Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (2) : 275-287    https://doi.org/10.1007/s11705-019-1905-1
RESEARCH ARTICLE
Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites
Rongxin Zhang1, Peinan Zhong1, Hamidreza Arandiyan2, Yanan Guan3, Jinmin Liu3, Na Wang4,5,6(), Yilai Jiao3(), Xiaolei Fan1()
1. Department of Chemical Engineering and Analytical Science, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
2. Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, The University of Sydney, Sydney 2006, Australia
3. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4. Sino-Spanish Advanced Materials Institute, Shenyang University of Chemical Technology, Shenyang 110142, China
5. Advanced Manufacturing Institute of Polymer Industry (AMIPI), Shenyang University of Chemical Technology, Shenyang 110142, China
6. Key Laboratory of Materials and Advanced Equipment for Resource Chemical Technology (Ministry of Education), Shenyang University of Chemical Technology, Shenyang 110142, China
 Download: PDF(3377 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesoporous Y zeolites were prepared by the sequential chemical dealumination (using chelating agents such as ethylenediaminetetraacetic acid, H4EDTA, and citric acid aqueous solutions) and alkaline desilication (using sodium hydroxide, NaOH, aqueous solutions) treatments. Specifically, the ultrasound-assisted alkaline treatment (i.e., ultrasonic treatment) was proposed as the alternative to conventional alkaline treatments which are performed under hydrothermal conditions. In comparison with the hydrothermal alkaline treatment, the ultrasonic treatment showed the comparatively enhanced efficiency (with the reduced treatment time, i.e., 5 min vs. 30 min, all with 0.2 mol·L−1 NaOH at 65°C) in treating the dealuminated Y zeolites for creating mesoporosity. For example, after the treatment of a dealuminated zeolite Y (using 0.1 mol·L−1 H4EDTA at 100°C for 6 h), the ultrasonic treatment produced the mesoporous zeolite Y with the specific external surface area (Sexternal) of 160 m2·g1 and mesopore volume (Vmeso) of 0.22 cm3·g1, being slightly higher than that by the conventional method (i.e., Sexternal = 128 m2·g1 and Vmeso = 0.19 cm3·g1). The acidic property and catalytic activity (in catalytic cracking of n-octane) of mesoporous Y zeolites obtained by the two methods were comparable. The ultrasonic desilication treatment was found to be generic, also being effective to treat the dealuminated Y zeolites by citric acid. Additionally, the first step of chemical dealumination treatment was crucial to enable the effective creation of mesopores in the parent Y zeolite (with a silicon-to-aluminium ratio, Si/Al= 2.6) regardless of the subsequent alkaline desilication treatment (i.e., ultrasonic or hydrothermal). Therefore, appropriate selection of the condition of the chemical dealumination treatment based on the property of parent zeolites, such as Si/Al ratio and crystallinity, is important for making mesoporous zeolites effectively.

Keywords zeolite Y      mesoporous zeolite      post-synthesis treatment      ultrasound      chemical dealumination treatment      alkaline desilication treatment     
Corresponding Author(s): Na Wang,Yilai Jiao,Xiaolei Fan   
Just Accepted Date: 19 December 2019   Online First Date: 21 February 2020    Issue Date: 24 March 2020
 Cite this article:   
Rongxin Zhang,Peinan Zhong,Hamidreza Arandiyan, et al. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1905-1
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I2/275
Fig.1  Yields of EAY zeolites after the sequential chemical (using H4EDTA) and hydrothermal/ultrasonic alkaline treatments of the pristine zeolite Y.
Fig.2  XRD patterns of EAY zeolites obtained by the sequential post-synthesis treatments under different conditions.
Samples Si/Al by XRF RC by XRD
Parent Y 2.60 100%
EAY-0.1-30min-HT 3.88 89%
EAY-0.1-1h-HT 3.88 87%
EAY-0.1-3h-HT 4.05 85%
EAY-0.1-6h-HT 4.39 71%
EAY-0.1-30min-S 3.98 84%
EAY-0.1-1h-S 3.86 83%
EAY-0.1-3h-S 3.86 81%
EAY-0.1-6h-S 4.25 64%
Tab.1  Si/Al ratios and RC values of the parent Y and EAY zeolites
Fig.3  N2 adsorption-desorption isotherms and PSDs for (a and b) EAY-0.1-6h-HT and EAY-0.1-6h-S; (c and d) EAY-0.1-3h-HT and EAY-0.1-3h-S; (e and f) EAY-0.1-1h-HT, EAY-0.1-1h-S, EAY-0.1-30min-HT, and EAY-0.1-30min-S.
Samples Specific surface areas /(m2·g1) Specific pore volumes /(cm3·g1)
Smicroa) Sexternala) BET Vmicroa) Vmesob) Vtotalc)
Parent Y 858 9 867 0.35 0.01 0.36
EAY-0.1-30min-S 722 82 804 0.33 0.12 0.45
EAY-0.1-30min-HT 757 61 818 0.34 0.09 0.43
EAY-0.1-1h-S 713 60 773 0.33 0.10 0.41
EAY-0.1-1h-HT 759 59 818 0.34 0.09 0.43
EAY-0.1-3h-S 706 63 769 0.32 0.10 0.42
EAY-0.1-3h-HT 711 59 770 0.32 0.09 0.41
EAY-0.1-6h-S 568 128 696 0.25 0.19 0.45
EAY-0.1-6h-HT 521 160 681 0.23 0.22 0.46
Tab.2  Porous properties of the parent Y zeolite and EAY zeolites
Fig.4  SEM and TEM micrographs of (a and b) the parent zeolite Y, (c and d) EAY-0.1-6h-HT, and (e and f) EAY-0.1-6h-S.
Fig.5  (a) Yields of CAY zeolites after the sequential chemical (using citric acid) and hydrothermal/ultrasonic alkaline treatments of the pristine zeolite Y; (b) XRD patterns of CAY zeolites after the sequential post-synthesis treatments under different conditions.
Samples Si/Al by XRF RC by XRD
Parent Y 2.60 100%
CAY-0.1-1h-HT 3.95 86%
CAY-0.1-3h-HT 4.02 82%
CAY-0.1-1h-S 3.94 83%
CAY-0.1-3h-S 3.95 81%
CAY-0.14-1h-S 4.40 73%
CAY-0.16-1h-S 4.92 69%
Tab.3  Si/Al ratios and values of relative crystallinity (RC) of the parent Y and CAY zeolites
Fig.6  (a and c) N2 adsorption-desorption isotherms and (b and d) PSDs for CAY zeolites produced using different sequential post-synthesis treatments.
Samples Specific surface areas /(m2·g1) Specific pore volumes /(cm3·g1)
Smicroa) Sexternala) BET Vmicroa) Vmesob) Vtotalc)
Parent Y 858 9 867 0.35 0.01 0.36
CAY-0.1-1h-S 545 82 627 0.28 0.14 0.42
CAY-0.1-1h-HT 491 76 567 0.26 0.10 0.36
CAY-0.1-3h-S 581 87 668 0.30 0.12 0.42
CAY-0.1-3h-HT 499 68 567 0.26 0.12 0.38
CAY-0.14-1h-S 531 206 737 0.23 0.25 0.48
CAY-0.16-1h-S 236 101 337 0.12 0.16 0.28
Tab.4  Porous properties of the parent Y zeolite and CAY zeolites
Fig.7  TEM micrographs for (a) CAY-0.1-1h-HT, (b) CAY-0.1-1h-S, (c) CAY-0.14-1h-S and (d) CAY-0.16-1h-S.
Fig.8  (a) NH3-TPD spectra and (b) catalytic cracking activity (regarding the absolute conversion of n-octane) of the parent Y and selected mesoporous Y zeolites (including EAY-0.1-6h-HT, EAY-0.1-3h-S, CAY-0.1-3h-HT and CAY-0.1-3h-S).
Catalysts T of desorption peaks /°C Weak acidity
/(mmol·g1)
Strong acidity
/(mmol·g1)
Total acidity
/(mmol·g1)
First peak Second peak
HY-2.6 202.1 296.5 0.396 0.818 1.214
EAY-0.1-6h-HT 227.0 331.5 0.895 0.458 1.353
EAY-0.1-6h-S 225.0 315.9 0.743 0.544 1.287
CAY-0.1-3h-HT 227.5 325.5 0.815 0.618 1.433
CAY-0.1-3h-S 227.5 328.6 0.840 0.606 1.446
Tab.5  Analysis of NH3-TPD data for the parent Y and selected mesoporous Y zeolites
1 R Barrer, M Makki. Molecular sieve sorbents from clinoptilolite. Canadian Journal of Chemistry, 1964, 42(6): 1481–1487
https://doi.org/10.1139/v64-223
2 S van Donk, A H Janssen, J H Bitter, K P de Jong. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews, 2003, 45(2): 297–319
https://doi.org/10.1081/CR-120023908
3 W Li, J Zheng, Y Luo, Z Da. Effect of hierarchical porosity and phosphorus modification on the catalytic properties of zeolite Y. Applied Surface Science, 2016, 382: 302–308
https://doi.org/10.1016/j.apsusc.2016.04.146
4 B Paweewan, P J Barrie, L F Gladden. Coking and deactivation during n-hexane cracking in ultrastable zeolite Y. Applied Catalysis A, General, 1999, 185(2): 259–268
https://doi.org/10.1016/S0926-860X(99)00143-X
5 K Li, J Valla, J Garcia-Martinez. Realizing the commercial potential of hierarchical zeolites: New opportunities in catalytic cracking. ChemCatChem, 2014, 6(1): 46–66
https://doi.org/10.1002/cctc.201300345
6 A Inayat, I Knoke, E Spiecker, W Schwieger. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965
https://doi.org/10.1002/anie.201105738
7 J Jin, C Peng, J Wang, H Liu, X Gao, H Liu, C Xu. Facile synthesis of mesoporous zeolite Y with improved catalytic performance for heavy oil fluid catalytic cracking. Industrial & Engineering Chemistry Research, 2014, 53(8): 3406–3411
https://doi.org/10.1021/ie403486x
8 Y Tao, H Kanoh, K Kaneko. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976
https://doi.org/10.1021/jp0356822
9 R Chal, C Gerardin, M Bulut, S Van Donk. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81
https://doi.org/10.1002/cctc.201000158
10 C S Triantafillidis, A G Vlessidis, N P Evmiridis. Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Industrial & Engineering Chemistry Research, 2000, 39(2): 307–319
https://doi.org/10.1021/ie990568k
11 L Xiao, J Mao, J Zhou, X Guo, S Zhang. Enhanced performance of HY zeolites by acid wash for glycerol etherification with isobutene. Applied Catalysis A, General, 2011, 393(1): 88–95
https://doi.org/10.1016/j.apcata.2010.11.029
12 N C van laak Adri, R W Gosselink, S L Sagala, J D Meeldijk, P E de Jongh, K P de Jong. Alkaline treatment on commercially available aluminum rich mordenite. Applied Catalysis A, General, 2010, 382(1): 65–72
https://doi.org/10.1016/j.apcata.2010.04.023
13 Z Qin, B Shen, X Gao, F Lin, B Wang, C Xu. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. Journal of Catalysis, 2011, 278(2): 266–275
https://doi.org/10.1016/j.jcat.2010.12.013
14 E F T Lee, L V C Rees. Dealumination of sodium Y zeolite with hydrochloric acid. Journal of the Chemical Society, Faraday Transactions I, 1987, 83(5): 1531–1537
https://doi.org/10.1039/f19878301531
15 G T Kerr. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596
https://doi.org/10.1021/j100853a058
16 J García-Martínez, M Johnson, J Valla, K Li, J Y Ying. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994
https://doi.org/10.1039/c2cy00309k
17 M R Apelian, A S Fung, G J Kennedy, T F Degnan. Dealumination of zeolite b via dicarboxylic acid treatment. Journal of Physical Chemistry, 1996, 100(41): 16577–16583
https://doi.org/10.1021/jp960376s
18 E Vogt, B Weckhuysen. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis. Chemical Society Reviews, 2015, 44(20): 7342–7370
https://doi.org/10.1039/C5CS00376H
19 D Verboekend, S Mitchell, M Milina, J C Groen, J Pérez-Ramírez. Full compositional flexibility in the preparation of mesoporous MFI zeolites by desilication. Journal of Physical Chemistry C, 2011, 115(29): 14193–14203
https://doi.org/10.1021/jp201671s
20 K Tarach, K Góra-Marek, J Tekla, K Brylewska, J Datka, K Mlekodaj, W Makowski, M C Igualada López, J Martínez Triguero, F Rey. Catalytic cracking performance of alkaline-treated zeolite Beta in the terms of acid sites properties and their accessibility. Journal of Catalysis, 2014, 312: 46–57
https://doi.org/10.1016/j.jcat.2014.01.009
21 D Verboekend, G Vilé, J Pérez-Ramírez. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
https://doi.org/10.1002/adfm.201102411
22 D Verboekend, S Mitchell, J Pérez-Ramírez. Hierarchical zeolites overcome all obstacles: Next stop industrial implementation. CHIMIA International Journal for Chemistry, 2013, 67(5): 327–332
https://doi.org/10.2533/chimia.2013.327
23 D Verboekend, N Nuttens, R Locus, J Van Aelst, P Verolme, J C Groen, J Perez-Ramirez, B F Sels. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352
https://doi.org/10.1039/C5CS00520E
24 X Meng, F S Xiao. Green routes for synthesis of zeolites. Chemical Reviews, 2014, 114(2): 1521–1543
https://doi.org/10.1021/cr4001513
25 X Fan, M G Manchon, K Wilson, S Tennison, A Kozynchenko, A A Lapkin, P K Plucinski. Coupling of Heck and hydrogenation reactions in a continuous compact reactor. Journal of Catalysis, 2009, 267(2): 114–120
https://doi.org/10.1016/j.jcat.2009.07.019
26 X Fan, Y. Jiao A microwave-assisted chelation protocol to create mesoporosity in zeolites. 2018, GB1814932.8
27 S Abelló, J Pérez-Ramírez. Accelerated generation of intracrystalline mesoporosity in zeolites by microwave-mediated desilication. Physical Chemistry Chemical Physics, 2009, 11(16): 2959–2963
https://doi.org/10.1039/b819543a
28 R N Baig, R S Varma. Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chemical Society Reviews, 2012, 41(4): 1559–1584
https://doi.org/10.1039/C1CS15204A
29 S Askari, S M Alipour, R Halladj, M H D A Farahani. Effects of ultrasound on the synthesis of zeolites: A review. Journal of Porous Materials, 2013, 20(1): 285–302
https://doi.org/10.1007/s10934-012-9598-6
30 S Oruji, R Khoshbin, R Karimzadeh. Preparation of hierarchical structure of Y zeolite with ultrasonic-assisted alkaline treatment method used in catalytic cracking of middle distillate cut: The effect of irradiation time. Fuel Processing Technology, 2018, 176: 283–295
https://doi.org/10.1016/j.fuproc.2018.03.035
31 R Zhang, S Xu, D Raja, N B Khusni, J Liu, J Zhang, S Abdulridha, H Xiang, S Jiang, Y Guan, et al. On the effect of mesoporosity of FAU Y zeolites in the liquid-phase catalysis. Microporous and Mesoporous Materials, 2019, 278: 297–306
https://doi.org/10.1016/j.micromeso.2018.12.003
32 Y Jiao, X Fan, M Perdjon, Z Yang, J Zhang. Vapor-phase transport (VPT) modification of ZSM-5/SiC foam catalyst using TPAOH vapor to improve the methanol-to-propylene (MTP) reaction. Applied Catalysis A, General, 2017, 545: 104–112
https://doi.org/10.1016/j.apcata.2017.07.036
33 C Pagis, A R M Prates, N Bats, A Tuel, D Farrusseng. High-silica hollow Y zeolite by selective desilication of dealuminated NaY crystals in the presence of protective Al species. CrystEngComm, 2018, 20(11): 1564–1572
https://doi.org/10.1039/C8CE00121A
34 G T Kerr, G F Shipman. Reaction of hydrogen zeolite Y with ammonia at elevated temperatures. Journal of Physical Chemistry, 1968, 72(8): 3071–3072
https://doi.org/10.1021/j100854a084
35 S Svelle, L Sommer, K Barbera, P N Vennestrøm, U Olsbye, K P Lillerud, S Bordiga, Y H Pan, P Beato. How defects and crystal morphology control the effects of desilication. Catalysis Today, 2011, 168(1): 38–47
https://doi.org/10.1016/j.cattod.2010.12.013
36 S S Vieira, Z M Magriotis, M F Ribeiro, I Graça, A Fernandes, J M F M Lopes, S M Coelho, N A V Santos, A A Saczk. Use of HZSM-5 modified with citric acid as acid heterogeneous catalyst for biodiesel production via esterification of oleic acid. Microporous and Mesoporous Materials, 2015, 201: 160–168
https://doi.org/10.1016/j.micromeso.2014.09.015
37 R Feng, X Yan, X Hu, Y Wang, Z Li, K Hou, J Lin. Hierarchical ZSM-5 zeolite designed by combining desilication and dealumination with related study of n-heptane cracking performance. Journal of Porous Materials, 2018, 25(6): 1743–1756
https://doi.org/10.1007/s10934-018-0587-2
38 Y Fan, X Bao, X Lin, G Shi, H Liu. Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric acid treatments. Journal of Physical Chemistry B, 2006, 110(31): 15411–15416
https://doi.org/10.1021/jp0607566
39 Z Xie, Q Chen, C Zhang, J Bao, Y Cao. Influence of citric acid treatment on the surface acid properties of zeolite beta. Journal of Physical Chemistry B, 2000, 104(13): 2853–2859
https://doi.org/10.1021/jp991471e
40 G Bai, J Han, H Zhang, C Liu, X Lan, F Tian, Z Zhao, H Jin. Friedel-Crafts acylation of anisole with octanoic acid over acid modified zeolites. RSC Advances, 2014, 4(52): 27116–27121
https://doi.org/10.1039/C4RA02278E
41 L Zhai, M Liu, X Dong, C Song, X Guo. Dehydration of 2-(4′-ethylbenzoyl)-benzoic acid to 2-ethylanthraquinone over Hb zeolite modified with organic acids. Chinese Journal of Catalysis, 2009, 30(1): 9–13 doi:10.1016/S1872-2067(08)60085-6
42 C Xing, G Yang, M Wu, R Yang, L Tan, P Zhu, Q Wei, J Li, J Mao, Y Yoneyama, N Tsubaki. Hierarchical zeolite Y supported cobalt bifunctional catalyst for facilely tuning the product distribution of Fischer-Tropsch synthesis. Fuel, 2015, 148: 48–57
https://doi.org/10.1016/j.fuel.2015.01.040
43 A Al-Ani, R J Darton, S Sneddon, V Zholobenko. Nanostructured Zeolites: The introduction of intracrystalline mesoporosity in basic faujasite-type catalysts. ACS Applied Nano Materials, 2018, 1(1): 310–318
https://doi.org/10.1021/acsanm.7b00169
44 D Verboekend, T C Keller, S Mitchell, J Pérez-Ramírez. Hierarchical FAU- and LTA-type zeolites by post-synthetic design: A new generation of highly efficient base catalysts. Advanced Functional Materials, 2013, 23(15): 1923–1934
https://doi.org/10.1002/adfm.201202320
45 J L Agudelo, B Mezari, E J M Hensen, S A Giraldo, L J Hoyos. On the effect of EDTA treatment on the acidic properties of USY zeolite and its performance in vacuum gas oil hydrocracking. Applied Catalysis A, General, 2014, 488: 219–230
https://doi.org/10.1016/j.apcata.2014.10.007
46 J L Agudelo, E J M Hensen, S A Giraldo, L J Hoyos. Effect of USY zeolite chemical treatment with ammonium nitrate on its VGO hydrocracking performance. Energy & Fuels, 2016, 30(1): 616–625
https://doi.org/10.1021/acs.energyfuels.5b02021
47 U J Etim, B Xu, Z Zhang, Z Zhong, P Bai, K Qiao, Z Yan. Improved catalytic cracking performance of USY in the presence of metal contaminants by post-synthesis modification. Fuel, 2016, 178: 243–252
https://doi.org/10.1016/j.fuel.2016.03.060
[1] Jian Zhang, Liang Wang, Yanyan Ji, Fang Chen, Feng-Shou Xiao. Mesoporous zeolites for biofuel upgrading and glycerol conversion[J]. Front. Chem. Sci. Eng., 2018, 12(1): 132-144.
[2] Liyan LIU, Yu ZHANG, Wei TAN. Synthesis and characterization of phosphotungstic acid/activated carbon as a novel ultrasound oxidative desulfurization catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 422-427.
[3] Jorge MEDINA-VALTIERRA, Jorge RAMIREZ-ORTIZ. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 401-407.
[4] Jie ZHU, Xiangju MENG, Fengshou XIAO. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion[J]. Front Chem Sci Eng, 2013, 7(2): 233-248.
[5] Junxiao YE, Huining HE, Junbo GONG, Weibing DONG, Yongzhuo HUANG, Jianxin WANG, Guanyi CHEN, Victor C YANG. Ultrasound-mediated targeted microbubbles: a new vehicle for cancer therapy[J]. Front Chem Sci Eng, 2013, 7(1): 20-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed