Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Eng Chin    2009, Vol. 3 Issue (1) : 52-57    https://doi.org/10.1007/s11705-009-0087-7
RESEARCH ARTICLE
Adsorption of 1,3-propanediol from synthetic mixture using polymeric resin as adsorbents
W. LUERRUK1, A. SHOTIPRUK1, V. TANTAYAKOM2, P. PRASITCHOKE2, C. MUANGNAPOH1()
1. Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; 2. Department of Innovation and Technology, PTT Chemical Public Company Limited, Rayong 21150, Thailand
 Download: PDF(155 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aim of this work was to separate 1,3-PDO from a synthetic mixture using polymeric resins, Amberlite XAD-7 and XAD-16 resins. The equilibrium adsorption of 1,3-PDO onto two polymeric resins were investigated in binary and tertiary systems. Experimental results of binary component adsorption equilibrium indicated that the adsorption capacity (q) of 1,3-PDO at 160 g/L onto XAD-7 and XAD-16 was 835.96 and 584.61 mg 1,3-PDO/g dry resin, respectively. The adsorption isotherms were closely predicted by the Langmuir-Freundlich model among the two isotherm model tested. The value of n of 1,3-PDO adsorbed on XAD-7 are much higher than those on XAD-16. This result suggested that XAD-7 resin has a higher affinity for the 1,3-PDO adsorption than XAD-16 resin. Moreover, the value of adsorption capacity of 1,3-PDO in the binary and tertiary component were compared at the same conditions. In the tertiary system, although the selectivity of 1,3-PDO from XAD-7 was approximately six times higher than XAD-16, the adsorption capacity of 1,3-PDO at 160 g/L onto XAD-16 was higher than XAD-7. Interestingly, the reusability of XAD-7 and XAD-16 resins in the three cycle times shows a slight loss of adsorption capacity. Furthermore, the investigation about desorption by an ethanol/water mixture at 50% (V/V) indicated that the desorption yield of 1,3-PDO from XAD-7 was lower than XAD-16 resin for both the binary and tertiary component. This was due to the more favorable adsorption characteristics of XAD-7 resin than XAD-16 resin.

Keywords adsorption      1      3-propanediol      glycerol      polymeric resin      adsorption isotherm     
Corresponding Author(s): MUANGNAPOH C.,Email:chirakarn.m@chula.ac.th   
Issue Date: 05 March 2009
 Cite this article:   
W. LUERRUK,V. TANTAYAKOM,P. PRASITCHOKE, et al. Adsorption of 1,3-propanediol from synthetic mixture using polymeric resin as adsorbents[J]. Front Chem Eng Chin, 2009, 3(1): 52-57.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-009-0087-7
https://academic.hep.com.cn/fcse/EN/Y2009/V3/I1/52
Fig.1  Equilibrium adsorption isotherm for 1,3-PDO onto XAD-7 and XAD-16 resins in binary component system at 303 K
Fig.2  1,3-PDO equilibrium adsorption isotherm of XAD-7 and XAD-16 resin at 303 K. Fitting to Langmuir, Freundlich and Langmuir-Freundlich models are shown together with these experimental data points
nameequationlinear form termcapacity
Freundlich modelqe=KFCe1/nlog?qe=log?KF+1nlog?CeKF and n, fitting parameter
Langmuir modelqe=KLaLCe1+aLCe1qe=1KLaLCe+1KLKL and aL, fitting parameter
Langmuir-Freundlichqe=KLaLCe1/n1+aLCe1/n1qe=1KLaLCe1/n+1KLKL, aL and n fitting parameter
Tab.1  Isotherm models
Langmuir model
adsorbentsKL/(mg?g-1)aL/(L?mg-1)R2?q/%
XAD-7XAD-16-12500-1000-3.176E-07-2.183E-060.84290.93214.5313.044
Freundlich model
adsorbentsKF /(L?g–1)NR2?q/%
XAD-7XAD-165.038E-054.800E-050.84450.73710.88720.94253.7432.087
Langmuir-Freundlich model
adsorbentsKL/(mg?g-1)aL/(L?mg-1)nR2?q/%
XAD-7XAD-16500050003.748E-056.963E-060.600.510.97450.99093.6193.839
Tab.2  Fitting parameters of models
Fig.3  Comparison of the experimental binary equilibrium adsorption data (●) with tertiary equilibrium adsorption data (?) of 1,3-PDO onto XAD-7 and XAD-16 resins
resinsdesorption yield/%
binary componenttertiary component
XAD-761.6580.91
XAD-1683.4785.13
Tab.3  Desorption yield of 1,3-PDO from XAD-7 and XAD-16 resins at 303 K for 24 h
resinsadsorbed mass of 1,3-PDO/(mg×g-1)desorbed mass of 1,3-PDO/(mg×g-1)
binary componenttertiary componentbinary componenttertiary component
XAD-7835.96726.68515.37587.96
XAD-16584.61770.05432.07655.54
Tab.4  Mass of adsorption at 160 g/L and desorption of 1,3-PDO from XAD-7 and XAD-16 resins.
Fig.4  Adsorption ratio and desorption yield (%) of 1,3-PDO with XAD-7 and XAD-16 resins in binary component system at 303 K
1 Witt U, Muller R J, Augusta J, Widdecke H, Deckwer W D. Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol Chem Phys , 1994, 195: 793–802
doi: 10.1002/macp.1994.021950235
2 Zeng A P, Biebl H. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng , 2002, 74: 239–249
3 Reimann A, Biebl H, Deckwer W D. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbial Biotechnol , 1997, 49: 359–363
doi: 10.1007/s002530051182
4 Seraphim P, Ruiz-Sanchez P, Pariset B, Fabrice B, Fick M. High production of 1,3-propanediol from industrial glycerol by a newly isolate Clostridium butyricum strain. Journal of Biotechnology 2000, 77: 191–208
doi: 10.1016/S0168-1656(99)00217-5
5 Ames T T. Process for the isolation of 1,3-propanediol from fermentation broth. US Patent , 6361983, 2002
6 Boonsongsawat T. Solvent selection for separation of biologically derived 1,3-propanediol. Dissertation for the Doctoral Degree . Bangkok: Chulalongkorn University, 2007
7 Cho M H, Joen S I, Pyo S H, Mun S, Kim J H. A novel separation and purification process for 1,3-propanediol. Process Biochem , 2006, 41: 739–744
doi: 10.1016/j.procbio.2005.11.013
8 Corbin D R, Norton T. Process to separate 1,3-propanediol or glycerol or a mixture thereof from a biological mixture. US Patent , 6603048, 2003
9 Wilkins A E, Lowe D J. Product removal process for use in biofermentation system. Us Patent , 7166460, 2007
10 Roturier J M, Fouache C, Berghmans E. Process for the purification of 1,3-propanediol from a fermentation medium. US Patent , 6428992 B1, 2002
11 Hilaly A K, Binder T P. Method of recovering 1,3-propanediol from fermentation broth. US Patent , 6479716, 2002
12 Myer D. Surfaces, Interfaces and Colloids. 2nd ed . New York: John Wiley, 1999
doi: 10.1002/0471234990
13 Yang R T. Adsorbent: fundamental and applications. New York: John Wiley, 2003
doi: 10.1002/047144409X
14 Sadhana S, Gopal P A. Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Analytical Biochemistry , 2001, 288: 126–140
doi: 10.1006/abio.2000.4894
15 Kulprathipanja S. Separation of critic acid from fermentation broth with a neutral polymeric adsorbent. US Patent , 4720579, 1988
[1] Ammaru Ismaila, Xueli Chen, Xin Gao, Xiaolei Fan. Thermodynamic analysis of steam reforming of glycerol for hydrogen production at atmospheric pressure[J]. Front. Chem. Sci. Eng., 2021, 15(1): 60-71.
[2] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[3] Xuewen Hu, Yun Wang, Jinbo Ou Yang, Yang Li, Peng Wu, Hengju Zhang, Dingzhong Yuan, Yan Liu, Zhenyu Wu, Zhirong Liu. Synthesis of graphene oxide nanoribbons/chitosan composite membranes for the removal of uranium from aqueous solutions[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1029-1038.
[4] Jiehui Zeng, Jianxian Zeng, Hu Zhou, Guoqing Liu, Zhengqiu Yuan, Jian Jian. Ion-imprinted silica gel and its dynamic membrane for nickel ion removal from wastewaters[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1018-1028.
[5] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[6] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[7] Chenggang Qiu, Alei Zhang, Sha Tao, Kang Li, Kequan Chen, Pingkai Ouyang. Combination of ARTP mutagenesis and color-mediated high-throughput screening to enhance 1-naphthol yield from microbial oxidation of naphthalene in aqueous system[J]. Front. Chem. Sci. Eng., 2020, 14(5): 793-801.
[8] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[9] Ye Zhang, Jian Song, Josue Quispe Mayta, Fusheng Pan, Xue Gao, Mei Li, Yimeng Song, Meidi Wang, Xingzhong Cao, Zhongyi Jiang. Enhanced desulfurization performance of hybrid membranes using embedded hierarchical porous SBA-15[J]. Front. Chem. Sci. Eng., 2020, 14(4): 661-672.
[10] Alireza Hadi, Javad Karimi-Sabet, Abolfazl Dastbaz. Parametric study on the mixed solvent synthesis of ZIF-8 nano- and micro-particles for CO adsorption: A response surface study[J]. Front. Chem. Sci. Eng., 2020, 14(4): 579-594.
[11] Hanlu Wang, Idris Jibrin, Xingye Zeng. Catalytic oxidative desulfurization of gasoline using phosphotungstic acid supported on MWW zeolite[J]. Front. Chem. Sci. Eng., 2020, 14(4): 546-560.
[12] Majid Peyravi. Preparation of adsorptive nanoporous membrane using powder activated carbon: Isotherm and thermodynamic studies[J]. Front. Chem. Sci. Eng., 2020, 14(4): 673-687.
[13] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[14] Siming Chen, Yue Wu, Geoffrey W. Stevens, Guoping Hu, Wenshou Sun, Kathryn A. Mumford. Precipitation study of CO2-loaded glycinate solution with the introduction of ethanol as an antisolvent[J]. Front. Chem. Sci. Eng., 2020, 14(3): 415-424.
[15] Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed