Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (3) : 425-435    https://doi.org/10.1007/s11705-019-1873-5
RESEARCH ARTICLE
Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure
Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak()
Department of Chemical Engineering, Quchan University of Technology, Quchan 94771-67335, Iran
 Download: PDF(1067 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Post-synthetic functionalization or modification has been regarded as a promising strategy to treat surfaces of adsorbents for their applications in targeted adsorption and separation processes. In this work, a novel microporous adsorbent for carbon capturing was developed via functionalization of zeolitic imidazolate framework-91 (ZIF-91) to generate a hard/hard (metal-oxygen) structure named as lithium-modified ZIF-91 (ZIF-91-OLi compound). To this purpose, the ZIF-91 compound as an intermediate product was achieved by reduction of ZIF-90 in the presence of NaBH4 as a good reducing agent. Afterwards, acidic hydrogen atoms in the hydroxyl groups of ZIF-91 were exchanged with lithium cations via reaction of n-BuLi compound as an organo lithium agent through an appropriate procedure. In particular, the as-synthesized ZIF-91-OLi operated as an excellent electron-rich center for CO2 adsorption through trapping the positive carbon centers in the CO2 molecule. DFT calculations revealed that the presence of lithium over the surface of ZIF-91-OLi adsorbent plays an effective role in double enhancement of CO2 storage via creating a strong negative charge center at the oxygen atoms of the imidazolate linker as a result of the lithium/hydrogen exchange system. Finally, the selectivity of CO2/N2 was investigated at different temperatures, revealing the ZIF-91-OLi as a selective adsorbent for industrial application.

Keywords hard/hard structure      acidic hydrogen      ZIF-91      carbon capture      ZIF-91-OLi     
Corresponding Author(s): Mahdi Niknam Shahrak   
Just Accepted Date: 19 November 2019   Online First Date: 03 January 2020    Issue Date: 28 April 2020
 Cite this article:   
Mahboube Ghahramaninezhad,Fatemeh Mohajer,Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1873-5
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I3/425
Fig.1  A simplified schematic for linker transformation of ZIF-90 (left) to ZIF-91 (middle) and ZIF-91-OLi (right).
Fig.2  A simplified schematic of the proposed procedure for post-synthetic functionalization of ZIF-91 to synthesize ZIF-91-OLi. 1, Three-necked flask; 2, injection pathway; 3, stirrer on an ice bath; 4, argon or nitrogen cylinder; 5, gas trapping glass.
Fig.3  (a) XRD patterns and (b) FT-IR spectra of the as-synthesized ZIF-90, ZIF-91, and ZIF-91-OLi.
Fig.4  FESEM images of the as-synthesized (a) ZIF-90 and (b) ZIF-91-OLi.
Fig.5  TEM images of the as-synthesized (a) ZIF-90 and (b) ZIF-91-OLi.
Fig.6  Experimental low pressure (a) and high pressure (b) adsorption isotherms of CO2 over ZIF-91-OLi at 298 K and 323 K (filled: adsorption; open: desorption).
Fig.7  Adsorption isotherm of CO2 on the as-synthesized ZIF-91-OLi in comparison with pristine ZIF-90 and ZIF-91 at 298 K (filled: adsorption; open: desorption).
Fig.8  Proposed mechanism for CO2 adsorption over the ZF-91-OLi through attacking the negative charge center of hard/hard system to the positive center of carbon dioxide.
Fig.9  (a) Experimental adsorption isotherms of CO2 and N2 over the as-synthesized ZIF-91-OLi at 298 K and 323 K (filled: adsorption; open: desorption) and (b) calculated selectivity of CO2/N2 at corresponding temperatures.
Fig.10  Isosteric heat of adsorption for CO2 over the ZIF-91-OLi calculated from experimental adsorption data.
Adsorbent Pressure/
bar
CO2 uptake/
(mmol·g1)
Selectivity
(CO2/N2)
Heat of adsorption/
(kJ·mol1)
Ref.
ZIF-91-OLi 10 / 1 10.13 / 2.20 13.50 23.50 Present work
ZIF-90 10 / 1 7.32 / 1.45 17 23.01 [38]
Mg-MOF-74 1 6.25 44 [32]
ZIF-8@{Mo132}@Li 1 6.00 28.50 [17]
Co-MOF-74 1 5.65 [32]
ZIF-90 10 / 1 5.61 / 1.12 Present work
Ni-MOF-74 1 5.43 30 42 [32]
Zn-MOF-74 1 4.5 [32]
HKUST-1 1 4.5 101 30 [32]
ZIF-91 10 / 1 2.95 / 0.54 Present work
MOF-505 1 2.86 [32]
ZIF-69 1 2.85 29.04 [41]
ZIF-68 1 2.75 23.32 [41]
NH2-MIL-53(Al) 1 2.72 38–50 [32]
PCN-80 1 2.72 [32]
NOTT-140 1 2.65 25 [32]
MIL-53(AL) 1 2.40 19 35 [32]
ZIF-76 1 2.20 25.1 [42]
Co-MOF-74 1 2.06 37 [32]
ZIF-78 1 2.06 30 [32]
ZIF-82 1 2 [32]
ZIF-96 1 1.93 [32]
MOF-5 1 1.93 34 [32]
MIL-53(Cr) 1 1.84 32 [32]
MIL-47 1 1.66 [32]
IRMOF-11 1 1.55 [32]
MOF-177 1 1.52 4 [32]
ZIF-93 1 1.52 [32]
ZIF-68 1 1.41 [32]
MOF-253 1 1.41 23 [32]
ZIF-79 1 1.29 [32]
ZIF-70 1 1.20 [32]
F-MOF-4 1 1.16 [32]
IRMOF-3 1 1.04 19 [32]
IRMOF-6 1 1.02 [32]
ZIF-97 1 0.98 [32]
ZIF-8 5 / 1 2.27 / 0.97 4.98 27 [38,17]
MIL-101(Cr) 1 0.86 44 [32]
ZIF-100 1 1.00 22–25 [43,32]
ZIF-95 1 0.90 18 [43]
MAF-2 1 0.64 27 [32]
ZIF-71 1 0.61 [32]
Mg-MOF-1 1 0.54 [32]
MOF-2 1 5.66 [32]
Tab.1  CO2 uptake and separation selectivity for ZIF-91-OLi in comparison with other MOF materials at 298 K.
1 D Rosskopf. Sodium-hydrogen exchange and platelet function. Journal of Thrombosis and Thrombolysis, 1999, 8(1): 15–23
https://doi.org/10.1023/A:1008986329267
2 C J Altstetter. Metal-oxygen systems. Bulletin of Alloy Phase Diagrams, 1984, 5(6): 543–553
https://doi.org/10.1007/BF02868309
3 D Nandan, A R Gupta. Lithium/hydrogen, sodium/hydrogen, and potassium/hydrogen ion exchange equilibria on cross-linked dowex 58w resins in anhydrous methanol. Journal of Physical Chemistry, 1975, 79(2): 180–185
https://doi.org/10.1021/j100569a016
4 O A Gende, H E Cingolani. Comparison between sodium-hydrogen ion and lithium-hydrogen ion exchange in human platelets. Biochimica et Biophysica Acta, 1993, 1152(2): 219–224
https://doi.org/10.1016/0005-2736(93)90252-U
5 M Lazdunski, C Frelin, P Vigne. The sodium/hydrogen exchange system in cardiac cells: Its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. Journal of Molecular and Cellular Cardiology, 1985, 17(11): 1029–1042
https://doi.org/10.1016/S0022-2828(85)80119-X
6 L Wang, Y Zhang, Z Liu, L Guo, Z Peng. Understanding oxygen electrochemistry in aprotic Li–O2 batteries. Green Energy & Environment, 2017, 2(3): 186–203
https://doi.org/10.1016/j.gee.2017.06.004
7 D Sun, Y Shen, W Zhang, L Yu, Z Yi, W Yin, D Wang, Y Huang, J Wang, D Wang, J B Goodenough. A solution-phase bifunctional catalyst for lithium-oxygen batteries. Journal of the American Chemical Society, 2014, 136(25): 8941–8946
https://doi.org/10.1021/ja501877e
8 S A Freunberger, Y Chen, N E Drewett, L J Hardwick, F Bardé , P G Bruce. The lithium–oxygen battery with ether-based electrolytes. Angewandte Chemie International Edition, 2011, 50(37): 8609–8613
https://doi.org/10.1002/anie.201102357
9 S Urgaonkar, J G Verkade. Palladium/proazaphosphatrane-catalyzed amination of arylhalides possessing a phenol, alcohol, acetanilide, amide or an enolizable ketone functional group: Efficacy of lithiumbis(trimethylsilyl)amide as the base. Advanced Synthesis & Catalysis, 2004, 346(6): 611–616
https://doi.org/10.1002/adsc.200404005
10 Y Li, M N Paddon-Row, K N Houk. Transition structures for the aldol reactions of anionic, lithium, andboron enolates. Journal of Organic Chemistry, 1990, 55(2): 481–493
https://doi.org/10.1021/jo00289a020
11 R H Schlessinger, E J Iwanowicz, J P Springer. An enantio- and erythro-selective lithium enolate derived from a vinylogous urethane: Its application as a C4 synthon to the virginiamycin M2 problem. Journal of Organic Chemistry, 1986, 51(15): 3070–3073
https://doi.org/10.1021/jo00365a046
12 L M Pratt, A Streitwieser. Computational study of lithium enolate mixed aggregates. Journal of Organic Chemistry, 2003, 68(7): 2830–2838
https://doi.org/10.1021/jo026902v
13 Y Itoh, K Mikami. Radical trifluoromethylation of titanium ate enolate. Organic Letters, 2005, 7(4): 649–651
https://doi.org/10.1021/ol047565a
14 K S Park, Z Ni, A P Côté, J Y Choi, R Huang, F J Uribe-Romo, H K Chae, M O’Keeffe, O M Yaghi. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10186–10191
https://doi.org/10.1073/pnas.0602439103
15 M Niknam Shahrak, M O Niknam Shahrak, A Shahsavand, N Khazeni, X Wu, S Deng. Gas adsorption and reliable pore size estimation of zeolitic imidazolate framework-7 using CO2 and water adsorption. Chinese Journal of Chemical Engineering, 2017, 25(5): 595–601
https://doi.org/10.1016/j.cjche.2016.10.012
16 M Niknam Shahrak, M Ghahramaninezhad, M Eydifarash. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environmental Science and Pollution Research International, 2017, 24(10): 9624–9634
https://doi.org/10.1007/s11356-017-8577-5
17 M Ghahramaninezhad, B Soleimani, M Niknam Shahrak. A simple and novel protocol for Li-trapping with a POM/MOF nano-composite as a new adsorbent for CO2 uptake. New Journal of Chemistry, 2018, 42(6): 4639–4645
https://doi.org/10.1039/C8NJ00274F
18 B Chen, Z Yang, Y Zhu, Y Xia. Zeolitic imidazolate framework materials: Recent progress in synthesis and applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(40): 16811–16831
https://doi.org/10.1039/C4TA02984D
19 X Wu, M Niknam Shahrak, B Yuan, S Deng. Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation. Microporous and Mesoporous Materials, 2014, 190: 189–196
https://doi.org/10.1016/j.micromeso.2014.02.016
20 A Ayati, M N, Shahrak B Tanhaei, M Sillanpää. Emerging adsorptive removal of azo dye by metal-organic frameworks. Chemosphere, 2016, 160: 30–44
https://doi.org/10.1016/j.chemosphere.2016.06.065
21 J Canivet, A Fateeva, Y Guo, B Coasne, D Farrusseng. Water adsorption in MOFs: Fundamentals and applications. Chemical Society Reviews, 2014, 43(16): 5594–5617
https://doi.org/10.1039/C4CS00078A
22 F Mohajer, M Niknam Shahrak. Simulation study on CO2 diffusion and adsorption in zeolitic imidazolate framework-8 and-90: influence of different functional groups. Heat and Mass Transfer Journal, 2019, 55(7): 2017–2023
https://doi.org/10.1007/s00231-018-2510-4
23 W Morris, C J Doonan, H Furukawa, R Banerjee, O M Yaghi. Crystals as molecules: Postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 2008, 130(38): 12626–12627
https://doi.org/10.1021/ja805222x
24 C Liu, Q Liu, A Huang. Superhydrophobic zeolitic imidazolate framework ZIF-90 with high steam stability for efficient recover of bioalcohols. Chemical Communications, 2016, 52(16): 3400–3402
https://doi.org/10.1039/C5CC10171A
25 A Huang, Q Liu, N Wang, J Caro. Organosilica functionalized zeolitic imidazolate framework ZIF-90 membrane for CO2/CH4 separation. Microporous and Mesoporous Materials, 2014, 192: 18–22
https://doi.org/10.1016/j.micromeso.2013.09.025
26 J Tharun, K M Bhin, R Roshan, D W Kim, A C Kathalikkattil, R Babu, H Y Ahn, Y S Won, D W Park. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2. Green Chemistry, 2016, 18(8): 2479–2487
https://doi.org/10.1039/C5GC02153G
27 A Huang, J Caro. Covalent post-functionalization of zeolitic imidazolate framework ZIF-90 membrane for enhanced hydrogen selectivity. Angewandte Chemie International Edition, 2011, 50(21): 4979–4982
https://doi.org/10.1002/anie.201007861
28 L Q Yu, X P Yang. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chemical Communications, 2013, 49(21): 2142–2148
https://doi.org/10.1039/c3cc00123g
29 S Bhattacharjee, Y R Lee, W S Ahn. Post-synthesis functionalization of a zeolitic imidazolate structure ZIF-90: A study on removal of Hg(II) from water and epoxidation of alkenes. CrystEngComm, 2015, 17(12): 2575–2582
https://doi.org/10.1039/C4CE02555E
30 C G Jones, V Stavila, M A Conroy, P Feng, B V Slaughter, C E Ashley, M D Allendorf. Versatile synthesis and fluorescent labeling of ZIF-90 nanoparticles for biomedical applications. ACS Applied Materials & Interfaces, 2016, 8(12): 7623–7630
https://doi.org/10.1021/acsami.5b11760
31 E Wang, J Shen, Y Wang, S Tang, S Emami, M J T Reaney. Production of biodiesel with lithium glyceroxide. Fuel, 2015, 160: 621–628
https://doi.org/10.1016/j.fuel.2015.07.101
32 K Sumida, D L Rogow, J A Mason, T M McDonald, E D Bloch, Z R Herm, T H Bae, J R Long. Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 2011, 112(2): 724–781
https://doi.org/10.1021/cr2003272
33 D D Do. Adsorption Analysis: Equilibria and Kinetics. 2nd ed. London: Imperial College Press, 1999, 13–18
34 L Bai, B Tu, Y Qi, Q Gao, D Liu, Z Liu, L Zhao, Q Li, Y Zhao. Enhanced performance in gas adsorption and Li ion battery by docking Li+ in crown ether-based metal organic framework. Chemical Communications, 2016, 52(14): 3003–3006
https://doi.org/10.1039/C5CC09935H
35 D W Lim, S A Chyun, M P Suh. Hydrogen storage in a potassium-ion-bound metal-organic framework incorporating crown ether struts as specific cation binding sites. Angewandte Chemie International Edition, 2014, 53(30): 7819–7824
https://doi.org/10.1002/anie.201404265
36 W Zhou, H Wu, M R Hartman, T Yildirim. Hydrogen and methane adsorption in metal-organic frameworks: A high-pressure volumetric study. Journal of Physical Chemistry C, 2007, 111(44): 16131–16137
https://doi.org/10.1021/jp074889i
37 H Amrouche, S Aguado, J Pérez-Pellitero, C Chizallet, F Siperstein, D Farrusseng, D Bats, C Nieto-Draghi. Experimental and computational study of functionality impact on sodalite–zeolitic imidazolate frameworks for CO2 separation. Journal of Physical Chemistry C, 2011, 115(33): 16425–16432
https://doi.org/10.1021/jp202804g
38 J H Jensen, J C Kromann. The molecule calculator: A web application for fast quantum mechanics-based estimation of molecular properties. Journal of Chemical Education, 2013, 90(8): 1093–1095
https://doi.org/10.1021/ed400164n
39 N Planas, A L Dzubak, R Poloni, L C Lin, A McManus, T M McDonald, J B Neaton, J R Long, B Smit, L Gagliardi. The mechanism of carbon dioxide adsorption in an alkylamine-functionalized metal-organic framework. Journal of the American Chemical Society, 2013, 135(20): 7402–7405
https://doi.org/10.1021/ja4004766
40 J Lan, D Cao, W Wang, B Smit. Doping of alkali, alkaline-earth, and transition metals in covalent-organic frameworks for enhancing CO2 capture by first-principles calculations and molecular simulations. ACS Nano, 2010, 4(7): 4225–4237
https://doi.org/10.1021/nn100962r
41 D Liu, C Zheng, Q Yang, C Zhong. Understanding the adsorption and diffusion of carbon dioxide in zeoliticimidazolate frameworks: A molecular simulation study. Journal of Physical Chemistry C, 2009, 113(12): 5004–5009
https://doi.org/10.1021/jp809373r
42 J Pérez-Pellitero, H Amrouche, F R Siperstein, G Pirngruber, C Nieto-Draghi, G Chaplais, A Simon-Masseron, D Bazer-Bachi, D Peralta, N Bats. Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: Experiments and simulations. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(5): 1560–1571
https://doi.org/10.1002/chem.200902144
43 B Wang, A P Côté, H Furukawa, M O’Keeffe, O M Yaghi. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453(7192): 207–211
https://doi.org/10.1038/nature06900
[1] FCE-19025-OF-GM_suppl_1 Download
[1] Colin A. Scholes. Pilot plants of membrane technology in industry: Challenges and key learnings[J]. Front. Chem. Sci. Eng., 2020, 14(3): 305-316.
[2] Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC[J]. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
[3] Dawid P. Hanak, Vasilije Manovic. Linking renewables and fossil fuels with carbon capture via energy storage for a sustainable energy future[J]. Front. Chem. Sci. Eng., 2020, 14(3): 453-459.
[4] Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li. Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture[J]. Front. Chem. Sci. Eng., 2019, 13(4): 672-683.
[5] Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS. Review of solvent based carbon-dioxide capture technologies[J]. Front. Chem. Sci. Eng., 2015, 9(2): 125-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed