Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 94-102    https://doi.org/10.1007/s11705-017-1692-5
RESEARCH ARTICLE
Detection of CO2 and O2 by iron loaded LTL zeolite films
Veselina Georgieva1, Richard Retoux2, Valerie Ruaux1, Valentin Valtchev1, Svetlana Mintova1()
1. Laboratoire Catalyse et Spectrochimie (LCS), ENSICAEN, CNRS, Normandy University, 14000 Caen, France
2. Laboratoire de Cristallographie et Sciences des Matériaux (CRISMAT), ENSICAEN, CNRS, Normandy University, 14000 Caen, France
 Download: PDF(475 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Detection of oxygen and carbon dioxide is important in the field of chemical and biosensors for atmosphere and biosystem monitoring and fermentation processes. The present study reports on the preparation of zeolite films doped with iron nanoparticles for detection of CO2 and O2 in gas phase. Pure nanosized LTL type zeolite with monomodal particle size distribution loaded with iron (Fe-LTL) was prepared under hydrothermal condition from colloidal precursor suspensions. The zeolite was loaded with iron to different levels by ion exchange. The Fe-LTL suspensions were used for preparation of thin films on silicon wafers via spin coating method. The reduction of the iron in the zeolite films was carried out under H2 flow (50% H2 in Ar) at 300 °C. The presence of iron nanoparticles is proved by in situ ultra-violet-visible spectroscopy. The properties of the films including surface roughness, thickness, porosity, and mechanical stability were studied. In addition, the loading and distribution of iron in the zeolite films were investigated. The Fe-LTL zeolite films were used to detect O2 and CO2 in a concentration dependent mode, followed by IR spectroscopy. The changes in the IR bands at 855 and 642 cm1 (Fe–O–H and Fe–O bending vibrations) and at 2363 and 2333 cm1 (CO2 asymmetric stretching) corresponding to the presence of O2 and CO2, respectively, were evaluated. The response to O2 and CO2 was instant, which was attributed to great accessibility of the iron in the nanosized zeolite crystals. The saturation of the Fe-LTL films with CO2 and O2 at each concentration was reached within less than a minute. The Fe-LTL films detected both oxygen and carbon dioxide in contrast, to the pure LTL zeolite film.

Keywords zeolite films      detection of CO2 and O2      adsorption     
Corresponding Author(s): Svetlana Mintova   
Just Accepted Date: 30 October 2017   Online First Date: 19 January 2018    Issue Date: 26 February 2018
 Cite this article:   
Veselina Georgieva,Richard Retoux,Valerie Ruaux, et al. Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Front. Chem. Sci. Eng., 2018, 12(1): 94-102.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1692-5
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/94
Fig.1  XRD patterns of nanosized (a) Fe-LTL zeolite samples and (b) pure LTL in the regions of 2q = 5°?80°
Sample Si /% Al /% K /% Fe /% Chemical composition, ICP
LTL 14.31 5.38 4.97 K10 [Si26Al10O72]
Fe-LTL 13.07 4.81 2.02 2.48 Fe2K8 [Si26Al10O72]
Tab.1  Chemical composition of pure LTL and Fe-LTL zeolite samples
Fig.2  Optical photographs of (a) pure LTL and (b) Fe-LTL zeolite suspensions (solid concentration of 5 wt-%)
Fig.3  (A) DLS and (B) zeta potential curves of (a) pure LTL and (b) Fe-LTL zeolite suspensions
Fig.4  Nitrogen adsorption-desorption isotherms of (a) pure LTL and (b) Fe-LTL zeolite samples
Sample SBET a) /(m2?g1) SEXT b)/(m2?g1) Vmicc) /(cm3?g1) Vmesod) /(cm3?g1) Vtotale) /(cm3?g1)
LTL 571 295 0.15 0.84 0.99
Fe-LTL 448 139 0.13 0.67 0.80
Tab.2  Results from the nitrogen sorption measurements for pure LTL and Fe-LTL zeolite samples
Fig.5  HRTEM images of (a, b) pure LTL and (c, d, e) Fe-LTL zeolite nanoparticles. Elemental composition of (f) Fe-LTL crystals (measured by EDX-HRTEM (carbon comes from the carbon film of the sample holder). Iron particles are pointed out by red arrows
Fig.6  UV-Vis spectra of the Fe-LTL zeolite sample: (a) as-prepared, (b) after reduction in 50 vol-% H2 in Ar for 3 h at 300 °C, and after (c) oxidation in 100 vol-% O2 in Ar at 25 °C for 12 h
Fig.7  SEM surface and side-view micrographs of (a, c) pure LTL and (b, d) Fe-LTL zeolite films
Fig.8  SEM photographs of (a, c) pure LTL and (b, d) Fe-LTL zeolites films after adhesive testing
Fig.9  FTIR spectra of CO2 adsorbed on (A) pure LTL, (B) Fe-LTL zeolites films after outgassing under vacuum at 300 °C, and (C) CO2 adsorption isotherms of LTL and Fe-LTL. CO2 concentration increased in small doses as follow: (a) 0, (b) 7, (c) 20, (d) 70, (e) 100, (f) 150, (g) 200, (h) 250, (i) 300, (j) 350, (k) 400, (l) 450 mg?L?1
Fig.10  FTIR spectra of O2 adsorbed on (A) pure LTL, (B) Fe-LTL zeolite films after outgassing under vacuum at 300 °C, and (C) O2 adsorption isotherms of LTL and Fe-LTL. O2 concentration increased in small doses as follow: (a) 0, (b) 10, (c) 60, (d) 120, (e) 200, (f) 300, (g) 400 mg?L?1. Insert in (B) enlargement of the peak at 863 cm?1 with an increase of the oxygen concentration
1 Diamond D. Principles of chemical and biological sensors. Michigan: Wiley, 1998, 220–290
2 Bein T. Synthesis and applications of molecular sieve layers and membranes. Chemistry of Materials, 1996, 8(8): 1636–1653
https://doi.org/10.1021/cm960148a
3 Mintova S, Mo  S, Bein T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials, 2001, 13(3): 901–905
https://doi.org/10.1021/cm000671w
4 Yang P, Lau  C, Liang J Y,  Lu J Z,  Liu X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence, 2007, 22(5): 473–479
https://doi.org/10.1002/bio.987
5 Mintova S, Jaber  M, Valtchev V. Nanosized microporous crystals: Emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
https://doi.org/10.1039/C5CS00210A
6 Bein T, Mintova  S. Zeolites and ordered mesoporous materials: Progress and prospects. Studies in Surface Science and Catalysis, 2005, 157: 263–288
https://doi.org/10.1016/S0167-2991(05)80015-1
7 Mintova S, Bein  T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883
https://doi.org/10.1002/1521-4095(200112)13:24<1880::AID-ADMA1880>3.0.CO;2-7
8 Leite E, Babeva  T, Ng E P,  Toal V, Mintova  S, Naydenova I. Optical properties of photopolymer layers doped with aluminophosphate nanocrystals. Journal of Physical Chemistry C, 2010, 114(39): 16767–16775
https://doi.org/10.1021/jp1060073
9 Valtchev V, Tosheva  L. Porous nanosized particles: Preparation, properties, and applications. Chemical Reviews, 2013, 113(8): 6734–6760
https://doi.org/10.1021/cr300439k
10 Yasuda K E, Visser  J E, Bein  T. Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials, 2009, 119(1-3): 356–359
https://doi.org/10.1016/j.micromeso.2008.11.009
11 Xu X, Wang  J, Long Y. Zeolite-based materials for gas sensors. Sensors (Basel), 2006, 6(12): 1751–1764
https://doi.org/10.3390/s6121751
12 Lakiss L, Kecht  J, De Waele V,  Mintova S. Copper-containing nanoporous films. Superlattices and Microstructures, 2008, 44(4-5): 617–625
https://doi.org/10.1016/j.spmi.2007.10.009
13 Thomas S, Bazin  P, Lakiss L,  De Waele V,  Mintova S. In situ infrared molecular detection using palladium-containing zeolite films. Langmuir, 2011, 27(23): 14689–14695
https://doi.org/10.1021/la203075m
14 Huang H, Zhou  J, Chen S,  Zeng L, Huang  Y. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensors and Actuators. B, Chemical, 2004, 101(3): 316–321
https://doi.org/10.1016/j.snb.2004.04.001
15 Dubbe A. The effect of platinum clusters in the zeolite micropores of a zeolite-based potentiometric hydrocarbon gas sensor. Sensors and Actuators. B, Chemical, 2009, 137(1): 205–208
https://doi.org/10.1016/j.snb.2008.11.039
16 Wales D J, Grand  J, Ting V P,  Burke R D,  Edler K J,  Bowen C R,  Mintova S,  Burrows A D. Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44(13): 4290–4321
https://doi.org/10.1039/C5CS00040H
17 Fine G F, Cavanagh  L M, Afonja  A, Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel), 2010, 10(6): 5469–5502
https://doi.org/10.3390/s100605469
18 Mohan N, Cindrella  L. Mater. Direct synthesis of Fe-ZSM-5 zeolite and its prospects as efficient electrode material in methanol fuel cell. Materials Science in Semiconductor Processing, 2015, 40: 361–368
https://doi.org/10.1016/j.mssp.2015.06.087
19 Yue Y, Liu  H, Yuan P,  Yu C, Bao  X. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5(9270): 1–10
20 Luo L, Dai  C, Zhang A,  Wang J, Liu  M, Song C,  Guo X. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5(37): 29509–29512
https://doi.org/10.1039/C5RA02194D
21 Bouazizi N, Ouargli  R, Nousir S,  Slama R B,  Azzouz A. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. Journal of Physics and Chemistry of Solids, 2015, 77: 172–177
https://doi.org/10.1016/j.jpcs.2014.10.011
22 Georgieva V, Anfray  C, Retoux R,  Valtchev V,  Valable S,  Mintova S. Iron loaded EMT nanosized zeolite with high affinity towards CO2 and NO. Microporous and Mesoporous Materials, 2016, 232: 256–263
https://doi.org/10.1016/j.micromeso.2016.06.015
23 Suri K, Annapoorni  S, Sarkar A K,  Tandon R P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actuators. B, Chemical, 2002, 81(2-3): 277–282
https://doi.org/10.1016/S0925-4005(01)00966-2
24 Mcdonagh C M, Shields  M, Mcevoy K,  Maccraith B D,  Gouin J F. Optical sol-gel-based dissolved oxygen sensor: Progress towards a commercial instrument. Journal of Sol-Gel Science and Technology, 1998, 13(1-3): 207–211
https://doi.org/10.1023/A:1008608901645
25 Ishiji T, Chipman  D W, Takahashi  T, Takahashi K. Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sensors and Actuators. B, Chemical, 2001, 76(1-3): 265–269
https://doi.org/10.1016/S0925-4005(01)00580-9
26 Guéguen C, Tortell  P D. High-resolution measurement of southern ocean CO2 and O2/Ar by membrane inlet mass spectrometry. Marine Chemistry, 2008, 108(3-4): 184–194
https://doi.org/10.1016/j.marchem.2007.11.007
27 Higgins C, Wencel  D, Burke C S,  MacCraith B D,  McDonagh C. Novel hybrid optical sensor materials for in-breath O(2) analysis. Analyst (London), 2008, 133(2): 241–247
https://doi.org/10.1039/B716197B
28 Hoelper B M, Alessandri  B, Heimann A,  Behr R, Kempski  O. Brain oxygen monitoring: In-vitro accuracy, long-term drift and response-time of Licox- and Neurotrend sensors. Acta Neurochirurgica, 2005, 147(7): 767–774
https://doi.org/10.1007/s00701-005-0512-8
29 Baldini F, Falai  A, De Gaudio R,  Landi D,  Lueger A,  Mencaglia A,  Scherr D,  Trettnak W. Continuous monitoring of gastric carbon dioxide with optical fibres. Sensors and Actuators. B, Chemical, 2003, 90(1-3): 132–138
https://doi.org/10.1016/S0925-4005(03)00042-X
30 Čajlaković M,  Bizzarri A,  Ribitsch V. Luminescence lifetime-based carbon dioxide optical sensor for clinical applications. Analytica Chimica Acta, 2006, 573-574: 57–64
https://doi.org/10.1016/j.aca.2006.05.085
31 Wolfbeis O S, Klimant  I, Werner T,  Huber C,  Kosch U,  Krause C,  Neurauter G,  Dürkop A. Set of luminescence decay time based chemical sensors for clinical applications. Sensors and Actuators. B, Chemical, 1998, 51(1-3): 17–24
https://doi.org/10.1016/S0925-4005(98)00181-6
32 Mills A. Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 2005, 34(12): 1003–1011
https://doi.org/10.1039/b503997p
33 Chaix E, Guillaume  C, Guillard V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: A review of past and current knowledge. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261–286
https://doi.org/10.1111/1541-4337.12058
34 Ge X, Hanson  M, Shen H,  Kostov Y,  Brorson K,  Frey D D,  Moreira A R,  Rao G. Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. Journal of Biotechnology, 2006, 122(3): 293–306
https://doi.org/10.1016/j.jbiotec.2005.12.009
35 Ge X, Kostov  Y, Rao G. Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering, 2005, 89(3): 329–334
https://doi.org/10.1002/bit.20337
36 Mulrooney J, Clifford  J, Fitzpatrick C,  Lewis E. Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical, 2007, 136(1): 104–110
https://doi.org/10.1016/j.sna.2006.11.016
37 Litzelman S J,  Rothschild A,  Tuller H L. The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for automotive oxygen sensor applications. Sensors and Actuators. B, Chemical, 2005, 108(1-2): 231–237
https://doi.org/10.1016/j.snb.2004.10.040
38 Souici A, Wong  K L, De Waele  V, Marignier J L,  Metzger T H,  Keghouche N,  Mintova S,  Mostafavi M. Capturing the formation of sub-nanometer sized CdS clusters in LTL zeolite. Journal of Physical Chemistry C, 2014, 118(12): 6324–6334
https://doi.org/10.1021/jp500185m
39 Hölzl M, Mintova  S, Bein T. Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis, 2005, 158(5): 11–18
https://doi.org/10.1016/S0167-2991(05)80316-7
40 Lakiss L, Yordanov  I, Majano G,  Metzger T,  Mintova S. Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films, 2010, 518(8): 2241–2246
https://doi.org/10.1016/j.tsf.2009.07.179
41 Lowell S. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.  Netherlands: Springer, 2004, 58–81
42 Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
43 Das D, Ravichandran  G, Chakrabarty D K,  Piramanayagam S N,  Shringi S N. Selective synthesis of light alkenes from carbon monoxide and hydrogen on silicalite supported iron-manganese catalysts. Applied Catalysis A, General, 1993, 107(1): 73–81
https://doi.org/10.1016/0926-860X(93)85116-7
44 Guo L, Huang  Q, Li X,  Yang S. Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 2001, 3(9): 1661–1665
https://doi.org/10.1039/b009951l
45 Bordiga S, Buzzoni  R, Geobaldo F,  Lamberti C,  Giamello E,  Zecchina A,  Leofanti G,  Petrini G,  Tozzola G,  Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis, 1996, 158(2): 486–501
https://doi.org/10.1006/jcat.1996.0048
46 Pérez-Ramírez J,  Groen J C,  Brückner A,  Kumar M S,  Bentrup U,  Debbagh M N,  Villaescusa L A. Evolution of isomorphously substituted iron zeolites during activation: Comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232(2): 318–334
https://doi.org/10.1016/j.jcat.2005.03.018
47 Mintova S, Bein  T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883
https://doi.org/10.1002/1521-4095(200112)13:24<1880::AID-ADMA1880>3.0.CO;2-7
48 Mintova S, Valtchev  V, Konstantinov L. Adhesivity of molecular sieve films on metal substrates. Zeolites, 1996, 17(5-6): 462–465
https://doi.org/10.1016/S0144-2449(96)00092-9
49 Andrews L, Chertihin  G V, Citra  A, Neurock M. Reactions of laser-ablated iron atoms with N2O, NO, and O2 in condensing nitrogen. Infrared spectra and density functional calculations of ternary iron nitride oxide molecules. Journal of Physical Chemistry, 1996, 100(27): 11235–11241
https://doi.org/10.1021/jp960674p
50 Reiff W M, Baker  W A, Erickson  N E. Binuclear, oxygen-bridged complexes of iron(III). New iron (III)-2,2′,2"-terpyridine complexes. Journal of the American Chemical Society, 1968, 90(18): 4794–4800
https://doi.org/10.1021/ja01020a008
51 Dalla Betta R A,  Garten R L,  Boudart M. Infrared examination of the reversible oxidation of ferrous ions in Y zeolite. Journal of Catalysis, 1976, 41(1): 40–45
https://doi.org/10.1016/0021-9517(76)90198-6
[1] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[2] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[3] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[4] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[5] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[6] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[7] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[8] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[9] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[10] Rusen Zhou, Renwu Zhou, Xianhui Zhang, Kateryna Bazaka, Kostya (Ken) Ostrikov. Continuous flow removal of acid fuchsine by dielectric barrier discharge plasma water bed enhanced by activated carbon adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(2): 340-349.
[11] Ming Zhao, Run Liu, Jian Luo, Yan Sun, Qinghong Shi. Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches[J]. Front. Chem. Sci. Eng., 2019, 13(1): 120-132.
[12] Shenggang Chen, Tao Liu, Ruiqi Yang, Dongqiang Lin, Shanjing Yao. Preparation of copolymer-grafted mixed-mode resins for immunoglobulin G adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(1): 70-79.
[13] Xiangfeng Peng, Zhenhai Wang, Zhao Wang, Yunxiang Pan. Multivalent manganese oxides with high electrocatalytic activity for oxygen reduction reaction[J]. Front. Chem. Sci. Eng., 2018, 12(4): 790-797.
[14] Nachuan Wang, Jun Wang, Peng Zhang, Wenbin Wang, Chuangchao Sun, Ling Xiao, Chen Chen, Bin Zhao, Qingran Kong, Baoku Zhu. Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 262-272.
[15] Tianjie Liu, Hao Fan, Yanxia Xu, Xingfu Song, Jianguo Yu. Effects of metal ions on the morphology of calcium sulfate hemihydrate whiskers by hydrothermal method[J]. Front. Chem. Sci. Eng., 2017, 11(4): 545-553.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed