Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2013, Vol. 7 Issue (4) : 456-463    https://doi.org/10.1007/s11705-013-1357-y
RESEARCH ARTICLE
Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations
Lin ZHANG1,2, Yan SUN1,2()
1. Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; 2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(492 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrophobic charge induction chromatography (HCIC) is a mixed-mode chromatography which is advantageous for high adsorption capacity and facile elution. The effect of the ligand chain length on protein behavior in HCIC was studied. A coarse-grain adsorbent pore model established in an earlier work was modified to construct adsorbents with different chain lengths, including one with shorter ligands (CL2) and one with longer ligands (CL4). The adsorption, desorption, and conformational transition of the proteins with CL2 and CL4 were examined using molecular dynamics simulations. The ligand chain length has a significant effect on both the probability and the irreversibility of the adsorption/desorption. Longer ligands reduced the energy barrier of adsorption, leading to stronger and more irreversible adsorption, as well as a little more unfolding of the protein. The simulation results elucidated the effect of the ligand chain length, which is beneficial for the rational design of adsorbents and parameter optimization for high-performance HCIC.

Keywords adsorption      desorption      irreversibility      protein conformational transition      molecular dynamics simulation     
Corresponding Author(s): SUN Yan,Email:ysun@tju.edu.cn   
Issue Date: 05 December 2013
 Cite this article:   
Lin ZHANG,Yan SUN. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Front Chem Sci Eng, 2013, 7(4): 456-463.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-013-1357-y
https://academic.hep.com.cn/fcse/EN/Y2013/V7/I4/456
Fig.1  HCIC adsorbent pore model (a) CL2 and (b) CL4. The topology of ligand is shown on the top while the surface morphology of the equilibrated adsorbent pore is shown on the bottom. Beads H1, H2 and H3 of the ligands are shown in green whereas bead HQ is shown in yellow. The matrix beads are shown in purple. Only a part of the adsorbent pore is shown for a clearer view
Fig.2  Adsorption behavior in CL2. The changes of , , and with time are shown in (a), and the corresponding snapshots at the time points marked in (a) are shown in (b)
Fig.3  Adsorption behavior in CL4. The changes of , , and with time are shown in (a), and the corresponding snapshots at the time points marked in (a) are shown in (b)
AdsorbentAdsorptionDesorption
PB /%YBPD /%YD
CL27.6 (18.0*)0.460 (0.298)83.8 (0.0)0.849 (0.000)
CL433.9 (34.7)0.778 (0.337)93.4 (9.5)0.975 (0.054)
Tab.1  Protein behavior in adsorption and desorption processes
Fig.4  Free energy map for adsorption plotted as a function of protein-ligand interaction energy and protein-ligand distance in (a) CL2, and (b) CL4. The free energies are shown in different colors. The desorbed, transition, and adsorbed regions are marked by violet, black, and dark yellow, respectively. The average free energy values in these regions are shown in the insets
Fig.5  (a) Fractions of proteins in different conformations and (b) distribution of unfolded proteins during adsorption within an adsorbent pore
BStably adsorbed state of protein
CL2Adsorbent pore with shorter ligand containing two beads each
CL4Adsorbent pore with longer ligand containing four beads each
dThe minimum distance between the protein and ligand
DDesorbed state of protein
EInter-molecular interaction energy between protein and ligand
fMole fraction
MIntermediate state of protein
NNative state of protein
PBAdsorption probability
PDDesorption probability
RgRadius of gyration of protein
UUnfolded state of protein
YBAdsorption irreversibility
YDDesorption irreversibility
χStructural overlap function
Tab.2  Nomenclature
1 Burton S C, Harding D R. Hydrophobic charge induction chromatography: Salt independent protein adsorption and facile elution with aqueous buffers. Journal of Chromatography. A , 1998, 814(1-2): 71-81
doi: 10.1016/S0021-9673(98)00436-1
2 Schwartz W, Judd D, Wysocki M, Guerrier L, Birck-Wilson E, Boschetti E. Comparison of hydrophobic charge induction chromatography with affinity chromatography on protein A for harvest and purification of antibodies. Journal of Chromatography. A , 2001, 908(1-2): 251-263
doi: 10.1016/S0021-9673(00)01013-X
3 Dux M P, Barent R, Sinha J, Gouthro M, Swanson T, Barthuli A, Inan M, Ross J T, Smith L A, Smith T J, Webb R, Loveless B, Henderson I, Meagher M M. Purification and scale-up of a recombinant heavy chain fragment C of botulinum neurotoxin serotype E in Pichia pastoris GS115. Protein Expression and Purification , 2006, 45(2): 359-367
doi: 10.1016/j.pep.2005.08.015
4 Weatherly G T, Bouvier A, Lydiard D D, Chapline J, Henderson I, Schrimsher J L, Shepard S R. Initial purification of recombinant botulinum neurotoxin fragments for pharmaceutical production using hydrophobic charge induction chromatography. Journal of Chromatography. A , 2002, 952(1-2): 99-110
doi: 10.1016/S0021-9673(02)00074-2
5 Guerrier L, Girot P, Schwartz W, Boschetti E. New method for the selective capture of antibodies under physiolgical conditions. Bioseparation , 2000, 9(4): 211-221
doi: 10.1023/A:1008170226665
6 Guerrier L, Flayeux I, Boschetti E. A dual-mode approach to the selective separation of antibodies and their fragments. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2001, 755(1-2): 37-46
doi: 10.1016/S0378-4347(00)00598-3
7 Boschetti E. Antibody separation by hydrophobic charge induction chromatography. Trends in Biotechnology , 2002, 20(8): 333-337
doi: 10.1016/S0167-7799(02)01980-7
8 Zhao G F, Sun Y. Displacement chromatography of proteins on hydrophobic charge induction adsorbent column. Journal of Chromatography. A , 2007, 1165(1-2): 109-115
doi: 10.1016/j.chroma.2007.07.067
9 Ghose S, Hubbard B, Cramer S M. Evaluation and comparison of alternatives to Protein A chromatography —Mimetic and hydrophobic charge induction chromatographic stationary phases. Journal of Chromatography. A , 2006, 1122(1-2): 144-152
doi: 10.1016/j.chroma.2006.04.083
10 Coulon D, Cabanne C, Fitton V, Noubhani A M, Saint-Christophe E, Santarelli X. Penicillin acylase purification with the aid of hydrophobic charge induction chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2004, 808(1): 111-115
doi: 10.1016/j.jchromb.2004.03.025
11 Zhao G F, Peng G Y, Li F Q, Shi Q H, Sun Y. 5-Aminoindole, a new ligand for hydrophobic charge induction chromatography. Journal of Chromatography. A , 2008, 1211(1-2): 90-98
doi: 10.1016/j.chroma.2008.09.108
12 Lin D, Tong H, Wang H, Shao S, Yao S. Molecular mechanism of hydrophobic charge-induction chromatography: Interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. Journal of Chromatography. A , 2012, 1260: 143-153
doi: 10.1016/j.chroma.2012.08.080
13 Tong H, Lin D, Gao D, Yuan X, Yao S. Caprylate as the albumin-selective modifier to improve IgG purification with hydrophobic charge-induction chromatography. Journal of Chromatography. A , 2013, 1285: 88-96
doi: 10.1016/j.chroma.2013.02.023
14 Lu H, Lin D, Gao D, Yao S. Evaluation of immunoglobulin adsorption on the hydrophobic charge-induction resins with different ligand densities and pore sizes. Journal of Chromatography. A , 2013, 1278: 61-68
doi: 10.1016/j.chroma.2012.12.054
15 Lippa K A, Sander L C. Identification of isolated cavity features within molecular dynamics simulated chromatographic surfaces. Journal of Chromatography. A , 2006, 1128(1-2): 79-89
doi: 10.1016/j.chroma.2006.06.043
16 Sander L C, Lippa K A, Wise S A. Order and disorder in alkyl stationary phases. Analytical and Bioanalytical Chemistry , 2005, 382(3): 646-668
doi: 10.1007/s00216-005-3127-2
17 Lippa K A, Sander L C, Mountain R D. Molecular dynamics Simulations of alkylsilane stationary-phase order and disorder. 2. Effects of temperature and chain length. Analytical Chemistry , 2005, 77(24): 7862-7871
doi: 10.1021/ac051085v
18 Rafferty J L, Siepmann J I, Schure M R. The effects of chain length, embedded polar groups, pressure, and pore shape on structure and retention in reversed-phase liquid chromatography: Molecular-level insights from Monte Carlo simulations. Journal of Chromatography. A , 2009, 1216(12): 2320-2331
doi: 10.1016/j.chroma.2008.12.088
19 Braun J, Fouqueau A, Bemish R J, Meuwly M. Solvent structures of mixed water/acetonitrile mixtures at chromatographic interfaces from computer simulations. Physical Chemistry Chemical Physics , 2008, 10(32): 4765-4777
doi: 10.1039/b807492e
20 Fouqueau A, Meuwly M, Bemish R J. Adsorption of acridine orange at a C-8,C-18/Water/Acetonitrile interface. Journal of Physical Chemistry B , 2007, 111(34): 10208-10216
doi: 10.1021/jp071721o
21 Gritti F, Guiochon G. A chromatographic estimate of the degree of surface heterogeneity of reversed-phase liquid chromatography packing materials II-Endcapped monomeric C-18-bonded stationary phase. Journal of Chromatography. A , 2006, 1103(1): 57-68
doi: 10.1016/j.chroma.2005.10.051
22 Singh S, Wegmann J, Albert K, Muller K. Variable temperature FT-IR studies of n-alkyl modified silica gels. Journal of Physical Chemistry B , 2002, 106(4): 878-888
doi: 10.1021/jp012979w
23 Tan L C, Carr P W. Revisionist look at solvophobic driving forces in reversed-phase liquid chromatography: II. Partitioning vs adsorption mechanism in monomeric alkyl bonded phase supports. Journal of Chromatography. A , 1997, 775(1-2): 1-12
doi: 10.1016/S0021-9673(97)00228-8
24 Hennion M C, Picard C, Caude M. Influence of the number and length of alkyl chains on the chromatographic properteis of hyrdrocarbonaceous bonded phases. Journal of Chromatography. A , 1978, 166(1): 21-35
doi: 10.1016/S0021-9673(00)92246-5
25 Miyabe K, Guiochon G. Influence of the modification conditions of alkyl bonded ligands on the characteristics of reversed-phase liquid chromatography. Journal of Chromatography. A , 2000, 903(1-2): 1-12
doi: 10.1016/S0021-9673(00)00891-8
26 Lienqueo M E, Mahn A, Salgado J C, Asenjo J A. Current insights on protein behaviour in hydrophobic interaction chromatography. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences , 2007, 849(1-2): 53-68
doi: 10.1016/j.jchromb.2006.11.019
27 Er-el Z, Zaidenzaig Y, Shaltiel S. Hydrocarbon-coated Sepharoses. Use in the purification of glycogen phosphorylase. Biochemical and Biophysical Research Communications , 1972, 49(2): 383-390
doi: 10.1016/0006-291X(72)90422-6
28 Dias-Cabral A C, Ferreira A S, Phillips J, Queiroz J A, Pinto N G. The effects of ligand chain length, salt concentration and temperature on the adsorption of bovine serum albumin onto polypropyleneglycol-Sepharose. Biomedical Chromatography , 2005, 19(8): 606-616
doi: 10.1002/bmc.487
29 Lin F Y, Chen W Y, Ruaan R C, Huang H M. Microcalorimetric studies of interactions between proteins and hydrophobic ligands in hydrophobic interaction chromatography: Effects of ligand chain length, density and the amount of bound protein. Journal of Chromatography. A , 2000, 872(1-2): 37-47
doi: 10.1016/S0021-9673(99)01231-5
30 Busini V, Moiani D, Moscatelli D, Zamolo L, Cavallotti C. Investigation of the influence of spacer arm on the structural evolution of affinity ligands supported on agarose. Journal of Physical Chemistry B , 2006, 110(46): 23564-23577
doi: 10.1021/jp0622278
31 Salvalaglio M, Cavallotti C. Molecular modeling to rationalize ligand-support interactions in affinity chromatography. Journal of Separation Science , 2012, 35(1): 7-19
doi: 10.1002/jssc.201100595
32 Zhang L, Zhao G F, Sun Y. Molecular insight into protein conformational transition in hydrophobic charge induction chromatography: A molecular dynamics simulation. Journal of Physical Chemistry B , 2009, 113(19): 6873-6880
doi: 10.1021/jp809754k
33 Zhang L, Zhao G F, Sun Y. Effects of ligand density on hydrophobic charge induction chromatography: Molecular dynamics simulation. Journal of Physical Chemistry B , 2010, 114(6): 2203-2211
doi: 10.1021/jp903852c
34 Zhang L, Bai S, Sun Y. Molecular dynamics simulation of the effect of ligand homogeneity on protein behavior in hydrophobic charge induction chromatography. Journal of Molecular Graphics & Modelling , 2010, 28(8): 863-869
doi: 10.1016/j.jmgm.2010.03.006
35 Zhang L, Zhao G F, Sun Y. Molecular dynamics simulation and experimental validation of the effect of pH on protein desorption in hydrophobic charge induction chromatography. Molecular Simulation , 2010, 36(13): 1096-1103
doi: 10.1080/08927022.2010.506511
36 Zhao G F, Zhang L, Bai S, Sun Y. Analysis of hydrophobic charge induction displacement chromatography by visualization with confocal laser scanning microscopy. Separation and Purification Technology , 2011, 82: 138-147
doi: 10.1016/j.seppur.2011.09.002
37 Honeycutt J D, Thirumalai D. Metastability of the folded states of globular proteins. Proceedings of the National Academy of Sciences of the United States of America , 1990, 87(9): 3526-3529
doi: 10.1073/pnas.87.9.3526
38 Berendsen H J, Vanderspoel D, Vandrunen R. Gromacs—A message-passing parallel molecular-dynamics implementation. Computer Physics Communications , 1995, 91(1-3): 43-56
doi: 10.1016/0010-4655(95)00042-E
39 Lindahl E, Hess B. van S D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling , 2001, 7(8): 306-317
40 Sayle R, Milnerwhite E. RASMOL—Biomolecular graphics for all. Trends in Biochemical Sciences , 1995, 20(9): 374-376
doi: 10.1016/S0968-0004(00)89080-5
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[3] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[4] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[5] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[6] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[9] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[10] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[11] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[12] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
[13] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
[14] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[15] Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Front. Chem. Sci. Eng., 2018, 12(1): 94-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed