Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 440-447    https://doi.org/10.1007/s11705-017-1626-2
RESEARCH ARTICLE
Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures
Yang Zhou, Phillip Choi()
Department of Chemical and Materials Engineering, University of Alberta Edmonton, Edmonton, AB, T6G 1H9, Canada
 Download: PDF(367 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Isothermal-isobaric molecular dynamics simulation was used to study the diffusion mechanism of water in polyurethane-block-poly(N-isopropyl acrylamide) (PU-block-PNIPAm) with a hydrophobic PU/hydrophilic PNIPAm mass ratio of 1.4 to 1 at 298 K and 450 K. Here, the experimental glass transition temperature (Tg) of PU is 243 K while that of PNIPAm is 383 K. Different amounts of water up to 15 wt-% were added to PU-block-PNIPAm. We were able to reproduce the specific volumes and glass transition temperatures (250 K and 390 K) of PU-block-PNIPAm. The computed self-diffusion coefficient of water increased exponentially with increasing water concentration at both temperatures (i.e., following the free volume model of Fujita). It suggested that water diffusion in PU-block-PNIPAm depends only on its fractional free volume despite the free volume inhomogeneity. It is noted that at 298 K, PU is rubbery while PNIPAm is glassy. Regardless of temperature, radial distribution functions showed that water formed clusters with sizes in the range of 0.2–0.4 nm in PU-block-PNIPAm. At low water concentrations, more clusters were found in the PU domain but at high water concentrations, more in the PNIPAm domain. It is believed that water molecules diffuse as clusters rather than as individual molecules.

Keywords molecular dynamics simulation      amphiphilic block copolymer      free volume      water diffusivity      fujita model     
Corresponding Author(s): Phillip Choi   
Just Accepted Date: 23 January 2017   Online First Date: 17 March 2017    Issue Date: 23 August 2017
 Cite this article:   
Yang Zhou,Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1626-2
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/440
Fig.1  Scheme 1Chemical structure of PU-block-PNIPAm
Fig.2  A cubic simulation cell containing 15 PU-block-PNIPAm and 10 water molecules (i.e., 0.5 wt-% water) upon a 200 ns MD annealing at 298 K
Fig.3  Temperature dependence of the specific volume of PU-block-PNIPAm, averaged over different initial configurations and the last 10 ns of each MD simulation at 1 atm. The best fit lines were used to determine the Tgs of the PU and PNIPAm blocks
Fig.4  Radial distribution functions of PNIPAm-PNIPAm and PU-PNIPAm at 300 K, radial distribution functions of PU-PNIPAm and PNIPAm-PNIPAm at 200, 300 and 400 K
Fig.5  A log-log plot of the mean square displacement of water molecules versus simulation time (averaged over 10 water molecules in PU-block-PNIPAm). The dashed line is the reference line with a slope of 1 (i.e., Einstein diffusion regime)
Fig.6  Self-diffusion coefficients of water in PU-block-PNIPAm calculated at various water concentrations over the range of 0.55-15 vol-% and at 298 and 450 K
Fig.7  The logarithm of self-diffusion coefficient versus the inverse of the square of free volume (5.2 wt-% at different temperatures)
Fig.8  Radial distribution functions of (a) water-PNIPAm segment, (b) water-PU segment and (c) water-water at different water concentrations at 298 K and 1 atm
Fig.9  Numbers of hydrogen bonds of water with polymer, water with PU segment, water with PNIPAm segment and polymer with polymer in the range of water concentration
Fig.10  Numbers of water-PU, water-PNIPAm and copolymer-copolymer hydrogen bonds of PU-block-PNIPAm at a water concentration of 5.2 wt-% over the temperature range of 280 to 460 K
1 Mathews A S, Narine S. Poly[N-isopropyl acrylamide]-co-polyurethane copolymers for controlled release of urea. Journal of Polymer Science. Part A, Polymer Chemistry, 2010, 48(15): 3236–3243
https://doi.org/10.1002/pola.24090
2 Seo Y, Brown J R, Hall L M. Effect of tapering on morphology and interfacial behavior of diblock copolymers from molecular dynamics simulations. Macromolecules, 2015, 48(14): 4974–4982
https://doi.org/10.1021/ma502309h
3 Srinivas G, Discher D E, Klein M L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials, 2004, 3(9): 638–644
https://doi.org/10.1038/nmat1185
4 Fujita H, Kishimoto A, Matsumoto K. Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates. Transactions of the Faraday Society, 1960, 56: 424–437
https://doi.org/10.1039/tf9605600424
5 Fujita H. Free-volume model of diffusion in polymer solutions. Advances in Polymer Science, 1961, 3: 1–47
https://doi.org/10.1007/BFb0050514
6 Fujita H. Notes on free volume theories. Polymer Journal, 1991, 23(12): 1499–1506
https://doi.org/10.1295/polymj.23.1499
7 Fujita H. Comments on free volume theories for plymer-solvent systems. Chemical Engineering Science, 1993, 48(17): 3037–3042
https://doi.org/10.1016/0009-2509(93)80169-Q
8 Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 1955, 77(14): 3701–3707
https://doi.org/10.1021/ja01619a008
9 Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447
https://doi.org/10.1021/ct700301q
10 van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J C. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718
https://doi.org/10.1002/jcc.20291
11 Lindahl E, Hess B, van der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 2001, 7(8): 306–317
https://doi.org/10.1007/s008940100045
12 Berendsen H J, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995, 91(1-3): 43–56
https://doi.org/10.1016/0010-4655(95)00042-E
13 Ostenbrink C, Villa A, Mark A E, van Gunsteren W F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 2004, 25(13): 1656–1676
https://doi.org/10.1002/jcc.20090
14 Daura X, Mark A E, van Gunsteren W F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. Journal of Computational Chemistry, 1998, 19(5): 535–547
https://doi.org/10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N
15 Berendsen H J, Postma J P, van Gunsteren W F, Hermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces, 1981, 331–342
16 Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass. Macromolecules, 1985, 18(7): 1467–1478
https://doi.org/10.1021/ma00149a018
17 Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A., 1985, 31(3): 1695–1697
https://doi.org/10.1103/PhysRevA.31.1695
18 Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 1981, 52(12): 7182–7190
https://doi.org/10.1063/1.328693
19 Zhang Q G, Liu Q L, Chen Y, Wu J Y, Zhu A M. Microstructure dependent diffusion of water-ethanol in swollen poly (vinyl alcohol): A molecular dynamics simulation study. Chemical Engineering Science, 2009, 64(2): 334–340
https://doi.org/10.1016/j.ces.2008.10.028
20 Bondi A. van der Waals volumes and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451
https://doi.org/10.1021/j100785a001
21 Raghu A V, Gadaginamath G S, Jawalkar S S, Halligudi S B, Aminabhavi T M. Synthesis, characterization, and molecular modeling studies of novel polyurethanes based on 2,2′-[ethane-1,2-diylbis (nitrilomethylylidene)] diphenol and 2,2′-[hexane-1,6-diylbis (nitrilomethylylidene)] diphenol hard segments. Journal of Polymer Science. Part A, Polymer Chemistry, 2006, 44(20): 6032–6046
https://doi.org/10.1002/pola.21686
22 Zhou D, Bayati F, Choi P. On the weak dependence of water diffusivity on the degree of hydrophobicity of acetylated hydroxypropyl xylan. Carbohydrate Polymers, 2013, 98(1): 644–649
https://doi.org/10.1016/j.carbpol.2013.06.025
23 Schild H G. Poly(N-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science, 1992, 17(2): 163–249
https://doi.org/10.1016/0079-6700(92)90023-R
24 Harmandaris V, Mavrantzas V, Theodorou D, Kröger M, Ramírez J, Öttinger H C, Vlassopoulos D. Crossover from the rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules, 2003, 36(4): 1376–1387
https://doi.org/10.1021/ma020009g
25 Cohen M H, Turnbull D. Molecular transport in liquids and glasses. Journal of Chemical Physics, 1959, 31(5): 1164–1169
https://doi.org/10.1063/1.1730566
26 Sreenivasan K. Diffusion of water and alcohol in chemically modified polyurethane. Polymer International, 1993, 30(3): 363–365
https://doi.org/10.1002/pi.4990300314
27 Pulat M, Akdoğan A. The diffusion and bulk properties of polyurethane (PU)-based hydrophilic and hydrophobic membranes. Journal of Applied Polymer Science, 2002, 85: 193–198
https://doi.org/10.1002/app.10596
28 McNeill M E, Graham N B. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels 1. Polymer composition. Journal of Biomaterials Science. Polymer Edition, 1993, 4(3): 305–322
https://doi.org/10.1163/156856293X00582
29 Costa L, Storti G. Self-diffusion of small molecules into rubbery polymers: A lattice free-volume theory. Journal of Polymer Science. Part B, Polymer Physics, 2010, 48(5): 529–540
https://doi.org/10.1002/polb.21918
30 Scholfield M R, Ford M C, van der Zanden C M, Billman M M, Ho P S, Rappé A K. Force field model of periodic trends in biomolecular halogen bonds. Journal of Physical Chemistry B, 2015, 119(29): 9140–9149
https://doi.org/10.1021/jp509003r
31 Tamai Y, Tanaka H, Nakanishi K. Molecular dynamics study of water in hydrogels. Molecular Simulation, 1996, 16(4-6): 359–374
https://doi.org/10.1080/08927029608024085
[1] Bo Chen, Yan Dai, Xuehua Ruan, Yuan Xi, Gaohong He. Integration of molecular dynamic simulation and free volume theory for modeling membrane VOC/gas separation[J]. Front. Chem. Sci. Eng., 2018, 12(2): 296-305.
[2] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[3] Lin ZHANG, Yan SUN. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Front Chem Sci Eng, 2013, 7(4): 456-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed