Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 95-103    https://doi.org/10.1007/s11705-014-1405-2
RESEARCH ARTICLE
Ti incorporation in MCM-41 mesoporous molecular sieves using hydrothermal synthesis
Shengping WANG1(), Changqing MA1, Yun SHI1,2, Xinbin MA1
1. Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China; 2. Patent Examination Cooperation Center of the Patent Office, SIPO, Beijing 100088, China
 Download: PDF(540 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Titanium-containing mesoporous materials (Ti-MCM-41) were obtained by hydrothermal synthesis. Such materials are active catalysts for the transesterification of dimethyl oxalate and phenol to produce diphenyl oxalate. To understand the role of the Ti in the catalytic process, Ti-MCM-41 samples with different Si/Ti ratios (from 5 to 100) were prepared and the samples were analyzed by Fourier transform infrared spectroscopy, UV-visible spectroscopy, and ammonia temperature programmed desorption. It was concluded that the Ti is incorporated into the framework of the MCM-41 and formed weak Lewis acid sites. In addition, the number of Ti(IV) sites increased as the amount of titanium increased. X-ray powder diffraction, N2 adsorption-desorption and transmission electron microscopy results showed that the Ti-MCM-41 samples have a hexagonal arrangement of mono-dimensional pores. A large number of Ti(IV) sites coupled with the mesoporous structure and large pore diameters are favorable for the transesterification catalytic properties of Ti-MCM-41.

Keywords Ti-MCM-41      mesoporous molecular sieve      acid sites      transesterification      hydrothermal synthesis     
Corresponding Author(s): WANG Shengping,Email:spwang@tju.edu.cn   
Issue Date: 05 March 2014
 Cite this article:   
Shengping WANG,Changqing MA,Yun SHI, et al. Ti incorporation in MCM-41 mesoporous molecular sieves using hydrothermal synthesis[J]. Front Chem Sci Eng, 2014, 8(1): 95-103.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1405-2
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/95
Fig.1  Small-angle XRD patterns of MCM-41 and Ti-MCM-41 molecular sieves: (A) MCM-41, (B) Ti-MCM-41-100, (C) Ti-MCM-41-70, (D) Ti-MCM-41-50, (E) Ti-MCM-41-30, (F) Ti-MCM-41-10, and (G) Ti-MCM-41-5.
Samples2θ(100) /°d100/?a0/?SBET/(m2?g-1)VBJH/(cm3?g-1)DBJH/?
Ti-MCM-41-52.2639.145.25610.62135.6
Ti-MCM-41-102.1840.546.87060.75334.3
Ti-MCM-41-302.1141.748.27880.91636.7
Ti-MCM-41-502.1840.546.88600.84932.2
Ti-MCM-41-702.0642.949.58730.86831.3
Ti-MCM-41-1002.2040.146.39240.86429.3
MCM-412.1441.247.910080.81025.0
Tab.1  Textural properties of Ti-MCM-41 molecular sieves
Fig.2  Nitrogen adsorption-desorption isotherms (a) and pore size distribution curves (b) of Ti-MCM-41 molecular sieves: (A) Ti-MCM-41-100, (B) Ti-MCM-41-70, (C) Ti-MCM-41-50, (D) Ti-MCM-41-30, (E) Ti-MCM-41-10, and (F) Ti-MCM-41-5
Fig.3  TEM images of Ti-MCM-41molecular sieves: (a) and (b) Ti-MCM-41-5; (c) and (d) Ti-MCM-41-50; (e) and (f) Ti-MCM-41-100
Fig.4  FT-IR spectra of MCM-41 and Ti-MCM-41 molecular sieves: (A) MCM-41, (B) Ti-MCM-41-100, (C) Ti-MCM-41-70, (D) Ti-MCM-41-50, (E) Ti-MCM-41-30, (F) Ti-MCM-41-10, and (G) Ti-MCM-41-5
Fig.5  UV-visible diffuse re?ectance spectra of Ti-MCM-41 molecular sieves: (A) Ti-MCM-41-100, (B) Ti-MCM-41-70, (C) Ti-MCM-41-50, (D) Ti-MCM-41-30, (E) Ti-MCM-41-10, (F) Ti-MCM-41-5, and (G) TiO
Fig.6  FTIR spectra of pyridine adsorbed on Ti-MCM-41 molecular sieves: (A) Ti-MCM-41-100, (B) Ti-MCM-41-70, (C) Ti-MCM-41-50, (D) Ti-MCM-41-30, (E) Ti-MCM-41-10, and (F) Ti-MCM-41-5
Fig.7  NH-TPD profiles of Ti-MCM-41 molecular sieves: (A) Ti-MCM-41-100, (B) Ti-MCM-41-70, (C) Ti-MCM-41-50, (D) Ti-MCM-41-30, (E) Ti-MCM-41-10, and (F) Ti-MCM-41-5
SamplesConversion /%Yield /%Selectivity /%
DPOMPODPOMPO
Ti-MCM-41-568.817.851.025.874.2
Ti-MCM-41-1065.615.849.824.175.9
Ti-MCM-41-3066.716.050.724.076.0
Ti-MCM-41-5064.215.149.123.576.5
Ti-MCM-41-7062.513.149.520.979.1
Ti-MCM-41-10058.611.647.119.780.3
MCM-4110.40.455.354.3451.2
Tab.2  Catalytic activities of Ti-MCM-41 molecular sieves for the transesterification of dimethyl oxalate with phenol
1 Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society , 1992, 114(27): 10834–10843
doi: 10.1021/ja00053a020
2 Tatsumi T, Koyano K A, Igarashi N. Remarkable activity enhancement by trimethylsilylation in oxidation of alkenes and alkanes with H2O2 catalyzed by titanium-containing mesoporous molecular sieves. Chemical Communications , 1998, (3): 325–326
doi: 10.1039/a706175g
3 Reynhardt J P K, Yang Y, Sayari A, Alper H. Polyamidoamine dendrimers prepared inside the channels of pore-expanded periodic mesoporous silica. Advanced Functional Materials , 2005, 15(10): 1641–1646
doi: 10.1002/adfm.200400622
4 Loganathan S, Tikmani M, Ghoshal A K. Novel pore-expanded MCM-41 for CO2 capture: synthesis and characterization. Langmuir , 2013, 29(10): 3491–3499
doi: 10.1021/la400109j
5 Subhan F, Liu B S, Zhang Y, Li X G. High desulfurization characteristic of lanthanum loaded mesoporous MCM-41 sorbents for diesel fuel. Fuel Processing Technology , 2012, 97: 71–78
doi: 10.1016/j.fuproc.2012.01.016
6 Selvam P, Bhatia S K, Sonwane C G. Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Industrial & Engineering Chemistry Research , 2001, 40(15): 3237–3261
doi: 10.1021/ie0010666
7 Qiao S Z, Bhatia S K, Nicholson D. Study of hexane adsorption in nanoporous MCM-41 silica. Langmuir , 2004, 20(2): 389–395
doi: 10.1021/la0353430
8 Sayari A. Catalysis by crystalline mesoporous molecular sieves. Chemistry of Materials , 1996, 8(8): 1840–1852
doi: 10.1021/cm950585+
9 Kong Y, Zhu H Y, Yang G, Guo X F, Hou W H, Yan Q J, Gu M, Hu C. Investigation of the structure of MCM-41 samples with a high copper content. Advanced Functional Materials , 2004, 14(8): 816–820
doi: 10.1002/adfm.200305111
10 Kraleva E, Saladino M L, Spinella A, Nasillo G, Caponetti E. H3PW12O40 supported on mesoporous MCM-41 and Al-MCM-41 materials: Preparation and characterisation. Journal of Materials Science , 2011, 46(22): 7114–7120
doi: 10.1007/s10853-011-5505-9
11 Rana R K, Viswanathan B. Mo incorporation in MCM-41 type zeolite. Catalysis Letters , 1998, 52(1–2): 25–29
doi: 10.1023/A:1019019403375
12 Luo Q, Deng F, Yuan Z Y, Yang J, Zhang M J, Yue Y, Ye C H. Using trimethylphosphine as a probe molecule to study the acid states in Al-MCM-41 materials by solid-state NMR spectroscopy. Journal of Physical Chemistry B , 2003, 107(11): 2435–2442
doi: 10.1021/jp0213093
13 Iglesias J, Melero J A, Sanchez-Sanchez M. Highly Ti-loaded MCM-41: Effect of the metal precursor and loading on the titanium distribution and on the catalytic activity in different oxidation processes. Microporous and Mesoporous Materials , 2010, 132(1–2): 112–120
doi: 10.1016/j.micromeso.2010.02.006
14 Silva T N, Lopes J M, Ribeiro F R, Carrott M R, Galacho P C, Sousa M J, Carrott P. Catalytic and adsorption properties of Al- and Ti-MCM-41 synthesized at room temperature. Reaction Kinetics and Catalysis Letters , 2002, 77(1): 83–90
doi: 10.1023/A:1020343920133
15 Zou J J, Zhang M Y, Zhu B, Wang L, Zhang X W, Mi Z T. Isomerization of norbornadiene to quadricyclane using Ti-containing MCM-41 as photocatalysts. Catalysis Letters , 2008, 124(1–2): 139–145
doi: 10.1007/s10562-008-9441-5
16 Wang G J, Liu G Q, Xu M X, Yang Z X, Liu Z W, Liu Y W, Chen S F, Wang L. Ti-MCM-41 supported phosphotungstic acid: An effective and environmentally benign catalyst for epoxidation of styrene. Applied Surface Science , 2008, 255(5): 2632–2640
doi: 10.1016/j.apsusc.2008.07.186
17 Elias V R, Crivello M E, Herrero E R, Casuscelli S G, Eimer G A. Synthesis of titanium-containing mesoporous silicas as catalysts for cyclohexene epoxidation. Industrial & Engineering Chemistry Research , 2009, 48(20): 9076–9082
doi: 10.1021/ie8018017
18 Lihitkar N B, Abyaneh M K, Samuel V, Pasricha R, Gosavi S W, Kulkarni S K. Titania nanoparticles synthesis in mesoporous molecular sieve MCM-41. Journal of Colloid and Interface Science , 2007, 314(1): 310–316
doi: 10.1016/j.jcis.2007.05.069
19 Aboul-Gheit A K, Abdel-Hamid S M, Mahmoud S A, El-Salamony R A, Valyon J, Mihalyi M R, Szegedi A. Mesoporous Ti-MCM-41 materials as photodegradation catalysts of 2,4,6-trichlorophenol in water. Journal of Materials Science , 2011, 46(10): 3319–3329
doi: 10.1007/s10853-010-5219-4
20 Blasco T, Corma A, Navarro M, Pariente J P. Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. Journal of Catalysis , 1995, 156(1): 65–74
doi: 10.1006/jcat.1995.1232
21 Galacho C, Carrott M M L R, Carrott P J M. Structural and catalytic properties of Ti-MCM-41 synthesised at room temperature up to high Ti content. Microporous and Mesoporous Materials , 2007, 100(1–3): 312–321
doi: 10.1016/j.micromeso.2006.11.018
22 Guidotti M, Batonneau-Gener I, Gianotti E, Marchese L, Mignard S, Psaro R, Sgobba M, Ravasio N. The effect of silylation on titanium-containing silica catalysts for the epoxidation of functionalised molecules. Microporous and Mesoporous Materials , 2008, 111(1–3): 39–47
doi: 10.1016/j.micromeso.2007.07.010
23 Wu P, Iwamoto M. Metal-ion-planted MCM-41. Part 3. Incorporation of titanium species by atom-planting method. Journal of the Chemical Society, Faraday Transactions , 1998, 94(18): 2871–2875
doi: 10.1039/a804976i
24 Gong J L, Ma X B, Wang S P. Phosgene-free approaches to catalytic synthesis of diphenyl carbonate and its intermediates. Applied Catalysis A, General , 2007, 316(1): 1–21
doi: 10.1016/j.apcata.2006.09.006
25 Nishihira K, Tanaka S, Nishida Y, Ii H, Fujitsu S, Harada K, Sugise R, Kashiwagi K, Doi T, Hirofumi I, Mishidaira K, Tanaka H, Mishida S. US Patent, 814089, 1997-03-10
26 Wang S P, Liu Y, Shi Y, Ma X B, Gong J L. Dispersion and catalytic activity of MoO3 on TiO2-SiO2 binary oxide support. AIChE Journal. American Institute of Chemical Engineers , 2008, 54(3): 741–749
doi: 10.1002/aic.11401
27 Yang X, Ma X B, Wang S P, Gong J L. Transesterification of dimethyl oxalate with phenol over TiO2/SiO2: Catalyst screening and reaction optimization. AIChE Journal. American Institute of Chemical Engineers , 2008, 54(12): 3260–3272
doi: 10.1002/aic.11613
28 Zhao G M, Zhu X M, Wang Z L, Liu G, Liu Y, Jia M J, Zhang W X. Transesterification of dimethyl oxalate with phenol over Ti-containing phosphate catalysts. Reaction Kinetics and Catalysis Letters , 2007, 91(1): 77–83
doi: 10.1007/s11144-007-5040-5
29 Barrett E P, Joyner L G, Halenda P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen Isotherms. Journal of the American Chemical Society , 1951, 73(1): 373–380
doi: 10.1021/ja01145a126
30 Chou B, Tsai J L, Cheng S. Cu-substituted molecular sieves as liquid phase oxidation catalysts. Microporous and Mesoporous Materials , 2001, 48(1–3): 309–317
doi: 10.1016/S1387-1811(01)00347-X
31 Kruk M, Jaroniec M. Gas Adsorption characterization of ordered organic-inorganic nanocomposite materials. Chemistry of Materials , 2001, 13(10): 3169–3183
doi: 10.1021/cm0101069
32 Díaz I, Pérez-Pariente J. Synthesis of spongelike functionalized MCM-41 materials from gels containing amino acids. Chemistry of Materials , 2002, 14(11): 4641–4646
doi: 10.1021/cm020128a
33 F. Rodriguez-Reinoso J R K S W S. Unger K K. Studies in Surface Science and Catalysis. Elsevier , 1991, 115–122
34 Takahashi R, Sato S, Sodesawa T, Kawakita M, Ogura K. High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. Journal of Physical Chemistry B , 2000, 104(51): 12184–12191
doi: 10.1021/jp002662g
35 Lafond V, Mutin P H, Vioux A. Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel. Chemistry of Materials , 2004, 16(25): 5380–5386
doi: 10.1021/cm0490569
36 Ren J, Li Z, Liu S, Xing Y, Xie K. Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties. Catalysis Letters , 2008, 124(3): 185–194
doi: 10.1007/s10562-008-9500-y
37 Prasad M R, Madhavi G, Rao A R, Kulkarni S J, Raghavan K V. Synthesis, characterization of high Ti-containing Ti-MCM-41 catalysts and their activity evaluation in oxidation of cyclohexene and epoxidation of higher olefins. Journal of Porous Materials , 2006, 13(1): 81–94
doi: 10.1007/s10934-006-5493-3
38 Laha S C, Kumar R. Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti- and V-MCM-41 and their catalytic properties in oxidation reactions. Microporous and Mesoporous Materials , 2002, 53(1–3): 163–177
doi: 10.1016/S1387-1811(02)00337-2
39 Bordiga S, Coluccia S, Lamberti C, Marchese L, Zecchina A, Boscherini F, Buffa F, Genoni F, Leofanti G. XAFS Study of Ti-Silicalite: structure of framework Ti(IV) in the presence and absence of reactive molecules (H2O, NH3) and comparison with Ultraviolet-Visible and IR results. Journal of Physical Chemistry , 1994, 98(15): 4125–4132
doi: 10.1021/j100066a036
40 Ricchiardi G, Damin A, Bordiga S, Lamberti C, Spano G, Rivetti F, Zecchina A. Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. Journal of the American Chemical Society , 2001, 123(46): 11409–11419
doi: 10.1021/ja010607v
41 Melero J A, Arsuaga J M, Frutos P, Iglesias J, Sainz J, Blázquez S. Frutos P d, Iglesias J, Sainz J, Blázquez S. Direct synthesis of titanium-substituted mesostructured materials using non-ionic surfactants and titanocene dichloride. Microporous and Mesoporous Materials , 2005, 86(1–3): 364–373
doi: 10.1016/j.micromeso.2005.07.040
42 Eimer G A, Chanquia C M, Sapag K, Herrero E R. The role of different parameters of synthesis in the final structure of Ti-containing mesoporous materials. Microporous and Mesoporous Materials , 2008, 116(1–3): 670–676
doi: 10.1016/j.micromeso.2008.05.040
43 Rajakovic V N, Mintova S, Senker J, Bein T. Synthesis and characterization of V- and Ti-substituted mesoporous materials. Materials Science and Engineering C , 2003, 23(6–8): 817–821
doi: 10.1016/j.msec.2003.09.089
44 Cagnoli M V, Casuscelli S G, Alvarez A M, Bengoa J F, Gallegos N G, Samaniego N M, Crivello M E, Ghione G E, Perez C F, Herrero E R, Marchetti S G. “Clean” limonene epoxidation using Ti-MCM-41 catalyst. Applied Catalysis A, General , 2005, 287(2): 227–235
doi: 10.1016/j.apcata.2005.04.001
45 Eimer G A, Casuscelli S G, Chanquia C A, Elias V, Crivello M E, Herrero E R. The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves. Catalysis Today , 2008, 133: 639–646
doi: 10.1016/j.cattod.2007.12.096
46 Rajagopal S, Marzari J A, Miranda R. Silica-alumina-supported Mo oxide catalysts: Genesis and demise of Br?nsted-Lewis acidity. Journal of Catalysis , 1995, 151(1): 192–203
doi: 10.1006/jcat.1995.1021
47 Sawa M, Niwa M, Murakami Y. Relationship between acid amount and framework aluminum content in mordenite. Zeolites , 1990, 10(6): 532–538
doi: 10.1016/S0144-2449(05)80308-2
48 Lónyi F, Valyon J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite. Microporous and Mesoporous Materials , 2001, 47(2–3): 293–301
doi: 10.1016/S1387-1811(01)00389-4
49 Wang S P, Ma X B, Guo H L, Gong J L, Yang X, Xu G H. Characterization and catalytic activity of TiO2/SiO2 for transesterification of dimethyl oxalate with phenol. Journal of Molecular Catalysis A Chemical , 2004, 214(2): 273–279
doi: 10.1016/j.molcata.2003.12.020
50 Ma X B, Guo H L, Wang S P, Sun Y L. Transesterification of dimethyl oxalate with phenol over TS-1 catalyst. Fuel Processing Technology , 2003, 83(1–3): 275–286
doi: 10.1016/S0378-3820(03)00075-4
[1] Jorge RAMIREZ-ORTIZ, Merced MARTINEZ, Horacio FLORES. Metakaolinite as a catalyst for biodiesel production from waste cooking oil[J]. Front Chem Sci Eng, 2012, 6(4): 403-409.
[2] Guang WEN, Zifeng YAN. Transesterification of soybean oil to biodiesel over kalsilite catalyst[J]. Front Chem Sci Eng, 2011, 5(3): 325-329.
[3] WANG Rui, YANG Song, YIN Shitao, SONG Baoan, BHADURY Pinaki S., XUE Wei, TAO Shuwei, JIA Zhaohui, LIU Da, GAO Liang. Development of solid base catalyst X/Y/MgO/-AlO for optimization of preparation of biodiesel from L.seed oil [J]. Front. Chem. Sci. Eng., 2008, 2(4): 468-472.
[4] YUE Hongxia, ZHAO Hongmei, LIU Longjiang, WANG Siping, Ruan Qiong, WANG Tongwen. Synthesis of ordered cerium-doped cubic mesoporous silica using long-chain ionic liquid as template[J]. Front. Chem. Sci. Eng., 2008, 2(2): 135-139.
[5] RUN Mingtao, ZHANG Dayu, WU Sizhu, WU Gang. Thermal decomposition of poly(ethylene terephthalate)/mesoporous molecular sieve composites[J]. Front. Chem. Sci. Eng., 2007, 1(1): 50-54.
[6] CHEN He, PENG Baoxiang, WANG Dezheng, WANG Jinfu. Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts[J]. Front. Chem. Sci. Eng., 2007, 1(1): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed