Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 132-144    https://doi.org/10.1007/s11705-017-1681-8
REVIEW ARTICLE
Mesoporous zeolites for biofuel upgrading and glycerol conversion
Jian Zhang1, Liang Wang1, Yanyan Ji1, Fang Chen1(), Feng-Shou Xiao1,2()
1. Key Laboratory of Applied Chemistry of Zhejiang Province and Department of Chemistry, Zhejiang University, Hangzhou 310028, China
2. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
 Download: PDF(735 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the recent emphasis and development of sustainable chemistry, the conversion of biomass feedstocks into alternative fuels and fine chemicals over various heterogeneous catalysts has received much attention. In particular, owing to their uniform micropores, strong acidity, and stable and rigid frameworks, zeolites as catalysts or co-catalysts have exhibited excellent catalytic performances in many reactions, including hydrodesulfurization, Fischer-Tropsch synthesis, and hydrodeoxygenation. However, the relatively small sizes of the zeolite micropores strongly limit the conversion of bulky biomolecules. To overcome this issue, mesoporous zeolites with pores larger than those of biomolecules have been synthesized. As expected, these mesoporous zeolites have outperformed conventional zeolites with improved activities, better selectivities, and longer catalyst lives for the upgrading of pyrolysis oils, the transformation of lipids into biofuels, and the conversion of glycerol into acrolein and aromatic compounds. This review briefly summarizes recent works on the rational synthesis of mesoporous zeolites and their superior catalytic properties in biomass conversion.

Keywords biomass conversion      mesoporous zeolite      sustainable chemistry     
Corresponding Author(s): Fang Chen,Feng-Shou Xiao   
Just Accepted Date: 17 August 2017   Online First Date: 26 December 2017    Issue Date: 26 February 2018
 Cite this article:   
Jian Zhang,Liang Wang,Yanyan Ji, et al. Mesoporous zeolites for biofuel upgrading and glycerol conversion[J]. Front. Chem. Sci. Eng., 2018, 12(1): 132-144.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1681-8
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/132
Fig.1  Pore-size distributions for meso-ZSM-5 derived from Ar adsorption-desorption isotherms using the (A) HK (Horváth-Kawazoe) and (B) BJH (Barrett-Joyner-Halenda) methods prepared by NaOH treatment of H-ZSM-5 (Si/Al= 26) at 70 °C. NaOH concentrations: (a) 0 mol/L, (b) 0.1 mol/L, (c) 0.3 mol/L, (d) 0.5 mol/L, (e) 1.0 mol/L, and (f) 1.5 mol/L. Adapted from ref [32] with permission
Sample Structure Vmeso /(cm3·g?1) DMAX /nm
ZSM-5(I) Microporous ? ?
mm-ZSM-5(I) Micro-mesoporous 0.60 11
deAlmm-ZSM-5(I) Dealuminated micro-mesoporous 0.81 11
Tab.1  Textural parameters of ZSM-5 zeolites with the alkaline-acid treatmentsa)
Fig.2  (a,c) N2 isotherms at ?196 °C and (b) transmission electron micrographs of treated Si-rich USY zeolites. The scale bar in (b) applies to all images. Insets in (a) and (c) BJH mesopore size distributions. Adapted from ref [39] with permission
Fig.3  Argon sorption isotherms and nonlocal density functional theory (NLDFT) mesopore volume size distribution of ultra-stabilized mesostructured Y (red squares) and after being steamed at 788 °C for 8 h (blue diamonds). Adapted from ref [40] with permission
Fig.4  (a?c) SEM images of calcined Beta-MS at different magnifications. A pristine specimen without a coating was used to obtain the image of the original sample surface, and a low accelerating voltage of 1 kV was applied to minimize the charging effect; (d) X-ray diffraction (XRD) patterns; (e) N2 sorption isotherms; (f) pore size distribution curves of calcined Beta-MS before (lower) and after (upper) hydrothermal treatment with a 100% steam flow at 700 °C for 2 h. Adapted from ref [42] with permission
Fig.5  SEM images of micro-meso-macroporous TS-1 (MMM-TS-1) products obtained after different crystallization periods. (a,b) MMM-TS-1(0); (c,d) MMM-TS-1(1); (e,f) MMM-TS-1(2); (g,h) MMM-TS-1(3). Adapted from ref [20] with permission
Fig.6  High-resolution TEM images of S-ZSM-5 zeolites with crystallization times of (a) 6, (b) 18, (c) 30, and (d) 72 h (the Si/Al ratio in the starting solid mixtures was 150). Adapted from ref [43] with permission
ntry Substrate Catalyst Conv. /% Product selectivity /% Carbon balance /%
Cyclohexane Cyclohexanol Cyclohexanone
1 Phenol Ru/HZSM-5 >99.5 91.0 2.0 7.0 >99.5
2 Phenol Pt/HZSM-5 >99.5 55.0 29.0 16.0 >99.5
3 Phenol Pd/HZSM-5 >99.5 88.4 11.6 >99.5
4 Phenol Ni/HZSM-5 42.2 40.0 15.5 44.5 >99.5
5 Phenol Au/HZSM-5 <1.0 >99.5
6 Phenol Ru/NaZSM-5 98.1 99.0 1.0 >99.5
7 Phenol Ru/Al2O3 >99.5 90.0 10.0 >99.5
8 Phenol Ru/SBA-15 89.9 94.0 6.0 >99.5
9 Phenol Ru/HZSM-5-M >99.5 95.4 4.0 0.6 >99.5
10 Phenol Ru/HZSM-5-OM >99.5 95.0 5.0 0.9 >99.5
Cyclohexane Methanol Others
11 2,6-Dimethoxyphenol Ru/HZSM-5 70.0 55.4 17.0 15.0 93.2
12 2,6-Dimethoxyphenol Ru/HZSM-5-OM 81.0 57.7 16.9 6.9 91.0
13 2,6-Dimethoxyphenol Ru/HZSM-5-OM 97.5 70.0 19.7 2.0 92.4
Tab.2  Catalytic data for the hydrodeoxygenation of phenol and 2,6-dimethoxyphenol over various catalystsa)
Fig.7  (a) Gas and (b) gasoline compositions in the catalytic cracking of waste cooking oil over microporous ZSM-5 (ZSM-5-P) and mesoporous ZSM-5 (HZ-0.5AAT) at 450 °C and a catalyst-to-oil ratio of 0.4 (g/g). Adapted from ref [45] with permission
Fig.8  Hydroconversion of Jatropha oil (triglycerides and free fatty acids) into hydrocarbons over sulfided Ni–Mo catalysts supported on high surface area semi-crystalline (HSASC) and low surface area crystalline (LSAC) hierarchical mesoporous H-ZSM-5: (a) conversion (█) and C9?C15 hydrocarbon yield (○) over LSAC () and HSASC (█○) supports; (b) distribution of isomer/normal alkane (C9?C15) ratios of products generated over LSAC (□) and HSASC (█) supports; and distribution of isomer/normal alkane (C7?C18) ratios at different reaction temperatures for HSASC (c) and LSAC (d) supports. Adapted from ref [50] with permission
Fig.9  SEM images of (a) pristine ZSM-5 and (b) NiSiO2/ZSM-5; (c and d) TEM images of NiSiO2/ZSM-5 and (e and f) Ni/ZSM-5; (g) elemental mapping of NiSiO2/ZSM-5. The insets show the magnified crystal images and high resolution TEM images of shell nanosheets or Ni nanoparticles. Adapted from ref [46] with permission
Fig.10  Yields and conversions for stearic acid hydrodeoxygenation over (a) Ni/ZSM-5 and (b) IM-Ni/ZSM-5 with different Ni contents; results of stability tests for the (c) Ni/ZSM-5 and (d) IM-Ni/ZSM-5 catalysts; Ni contents were approximately 20.4 and 20.2 wt-%, respectively. Adapted from ref [46] with permission
Fig.11  Product compositions after 1 h reaction time for hydrodeoxygenation of stearic acid over Ni incorporated untreated and treated HBEA catalysts. Adapted from ref [47] with permission
Fig.12  Correlation between mesopore volume and relative mass percentage measured at 150?700 °C. Adapted from ref [57] with permission
Fig.13  Glycerol conversion over different catalysts. Adapted from ref [58] with permission
Fig.14  Etherification of glycerol over mesoporous Beta zeolite. Adapted from ref [65] with permission
1 Huber G W, Iborra  S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
https://doi.org/10.1021/cr068360d
2 Goossens H, Deleeuw  J W, Schenck  P A, Brassell  S C. Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature, 1984, 312(5993): 440–442
https://doi.org/10.1038/312440a0
3 Jones D M, Head  I M, Gray  N D, Adams  J J, Rowan  A K, Aitken  C M, Bennett  B, Huang H,  Brown A,  Bowler B F J,  Oldenburg T,  Erdmann M,  Larter S R. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs. Nature, 2008, 451(7175): 176–U6
https://doi.org/10.1038/nature06484
4 Qian K, Rodgers  R P, Hendrickson  C L, Emmett  M R, Marshall  A G. Reading chemical fine print: Resolution and identification of 3000 nitrogen-containing aromatic compounds from a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of heavy petroleum crude oil. Energy & Fuels, 2001, 15(2): 492–498
https://doi.org/10.1021/ef000255y
5 Calamari D, Bacci  E, Focardi S,  Gaggi C,  Morosini M,  Vighi M. Role of plant biomass in the global environmental partitioning of chlorinated hydrocarbons. Environmental Science & Technology, 1991, 25(8): 1489–1495
https://doi.org/10.1021/es00020a020
6 Keiluweit M, Nico  P S, Johnson  M G, Kleber  M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 2010, 44(4): 1247–1253
https://doi.org/10.1021/es9031419
7 Flanagan L B, Johnson  B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130(3-4): 237–253
https://doi.org/10.1016/j.agrformet.2005.04.002
8 Steen E J, Kang  Y, Bokinsky G,  Hu Z, Schirmer  A, McClure A,  del Cardayre S B,  Keasling J D. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 2010, 463(7280): 559–U182
https://doi.org/10.1038/nature08721
9 Wang L, Xiao  F S. Nanoporous catalysts for biomass conversion. Green Chemistry, 2015, 17(1): 24–39
https://doi.org/10.1039/C4GC01622J
10 Vassilev S V, Baxter  D, Andersen L K,  Vassileva C G. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel, 2013, 105: 19–39
https://doi.org/10.1016/j.fuel.2012.10.001
11 Chheda J N, Huber  G W, Dumesic  J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angewandte Chemie International Edition, 2007, 46(38): 7164–7183
https://doi.org/10.1002/anie.200604274
12 Mosier N, Wyman  C, Dale B,  Elander R,  Lee Y Y,  Holtzapple M,  Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6): 673–686
https://doi.org/10.1016/j.biortech.2004.06.025
13 Tilman D, Hill  J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 2006, 314(5805): 1598–1600
https://doi.org/10.1126/science.1133306
14 Meng X J, Xiao  F S. Green routes for synthesis of zeolite. Chemical Reviews, 2014, 114(2): 1521–1543
https://doi.org/10.1021/cr4001513
15 Xu S D, Sheng  H D, Ye  T, Hu D,  Liao S F. Hydrophobic aluminosilicate zeolites as highly efficient catalysts for the dehydration of alcohols. Catalysis Communications, 2016, 78: 75–79
https://doi.org/10.1016/j.catcom.2016.02.006
16 Yoshioka M, Yokoi  T, Tatsumi T. Development of the CON-type aluminosilicate zeolite and its catalytic application for the MTO reaction. ACS Catalysis, 2015, 5(7): 4268–4275
https://doi.org/10.1021/acscatal.5b00692
17 Liu M, Yokoi  T, Kondo J N,  Tatsumi T. Synthesis of SFH-type aluminosilicate zeolite with 14-membered ring and its applications as solid acidic catalyst. Microporous and Mesoporous Materials, 2014, 193: 166–172
https://doi.org/10.1016/j.micromeso.2014.02.034
18 Pérez-Ramírez J,  Christensen C H,  Egeblad K,  Christensen C H,  Groen J C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542
https://doi.org/10.1039/b809030k
19 Wang Z, Li  C, Cho H J,  Kung S C,  Snyder M A,  Fan W. Direct, single-step synthesis of hierarchical zeolites without secondary templating. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(3): 1298–1305
https://doi.org/10.1039/C4TA05031B
20 Chen L H, Li  X Y, Tian  G, Li Y,  Rooke J C,  Zhu G S,  Qiu S L,  Yang X Y,  Su B L. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure. Angewandte Chemie International Edition, 2011, 50(47): 11156–11161
https://doi.org/10.1002/anie.201105678
21 Ren L, Guo  Q, Kumar P,  Orazov M,  Xu D, Alhassan  S M, Mkhoyan  K A, Davis  M E, Tsapatsis  M. Self-pillared, single-unit-cell Sn-MFI zeolite nanosheets and their use for glucose and lactose isomerization. Angewandte Chemie International Edition, 2015, 54(37): 10848–10851
https://doi.org/10.1002/anie.201505334
22 Tang B, Dai  W, Sun X,  Wu G, Guan  N, Hunger M,  Li L. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chemistry, 2015, 17(3): 1744–1755
https://doi.org/10.1039/C4GC02116A
23 Wang D, Ma  B, Wang B,  Zhao C, Wu  P. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion. Chemical Communications, 2015, 51(82): 15102–15105
https://doi.org/10.1039/C5CC06212H
24 Ma B, Yi  X, Chen L,  Zheng A,  Zhao C. Interconnected hierarchical HUSY zeolite-loaded Ni nano-particles probed for hydrodeoxygenation of fatty acids, fatty esters, and palm oil. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(29): 11330–11341
https://doi.org/10.1039/C6TA01807F
25 Wang L, Zhang  J, Yi X,  Zheng A,  Deng F, Chen  C, Ji Y,  Liu F, Meng  X, Xiao F S. Mesoporous ZSM-5 zeolite-supported Ru nanoparticles as highly efficient catalysts for upgrading phenolic biomolecules. ACS Catalysis, 2015, 5(5): 2727–2734
https://doi.org/10.1021/acscatal.5b00083
26 Veses A, Puertolas  B, Lopez J M,  Callen M S,  Solsona B,  Garcia T. Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1653–1660
https://doi.org/10.1021/acssuschemeng.5b01606
27 Nandiwale K Y,  Galande N D,  Thakur P,  Sawant S D,  Zambre V P,  Bokade V V. One-Pot synthesis of 5-hydroxymethylfurfural by cellulose hydrolysis over highly active bimodal micro/mesoporous H-ZSM-5 catalyst. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1653–1660
https://doi.org/10.1021/sc500270z
28 Fu W, Zhang  L, Tang T,  Ke Q, Wang  S, Hu J,  Fang G, Li  J, Xiao F S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. Journal of the American Chemical Society, 2011, 133(39): 15346–15349
https://doi.org/10.1021/ja2072719
29 Tang T, Yin  C, Wang L,  Ji Y, Xiao  F S. Good sulfur tolerance of a mesoporous beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. Journal of Catalysis, 2008, 257(1): 125–133
https://doi.org/10.1016/j.jcat.2008.04.013
30 Bao J, He  J, Zhang Y,  Yoneyama Y,  Tsubaki N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction. Angewandte Chemie International Edition, 2008, 47(2): 353–356
https://doi.org/10.1002/anie.200703335
31 Sartipi S, Parashar  K, Valero-Romero M J,  Santos V P,  van der Linden B,  Makkee M,  Kapteijn F,  Gascon J. Hierarchical H-ZSM-5-supported cobalt for the direct synthesis of gasoline-range hydrocarbons from syngas: Advantages, limitations, and mechanistic insight. Journal of Catalysis, 2013, 305: 179–190
https://doi.org/10.1016/j.jcat.2013.05.012
32 Kang J, Cheng  K, Zhang L,  Zhang Q,  Ding J, Hua  W, Lou Y,  Zhai Q, Wang  Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5‒C11 isoparaffins. Angewandte Chemie International Edition, 2011, 50(22): 5200–5203
https://doi.org/10.1002/anie.201101095
33 Peng X, Cheng  K, Kang J,  Gu B, Yu  X, Zhang Q,  Wang Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: Diesel fuel production over mesoporous zeolite-Y-supported cobalt nanoparticles. Angewandte Chemie International Edition, 2015, 54(15): 4553–4556
https://doi.org/10.1002/anie.201411708
34 Yue Y, Liu  H, Yuan P,  Li T, Yu  C, Bi H,  Bao X J. From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization-reorganization approach. Journal of Catalysis, 2014, 319: 200–210
https://doi.org/10.1016/j.jcat.2014.08.009
35 Groen J C, Moulijn  J A, Pérez-Ramírez  J. Desilication: On the controlled generation of mesoporosity in MFI zeolites. Journal of Materials Chemistry, 2006, 16(22): 2121–2131
https://doi.org/10.1039/B517510K
36 Sazama P, Sobalik  Z, Dedecek J,  Jakubec I,  Parvulescu V,  Bastl Z,  Rathousky J,  Jirglova H. Enhancement of activity and selectivity in acid-catalyzed reactions by sealuminated hierarchical zeolites. Angewandte Chemie International Edition, 2013, 52(7): 2038–2041
https://doi.org/10.1002/anie.201206557
37 Qin Z, Shen  B, Gao X,  Lin F, Wang  B, Xu C M. Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. Journal of Catalysis, 2013, 278(2): 266–275
https://doi.org/10.1016/j.jcat.2010.12.013
38 de Jong K P,  Zecevic J,  Friedrich H,  de Jongh P E,  Bulut M,  van Donk S,  Kenmogne R,  Finiels A,  Hulea V,  Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie International Edition, 2010, 49(52): 10074–10078
https://doi.org/10.1002/anie.201004360
39 Verboekend D, Vilé  G, Pérez-Ramírez  J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
https://doi.org/10.1002/adfm.201102411
40 García-Martínez J,  Lia K, Krishnaiah  G. A mesostructured Y zeolite as a superior FCC catalyst—from lab to refinery. Chemical Communications, 2012, 48(97): 11841–11843
https://doi.org/10.1039/c2cc35659g
41 Xiao F S, Wang  L, Yin C,  Lin K, Di  Y, Li J,  Xu R, Su  D S, Schlögl  R, Yokoi T,  Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093
https://doi.org/10.1002/anie.200600241
42 Zhu J, Zhu  Y, Zhu L,  Rigutto M,  van der Made A,  Yang C, Pan  S, Wang L,  Zhu L, Jin  Y, et al. Highly mesoporous single-crystalline zeolite beta synthesized using a nonsurfactant cationic polymer as a dual-function template. Journal of the American Chemical Society, 2014, 136(6): 2503–2510
https://doi.org/10.1021/ja411117y
43 Zhang C, Wu  Q, Lei C,  Pan S, Bian  C, Wang L,  Meng X, Xiao  F S. Solvent-free and mesoporogen-free synthesis of mesoporous aluminosilicate ZSM-5 zeolites with superior catalytic properties in the methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 2017, 56(6): 1450–1460
https://doi.org/10.1021/acs.iecr.7b00062
44 Zhao C, Lercher  J A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angewandte Chemie International Edition, 2012, 51(24): 5935–5940
https://doi.org/10.1002/anie.201108306
45 Vu H X, Schneider  M, Bentrup U,  Dang T T,  Phan B M Q,  Nguyen D A,  Armbruster U,  Martin A. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass. Industrial & Engineering Chemistry Research, 2015, 54(6): 1773–1782
https://doi.org/10.1021/ie504519q
46 Wang D, Ma  B, Wang B,  Zhao C, Wu  P. One-pot synthesized hierarchical zeolite supported metal nanoparticles for highly efficient biomass conversion. Chemical Communications, 2015, 51(82): 15102–15105
https://doi.org/10.1039/C5CC06212H
47 Ma B, Zhao  C. High-grade diesel production by hydrodeoxygenation of palm oil over a hierarchically structured Ni/HBEA catalyst. Green Chemistry, 2015, 17(3): 1692–1701
https://doi.org/10.1039/C4GC02339K
48 Stocker M. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials. Angewandte Chemie International Edition, 2008, 47(48): 9200–9211
https://doi.org/10.1002/anie.200801476
49 Metzger J O. Production of liquid hydrocarbons from biomass. Angewandte  Chemie  International  Edition,  2006,  45(5):  696–698
https://doi.org/10.1002/anie.200502895
50 Huber G W, Corma  A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angewandte Chemie International Edition, 2007, 46(38): 7184–7201
https://doi.org/10.1002/anie.200604504
51 Verma D, Kumar  R, Rana B S,  Sinha A K. Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy & Environmental Science, 2011, 4(5): 1667–1671
https://doi.org/10.1039/c0ee00744g
52 Ott L, Bicker  M, Vogel H. Catalytic dehydration of glycerol in sub- and supercritical water: A new chemical process for acrolein production. Green Chemistry, 2006, 8(2): 214–220
https://doi.org/10.1039/B506285C
53 Chai S H, Wang  H P, Liang  Y, Xu B Q. Sustainable production of acrolein: Investigation of solid acid-base catalysts for gas-phase dehydration of glycerol. Green Chemistry, 2007, 9(10): 1130–1136
https://doi.org/10.1039/b702200j
54 Chai S H, Wang  H P, Liang  Y, Xu B Q. Sustainable production of acrolein: Gas-phase dehydration of glycerol over Nb2O5 catalyst. Journal of Catalysis, 2007, 250(2): 342–349
https://doi.org/10.1016/j.jcat.2007.06.016
55 Atia H, Armbruster  U, Martin A. Dehydration of glycerol in gas phase using heteropoly acid catalysts as active compounds. Journal of Catalysis, 2008, 258(1): 71–82
https://doi.org/10.1016/j.jcat.2008.05.027
56 Deleplanque J, Dubois  J L, Devaux  J F, Ueda  W. Production of acrolein and acrylic acid through dehydration and oxydehydration of glycerol with mixed oxide catalysts. Catalysis Today, 2010, 157(1-4): 351–358
https://doi.org/10.1016/j.cattod.2010.04.012
57 Possato L G, Diniz  R N, Garetto  T, Pulcinelli S H,  Santilli C V,  Martins L. A comparative study of glycerol dehydration catalyzed by micro/mesoporous MFI zeolites. Journal of Catalysis, 2013, 300: 102–112
https://doi.org/10.1016/j.jcat.2013.01.003
58 Zhang H, Hu  Z, Huang L,  Zhang H,  Song K, Wang  L, Shi Z,  Ma J, Zhuang  Y, Shen W, et al. Dehydration of glycerol to acrolein over hierarchical ZSM-5 zeolites: Effects of mesoporosity and acidity. ACS Catalysis, 2015, 5(4): 2548–2558
https://doi.org/10.1021/cs5019953
59 Aramburo L R, Karwacki  L, Cubillas P,  Asahina S,  de Winter D A M,  Drury M R,  Buurmans I L C,  Stavitski E,  Mores D,  Daturi M, et al. The porosity, acidity, and reactivity of dealuminated zeolite ZSM-5 at the single particle level: The influence of the zeolite architecture. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(49): 13773–13781
https://doi.org/10.1002/chem.201101361
60 Gonzalez M D, Cesteros  Y, Salagre P. Establishing the role of Bronsted acidity and porosity for the catalytic etherification of glycerol with tert-butanol by modifying zeolites. Applied Catalysis A, General, 2013, 450: 178–188
https://doi.org/10.1016/j.apcata.2012.10.028
61 Melero J A, Vicente  G, Paniagua M,  Morales G,  Munoz P. Etherification of biodiesel-derived glycerol with ethanol for fuel formulation over sulfonic modified catalysts. Bioresource Technology, 2012, 103(1): 142–151
https://doi.org/10.1016/j.biortech.2011.09.105
62 Melero J A, Vicente  G, Morales G,  Paniagua M,  Moreno J M,  Roldan R,  Ezquerro A,  Perez C. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Applied Catalysis A, General, 2008, 346(1-2): 44–51
https://doi.org/10.1016/j.apcata.2008.04.041
63 Gu Y, Azzouzi  A, Pouilloux Y,  Jerome F,  Barrault J. Heterogeneously catalyzed etherification of glycerol: New pathways for transformation of glycerol to more valuable chemicals. Green Chemistry, 2008, 10(2): 164–167
https://doi.org/10.1039/B715802E
64 Clacens J M, Pouilloux  Y, Barrault J. Selective etherification of glycerol to polyglycerols over impregnated basic MCM-41 type mesoporous catalysts. Applied Catalysis A, General, 2002, 227(1-2): 181–190
https://doi.org/10.1016/S0926-860X(01)00920-6
65 Saxena S K, Al-Muhtaseb  A H, Viswanadham  N. Enhanced production of high octane oxygenates from glycerol etherification using the desilicated BEA zeolite. Fuel, 2015, 159: 837–844
https://doi.org/10.1016/j.fuel.2015.07.028
66 Hook J M, Mander  L N. Recent developments in the birch reduction of aromatic-compounds-applications to the synthesis of natural products. Natural Product Reports, 1986, 3(1): 35–85
https://doi.org/10.1039/np9860300035
67 Hoang T Q, Zhu  X, Danuthai T,  Lobban L L,  Resasco D E,  Mallinson R G. Conversion of glycerol to alkyl-aromatics over zeolites. Energy & Fuels, 2010, 24(7): 3804–3809
https://doi.org/10.1021/ef100160y
68 Xiao W, Wang  F, Xiao G. Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. RSC Advances, 2015, 5(78): 63697–63704
https://doi.org/10.1039/C5RA07593A
69 Do P T M,  McAtee J R,  Watson D A,  Lobo R F. Elucidation of Diels-Alder reaction network of 2,5-dimethylfuran and ethylene on HY zeolite catalyst. ACS Catalysis, 2013, 3(1): 41–46
https://doi.org/10.1021/cs300673b
70 Kim J C, Kim  T W, Kim  Y, Ryoo R,  Jeong S Y,  Kim C U. Mesoporous MFI zeolites as high performance catalysts for Diels-Alder cycloaddition of bio-derived dimethylfuran and ethylene to renewable p-xylene. Applied Catalysis B: Environmental, 2017, 206: 490–500
https://doi.org/10.1016/j.apcatb.2017.01.031
71 Zhang X H, Lin  L, Zhang T,  Liu H, Zhang  X. Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts. Chemical Engineering Journal, 2016, 284: 934–941
https://doi.org/10.1016/j.cej.2015.09.039
72 Lari G M, Puertolas  B, Frei M S,  Mondelli C,  Perez-Ramírez J. Hierarchical NaY zeolites for lactic acid dehydration to acrylic acid. ChemCatChem, 2016, 8(8): 1507–1514
https://doi.org/10.1002/cctc.201600102
[1] Rongxin Zhang, Peinan Zhong, Hamidreza Arandiyan, Yanan Guan, Jinmin Liu, Na Wang, Yilai Jiao, Xiaolei Fan. Using ultrasound to improve the sequential post-synthesis modification method for making mesoporous Y zeolites[J]. Front. Chem. Sci. Eng., 2020, 14(2): 275-287.
[2] Jie ZHU, Xiangju MENG, Fengshou XIAO. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion[J]. Front Chem Sci Eng, 2013, 7(2): 233-248.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed