|
|
Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies |
Majid Peyravi( ) |
Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran |
|
|
Abstract Adsorptive polyethesulfone (PES) membranes were prepared by intercalation of powder activated carbon (PAC) with and without functionalization. Accordingly, PAC was aminated with 1,5-diamino-2-methylpentane, and the physicochemical properties of the functionalized PAC were analyzed. Intercalation of PAC within the PES scaffold changed the porosity and mean pore size of the aminated membrane (AC-NH2) from 52.6% to 92.5% and from 22.6 nm to 3.5 nm, respectively. The effect of temperature on the performance of the modified membranes was monitored by the flux and chemical oxygen demand (COD) removal of leachate. At ambient temperature, the COD removal of the neat, AC-containing, and AC-NH2 membranes was 47%, 52%, and 58.5%, respectively. A similar increment was obtained for the membrane flux, which was due to the synergistic effect of the high porosity and large number of hydrophilic functional groups. The experimental leachate adsorption data were analyzed by Langmuir, Freundlich, and Dubinin- Radushkevich isotherm models. For all membranes, the significant thermodynamic parameters (ΔH, ΔS, and ΔG) were calculated and compared. The isosteric heat of adsorption was lower than 80 kJ∙mol−1, indicating that the interaction between the membranes and the leachate is mainly physical, involving weak van der Waals forces.
|
Keywords
amine functionality
nanoporous membrane
adsorption isotherm
thermodynamic parameters
landfill leachate
|
Corresponding Author(s):
Majid Peyravi
|
Online First Date: 16 April 2019
Issue Date: 22 May 2020
|
|
1 |
E Salehi, P Daraei, A A Shamsabadi. A review on chitosan-based adsorptive membranes. Carbohydrate Polymers, 2016, 152: 419–432
https://doi.org/10.1016/j.carbpol.2016.07.033
|
2 |
J Sun, L Wu. Adsorption of protein onto double layer mixed matrix membranes. Colloids and Surfaces. B, Biointerfaces, 2014, 123: 33–38
https://doi.org/10.1016/j.colsurfb.2014.09.006
|
3 |
Y Guo, Z Jia. Novel sandwich structure adsorptive membranes for removal of 4-nitrotoluene from water. Journal of Hazardous Materials, 2016, 317: 295–302
https://doi.org/10.1016/j.jhazmat.2016.06.014
|
4 |
S A Hashemifard, A F Ismail, T Matsuura. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: Experimental. Journal of Colloid and Interface Science, 2011, 359(2): 359–370
https://doi.org/10.1016/j.jcis.2011.03.077
|
5 |
M F Rahman, S Peldszus, W B Anderson. Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Research, 2014, 50: 318–340
https://doi.org/10.1016/j.watres.2013.10.045
|
6 |
W Wang, H Zhang, Z Zhang, M Luo, Y Wang, Q Liu, Y Chen, M Li, D Wang. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin. Colloids and Surfaces. B, Biointerfaces, 2017, 150: 271–278
https://doi.org/10.1016/j.colsurfb.2016.10.034
|
7 |
M Kumar, R Shevate, R Hilke, K V Peinemann. Novel adsorptive ultrafiltration membranes derived from polyvinyltetrazole-co-polyacrylonitrile for Cu(II) ions removal. Chemical Engineering Journal, 2016, 301: 306–314
https://doi.org/10.1016/j.cej.2016.05.006
|
8 |
U Habiba, A M Afifi, A Salleh, B C Ang. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials, 2017, 322: 182–194
https://doi.org/10.1016/j.jhazmat.2016.06.028
|
9 |
Y L Thuyavan, N Anantharaman, G Arthanareeswaran, A F Ismail. Adsorptive removal of humic acid by zirconia embedded in a poly(ether sulfone) membrane. Industrial & Engineering Chemistry Research, 2014, 53(28): 11355–11364
https://doi.org/10.1021/ie5015712
|
10 |
Y Gao, Y Qiao, S Yang. Fabrication of PAN/PHCS adsorptive UF membranes with enhanced performance for dichlorophenol removal from water. Journal of Applied Polymer Science, 2014, 131(19): 40837–40846
https://doi.org/10.1002/app.40837
|
11 |
S Khodadoust, M Ghaedi, R Sahraei, A Daneshfar. Application of experimental design for removal of sunset yellow by copper sulfide nanoparticles loaded on activated carbon. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2663–2670
https://doi.org/10.1016/j.jiec.2013.10.053
|
12 |
M M Khan, V Filiz, G Bengtson, S Shishatskiy, M M Rahman, J Lillepaerg, V Abetz. Enhanced gas permeability by fabricating mixed matrix membranes of functionalized multiwalled carbon nanotubes and polymers of intrinsic microporosity (PIM). Journal of Membrane Science, 2013, 436: 109–120
https://doi.org/10.1016/j.memsci.2013.02.032
|
13 |
Y Orooji, M Faghih, A Razmjou, J Hou, P Moazzam, N Emami, M Aghababaie, F Nourisfa, V Chen, W Jin. Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion. Carbon, 2017, 111: 689–704
https://doi.org/10.1016/j.carbon.2016.10.055
|
14 |
T E Clark, H W Deckman, D M Cox, R R Chance. In situ determination of the adsorption characteristics of a zeolite membrane. Journal of Membrane Science, 2004, 230(1-2): 91–98
https://doi.org/10.1016/j.memsci.2003.10.035
|
15 |
H L Nie, T X Chen, L M Zhu. Adsorption of papain on dye affinity membranes: Isotherm, kinetic, and thermodynamic analysis. Separation and Purification Technology, 2007, 57(1): 121–125
https://doi.org/10.1016/j.seppur.2007.02.019
|
16 |
S S Madaeni, E Salehi. Adsorption-transport modeling of anions through PVD membrane in the presence of the screen phenomenon. Applied Surface Science, 2009, 255(6): 3523–3529
https://doi.org/10.1016/j.apsusc.2008.09.085
|
17 |
O J Johansen, D A Carlson. Characterization of sanitary landfill leachates. Water Research, 1976, 10(12): 1129–1134
https://doi.org/10.1016/0043-1354(76)90046-4
|
18 |
M Peyravi, A Rahimpour, M Jahanshahi. Developing nanocomposite PI membranes: Morphology and performance to glycerol removal at the downstream processing of biodiesel production. Journal of Membrane Science, 2015, 473: 72–84
https://doi.org/10.1016/j.memsci.2014.08.009
|
19 |
M Jahanshahi, M Peyravi, N Shafaei, H Mirani. Analysis of nanoporous membrane fouling relying on experimental observation and theoretical model for landfill leachate treatment. Water Science and Technology, 2016, 73(1): 1–12
https://doi.org/10.2166/wst.2015.452
|
20 |
A Zirehpour, A Rahimpour, M Jahanshahi, M Peyravi. Mixed matrix membrane application for olive oil wastewater treatment: Process optimization based on Taguchi design method. Journal of Environmental Management, 2014, 132: 113–120
https://doi.org/10.1016/j.jenvman.2013.10.028
|
21 |
M Kilic, E Apaydin-Varol, A E Pütün. Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: Equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 2011, 189(1-2): 397–403
https://doi.org/10.1016/j.jhazmat.2011.02.051
|
22 |
M T Yagub, T K Sen, S Afroze, H M Ang. Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 2014, 209: 172–184
https://doi.org/10.1016/j.cis.2014.04.002
|
23 |
R I Yousef, B El-Eswed, H Ala’a. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: Kinetics, mechanism, and thermodynamics studies. Chemical Engineering Journal, 2011, 171(3): 1143–1149
https://doi.org/10.1016/j.cej.2011.05.012
|
24 |
H K Boparai, M Joseph, D M O’Carroll. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 2011, 186(1): 458–465
https://doi.org/10.1016/j.jhazmat.2010.11.029
|
25 |
P S Kumar, S Ramalingam, C Senthamarai, M Niranjanaa, P Vijayalakshmi, S Sivanesan. Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 2010, 261(1-2): 52–60
https://doi.org/10.1016/j.desal.2010.05.032
|
26 |
M S Yilmaz, O D Ozdemir, S Kasap, S Piskin. The kinetics and thermodynamics of nickel adsorption from galvanic sludge leachate on nanometer titania powders. Research on Chemical Intermediates, 2015, 41(3): 1499–1515
https://doi.org/10.1007/s11164-013-1288-8
|
27 |
S Khalili, B Khoshandam, M Jahanshahi. Optimization of production conditions for synthesis of chemically activated carbon produced from pine cone using response surface methodology for CO2 adsorption. RSC Advances, 2015, 5(114): 94115–94129
https://doi.org/10.1039/C5RA18986A
|
28 |
S Chowdhury, R Mishra, P Saha, P Kushwaha. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination, 2011, 265(1-3): 159–168
https://doi.org/10.1016/j.desal.2010.07.047
|
29 |
S S Madaeni, E Salehi. Adsorption of cations on nanofiltration membrane: Separation mechanism, isotherm confirmation and thermodynamic analysis. Chemical Engineering Journal, 2009, 150(1): 114–121
https://doi.org/10.1016/j.cej.2008.12.005
|
30 |
A Heidari, H Younesi, A Rashidi, A Ghoreyshi. Adsorptive removal of CO2 on highly microporous activated carbons prepared from Eucalyptus camaldulensis wood: Effect of chemical activation. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(2): 579–588
https://doi.org/10.1016/j.jtice.2013.06.007
|
31 |
A Barroso-Bogeat, M Alexandre-Franco, C Fernández-González, A Macías-García, V Gómez-Serrano. Temperature dependence of the electrical conductivity of activated carbons prepared from vine shoots by physical and chemical activation methods. Microporous and Mesoporous Materials, 2015, 209: 90–98
https://doi.org/10.1016/j.micromeso.2014.07.023
|
32 |
C Saka. BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis, 2012, 95: 21–24
https://doi.org/10.1016/j.jaap.2011.12.020
|
33 |
J Przepiórski, M Skrodzewicz, A W Morawski. High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption. Applied Surface Science, 2004, 225(1-4): 235–242
https://doi.org/10.1016/j.apsusc.2003.10.006
|
34 |
J Przepiórski. Enhanced adsorption of phenol from water by ammonia-treated activated carbon. Journal of Hazardous Materials, 2006, 135(1-3): 453–456
https://doi.org/10.1016/j.jhazmat.2005.12.004
|
35 |
S Khalili, A A Ghoreyshi, M Jahanshahi, K Pirzadeh. Enhancement of carbon dioxide capture by amine—functionalized multi-walled carbon nanotube. Clean–Soil, Air. Water (Basel), 2013, 41(10): 939–948
|
36 |
S Khalili, A A Ghoreyshi, M Jahanshahi. Carbon dioxide captured by multiwalled carbon nanotube and activated charcoal: A comparative study. Chemical Industry and Chemical Engineering Quarterly/CICEQ, 2013,19(1): 153–164
|
37 |
A Rahimpour, S S Madaeni, Y Mansourpanah. Nano-porous polyethersulfone (PES) membranes modified by acrylic acid (AA) and 2-hydroxyethylmethacrylate (HEMA) as additives in the gelation media. Journal of Membrane Science, 2010, 364(1-2): 380–388
https://doi.org/10.1016/j.memsci.2010.08.046
|
38 |
A F Ismail, A R Hassan. Effect of additive contents on the performances and structural properties of asymmetric polyethersulfone (PES) nanofiltration membranes. Separation and Purification Technology, 2007, 55(1): 98–109
https://doi.org/10.1016/j.seppur.2006.11.002
|
39 |
K Zodrow, L Brunet, S Mahendra, D Li, A Zhang, Q Li, P J Alvarez. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43(3): 715–723
https://doi.org/10.1016/j.watres.2008.11.014
|
40 |
L Yan, Y S Li, C B Xiang, S Xianda. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. Journal of Membrane Science, 2006, 276(1-2): 162–167
https://doi.org/10.1016/j.memsci.2005.09.044
|
41 |
Y Q Li, D L Xi, S L Fan. Preparation and characterization of novel hollow fiber membrane with multicomponent polymeric materials. Advanced Materials Research, 2012, 534: 8–12
https://doi.org/10.4028/www.scientific.net/AMR.534.8
|
42 |
T Kuilla, S Bhadra, D Yao, N H Kim, S Bose, J H Lee. Recent advances in graphene based polymer composites. Progress in Polymer Science, 2010, 35(11): 1350–1375
https://doi.org/10.1016/j.progpolymsci.2010.07.005
|
43 |
A Bottino, G Capannelli, S Munari, A Turturro. High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 1988, 68(2-3): 167–177
https://doi.org/10.1016/0011-9164(88)80052-3
|
44 |
H J Lee, J Won, H Lee, Y S Kang. Solution properties of poly(amic acid)-NMP containing LiCl and their effects on membrane morphologies. Journal of Membrane Science, 2002, 196(2): 267–277
https://doi.org/10.1016/S0376-7388(01)00610-X
|
45 |
D Wang, K Li, W K Teo. Porous PVDF asymmetric hollow fiber membranes prepared with the use of small molecular additives. Journal of Membrane Science, 2000, 178(1–2): 13–23
https://doi.org/10.1016/S0376-7388(00)00460-9
|
46 |
M Mänttäri, A Pihlajamäki, E Kaipainen, M Nyström. Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes. Desalination, 2002, 145(1-3): 81–86
https://doi.org/10.1016/S0011-9164(02)00390-9
|
47 |
P Van den Brink, O A Satpradit, A Van Bentem, A Zwijnenburg, H Temmink, M Van Loosdrecht. Effect of temperature shocks on membrane fouling in membrane bioreactors. Water Research, 2011, 45(15): 4491–4500
https://doi.org/10.1016/j.watres.2011.05.046
|
48 |
R R Sharma, S Chellam. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. Journal of Colloid and Interface Science, 2006, 298(1): 327–340
https://doi.org/10.1016/j.jcis.2005.12.033
|
49 |
J Yener, T Kopac, G Dogu, T Dogu. Adsorption of Basic Yellow 28 from aqueous solutions with clinoptilolite and amberlite. Journal of Colloid and Interface Science, 2006, 294(2): 255–264
https://doi.org/10.1016/j.jcis.2005.07.040
|
50 |
M Karime, S Bouguecha, B Hamrouni. RO membrane autopsy of Zarzis brackish water desalination plant. Desalination, 2008, 220(1-3): 258–266
https://doi.org/10.1016/j.desal.2007.02.040
|
51 |
P Xu, C Bellona, J E Drewes. Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. Journal of Membrane Science, 2010, 353(1-2): 111–121
https://doi.org/10.1016/j.memsci.2010.02.037
|
52 |
M Toor, B Jin. Adsorption characteristics, isotherm, kinetics, and diffusion of modified natural bentonite for removing diazo dye. Chemical Engineering Journal, 2012, 187: 79–88
https://doi.org/10.1016/j.cej.2012.01.089
|
53 |
F A Dawodu, G K Akpomie, I C Ogbu. Isotherm modeling on the equilibrium sorption of cadmium (II) from solution by Agbani Clay. International Journal of Multidisciplinary Sciences and Engineering, 2012, 3(9): 9–14
|
54 |
M Cinke, J Li, C W Bauschlicher Jr, A Ricca, M Meyyappan. CO2 adsorption in single-walled carbon nanotubes. Chemical Physics Letters, 2003, 376(5-6): 761–766
https://doi.org/10.1016/S0009-2614(03)01124-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|