Concepts of Modern Catalysis and Kinetics.βNew York: Wiley-VCH Weinheim, 2003
7 Tumma H, Nagaraju N, Vijayakumar Reddy K. A facile method for the N-formylation of primary and secondary amines by liquid phase oxidation of methanol in the presence of hydrogen peroxide over basic copper hydroxyl salts. Journal of Molecular Catalysis A Chemical , 2009, 310(1-2): 121-129
doi: 10.1016/j.molcata.2009.06.007
8 Kirumakki S R, Papadaki M, Chary K V R, Nagaraju N. Reductive amination of cyclohexanone in the presence of cyclohexanol over zeolites Hβ and HY. Journal of Molecular Catalysis A Chemical , 2010, 321(1-2): 15-21
doi: 10.1016/j.molcata.2010.01.013
9 Rekha M, Hamza A, Venugopal B R, Nagaraju N. Synthesis of 2-substituted benzimidazoles and 1,5-disubstituted benzodiazepines on alumina and zirconia catalysts. Chinese Journal of Catalysis , 2012, 33(2-3): 438-446
doi: 10.1016/S1872-2067(11)60338-0
10 Rekha M, Manjunath H R, Nagaraju N. Mn/Al2O3 and Mn/ZrO2 as selective catalysts for the synthesis of bis(indolyl) methanes: The role of surface acidity and particle morphology. Journal of Industrial and Engineering Chemistry , 2013, 19(1): 337-346
doi: 10.1016/j.jiec.2012.08.022
11 Rekha M, Nagaraju N. Effect of anion on the catalytic activity of cobalt aluminophosphate in the synthesis of N,N-biphenyl urea derivatives. Ceramic Transactions , 2011, 233: 159-168
12 Monica T, Stefano P T. γ-Alumina as a support for catalysts: A review of fundamental aspects. European Journal of Inorganic Chemistry , 2005, 17: 3393-3403
13 Aguero F N, Scian A, Baebero B P, Cadus L E. In?uence of the support treatment on the behavior of MnOx/Al2O3 catalysts used in VOC combustion. Catalysis Today , 2008, 493: 133-135
14 Alexander V F. Lewis acid properties of alumina based catalysts:study by paramagnetic complexes of probe molecules. Surface Science , 2002, (507-510): 74-81
15 Arena F, Torre T, Raimondo C, Parmaliana A. Structure and redox properties of bulk and supported manganese oxide catalysts. Physical Chemistry Chemical Physics , 2001, 3(10): 1911-1917
doi: 10.1039/b100091h
16 Tanabe K. Solid Acids and Bases: Their Catalytic Properties. Tokyo: Academic Press, 1970, 58
17 Sakata G, Makino K, Kurasama Y. Recent Progress in the quinoxaline chemistry. Synthesis and biological activity. Heterocycles , 1988, 27(10): 2481-2515
doi: 10.3987/REV-88-397
18 Seitz L E, Suling W J, Reynolds R C. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. Journal of Medicinal Chemistry , 2002, 45(25): 5604-5606
doi: 10.1021/jm020310n
19 Brown D J. Quinoxalines: Supplement II. In The Chemistry of Heterocyclic Compounds . Taylor E C, Wipf P, eds. New Jersey: John Wiley & Sons, 2004
20 Ali M M, Ismail M M F, Elgamy M S A, Zahran M A A. Synthesis and antimicrobial activity of some novel quinoxalinones derivatives. Molecules (Basel, Switzerland) , 2000, 5(6): 864-873
doi: 10.3390/50600864
21 Dumitriu C, Guimon V, Hulea D, Lutic I F, Fechete I. Transalkylation of toluene with trimethylbenzenes catalyzed by various AFI catalysts. Applied Catalysis A , 2002, 237(1-2): 211-221
doi: 10.1016/S0926-860X(02)00329-0
22 Zhu X, Jia M, Li X, Liu G, Zhang W, Jiang D. Vapour-phase selective O-methylation of catechol with methanol over Ti-containing aluminium phosphate catalysts. Applied Catalysis A , 2005, 282(1-2): 155-161
doi: 10.1016/j.apcata.2004.12.008
23 Vazquez A, Lopez T, Gomez R. Bokhimi, Morales A, Novaro O. X-ray diffraction, FTIR and NMR characterization of sol-gel alumina doped with lanthanum and cerium. Journal of Solid State Chemistry , 1997, 128(2): 161-168
doi: 10.1006/jssc.1996.7135
24 Clothup N B, Daly L H, Wiberley S E. Introduction to Infrared and Raman Spectroscopy, 2nd ed. New York: Academic Press, 1975
25 Liu Y, Ma D, Han X W, Bao X H, Wiebke F, Wang D, Su D S. Hydrothermal synthesis of microscale boehmite and gamma nano leaves alumina. Materials Letters , 2008, 62(8-9): 1297-1301
doi: 10.1016/j.matlet.2007.08.067
26 Marban G, Solis T V, Fuertes A B. Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4: Active phase and role of surface NO species. Physical Chemistry Chemical Physics , 2004, 6: 453-464
doi: 10.1039/b313752j
27 Niknam K, Saberi D, Mohagheghnejad M. Silica bonded S-sulfonic acid: A recyclable catalyst for the synthesis of quinoxalines at room temperature. Molecules (Basel, Switzerland) , 2009, 14(5): 1915-1926
doi: 10.3390/molecules14051915
28 Cai J J, Zou J P, Pan X Q, Zhang W. Gallium(III) triflate-catalyzed synthesis of quinoxaline derivatives. Tetrahedron Letters , 2008, 49(52): 7386-7390
doi: 10.1016/j.tetlet.2008.10.058
29 Bhosale R S, Sarda S R, Ardhapure S S, Jadhav W N, Bhusare S R, Pawar R P. An efficient protocol for the synthesis of quinoxaline derivatives at room temperature using iodine as the catalyst. Tetrahedron Letters , 2005, 46(42): 7183-7186
doi: 10.1016/j.tetlet.2005.08.080
30 Dhakshinamoorthy A, Kanagaraj K, Pitchumani K. Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Letters , 2011, 52(1): 69-73
doi: 10.1016/j.tetlet.2010.10.146
31 Hasaninejad A, Zare A, Mohammadizadeh M R, Karami Z. Synthesis of quinoxaline derivatives via condensation of aryl-1,2diamines with 1,2-diketones using (NH4)6Mo7O24·4H2O as an efficient, mild and reusable catalyst. Journal of the Indian Chemical Society , 2009, 6: 153-158
32 Shaabani A, Ali H R, Behnam M, Heidary M. Green chemistry approaches for the synthesis of quinoxaline derivatives: Comparison of ethanol and water in the presence of the reusable catalyst cellulose sulfuric acid. Comptes Rendus. Chimie , 2009, 12(12): 1249-1252
doi: 10.1016/j.crci.2009.01.006
33 Heravi M M, Bakhtiari K, Tehrani M H, Javadi N M, Oskooie H A. Facile synthesis of quinoxaline derivatives using O-iodoxybenzoicacid (IBX) at room temperature. ARKIVOC , 2006, 2006(16 xvi): 16-22
doi: 10.3998/ark.5550190.0007.g02
[1] Mehraneh Ghavami, Mostafa Aghbolaghy, Jafar Soltan, Ning Chen. Room temperature oxidation of acetone by ozone over alumina-supported manganese and cobalt mixed oxides[J]. Front. Chem. Sci. Eng., 2020, 14(6): 937-947.
[2] Pavlo I. Kyriienko. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: A review[J]. Front. Chem. Sci. Eng., 2020, 14(4): 471-491.
[3] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[4] Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
[5] Zhenhua LI, Jia HE, Haiyang WANG, Baowei WANG, Xinbin MA. Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3[J]. Front. Chem. Sci. Eng., 2015, 9(1): 33-39.
[6] P. V. Korake, A. G. Gaikwad. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures[J]. Front Chem Sci Eng, 2011, 5(2): 215-226.
[7] Ying ZHANG, Shili ZHENG, Yifei ZHANG, Hongbin XU, Yi ZHANG. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process[J]. Front Chem Eng Chin, 2009, 3(1): 88-92.
[8] QIAO Congzhen, CAI Yonghong, GUO Quanhui. Benzene alkylation with long chain olefins catalyzed by ionic liquids: a review[J]. Front. Chem. Sci. Eng., 2008, 2(3): 346-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed