Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (5) : 783-792    https://doi.org/10.1007/s11705-019-1868-2
RESEARCH ARTICLE
Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst
Shumei Wei1,2, Yarong Xu2(), Zhaoyang Jin1, Xuedong Zhu1()
1. UNILAB, State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2. Research Institute of Urumqi Petrochemical Company, Petrochina Company Limited, Urumqi 830019, China
 Download: PDF(1737 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The conversion of n-hexane and methanol into value-added aromatic compounds is a promising method for their industrially relevant utilization. In this study, intergrown ZSM-5/ZSM-11 crystals were synthesized and their resulting catalytic performance was investigated and compared to those of the isolated ZSM-5 and ZSM-11 zeolites. The physicochemical properties of ZSM-5/ZSM-11 intergrown zeolite were analyzed using X-ray diffraction, N2 isothermal adsorption-desorption, the temperature-programmed desorption of ammonium, scanning electron microscopy, Fourier transform infrared spectra of adsorbed pyridine, and nuclear magnetic resonance of 27Al , and compared with those of the ZSM-5 and ZSM-11 zeolites. The catalytic performances of the materials were evaluated during the co-feeding reaction of methanol and n-hexane under the fixed bed conditions of 400°C, 0.5 MPa (N2), methanol:꞉n-hexane=7꞉:3 (mass ratio), and weight hourly space velocity=1 h–1 (methanol). Compared to the ZSM-5 and ZSM-11 zeolites, the ZSM-5/ZSM-11 zeolite exhibited the largest specific surface area, a unique crystal structure, moderate acidity, and suitable Brønsted/Lewis acid ratio. The evaluation results showed that ZSM-5/ZSM-11 catalyst exhibited better catalytic reactivity than the ZSM-5 and ZSM-11 catalysts in terms of methanol conversion rate, n-hexane conversion rate, and aromatic selectivity. The outstanding catalytic property of the intergrown ZSM-5/ZSM-11 was attributed to the enhanced diffusion associated with its unique crystal structure. The benefit of using zeolite intergrowth in the co-conversion of methanol and alkanes offers a novel route for future catalyst development.

Keywords ZSM-5/ZSM-11      methanol      n-hexane      cofeeding      aromatics     
Corresponding Author(s): Yarong Xu,Xuedong Zhu   
Just Accepted Date: 19 November 2019   Online First Date: 30 December 2019    Issue Date: 25 May 2020
 Cite this article:   
Shumei Wei,Yarong Xu,Zhaoyang Jin, et al. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1868-2
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I5/783
Fig.1  XRD patterns of the prepared samples: (a) 5°?50°, (b) 20°?25°, and (c) 44°?47°.
Sample SBETa)/(m2·g?1) Sextb)/(m2·g?1) Smicroc)/(m2·g?1) Vtotald)/(cm3·g?1) Vmicroe)/(cm3·g?1) Vmesof)/(cm3·g?1)
ZSM-5 349 174 175 0.23 0.17 0.05
ZSM-5/ZSM-11 358 168 190 0.35 0.18 0.17
ZSM-11 325 149 176 0.43 0.15 0.28
Tab.1  Physical properties of the prepared ZSM-5, ZSM-5/ZSM-11, and ZSM-11 zeolites.
Fig.2  N2 adsorption isotherms of the prepared ZSM-5, ZSM-5/ZSM-11, and ZSM-11 zeolites.
Sample Acid amount/(mmol·g?1) a) Acidity by type/(mmol·g?1) b)
Weak acidity Strong acidity Total acidity LAS BAS Total
ZSM-5 0.27 0.46 0.73 0.45 0.91 1.36
ZSM-5/ZSM-11 0.27 0.47 0.74 0.45 0.93 1.38
ZSM-11 0.29 0.15 0.44 0.43 0.45 0.88
Tab.2  Acid properties of the prepared ZSM-5, ZSM-5/ZSM-11 and ZSM-11 zeolites.
Fig.3  (a) NH3-TPD profiles and (b) Py-IR profiles of the prepared ZSM-5, ZSM-5/ZSM-11 and ZSM-11 zeolites.
Fig.4  The 27Al NMR patterns of the prepared ZSM-5, ZSM-5/ZSM-11, and ZSM-5 zeolite.
Catalysts AlIV / % a) AlVI / % a) AlIV/ AlVI
ZSM-5 97.7 2.3 42.5
ZSM-5/ZSM-11 95.7 4.3 22.3
ZSM-11 97.0 3.0 32.3
Tab.3  Relative amounts of Al species in the prepared ZSM-5, ZSM-5/ZSM-11, and ZSM-5 zeolites.
Fig.5  SEM images of (a1 and a2) ZSM-5, (b1 and b2) ZSM-5/ZSM-11, and (c1 and c2) ZSM-11.
Fig.6  TEM images of the prepared (a) ZSM-5, (b) ZSM-5/ZSM-11, and (c) ZSM-11 zeolites.
Fig.7  Time course of methanol conversion over the ZSM-5, ZSM-5/ZSM-11, and ZSM-11 catalysts.
Fig.8  Time course of n-hexane conversion over the ZSM-5, ZSM-5/ZSM-11, and ZSM-11 catalysts.
Fig.9  Time course of the selectivity for aromatics over the ZSM-5, ZSM-5/ZSM-11, and ZSM-11 catalysts.
Fig.10  Aromatic distribution as a function of time on stream over the ZSM-5, ZSM-5/ZSM-11, and ZSM-11 catalysts.
Fig.11  Gas production distribution in the cofeeding reaction of methanol with n-hexane over the ZSM-5, ZSM-5/ZSM-11, and ZSM-11 catalysts at TOS= 8 h (400°C, methanol?n-hexane= 7?3, WHSV= 1 h?1 (methanol) and 0.5 MPa (N2)).
1 P Kartick, G Sourav, K Milan. A facile synthesis of ZSM-11 zeolite particles using rice husk ash as silica source. Materials Letters, 2012, 87: 97–89
2 W Zhang, S Gao, S Xie, H Liu, X Zhu, Y Shang, S Liu, L Xu, Y Zhang. A shaped binderless ZSM-11 zeolite catalyst for direct amination of isobutene to tert-butylamine. Chinese Journal of Catalysis, 2017, 38(1): 168–175
https://doi.org/10.1016/S1872-2067(17)62756-6
3 Y Wang, J Ma, F Ren, J Du, R Li. Hierarchical architectures of ZSM-5 nanocrystalline aggregates with particular catalysis for lager molecule reaction. Microporous and Mesoporous Materials, 2017, 240: 22–30
https://doi.org/10.1016/j.micromeso.2016.10.051
4 B Song, Y Li, G Cao, Z Sun, X Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Frontiers of Chemical Science and Engineering, 2017, 11(4): 564–574
https://doi.org/10.1007/s11705-017-1654-y
5 Z Wei, T Xia, M Liu, Q Cao, Y Xu, K Zhu, X Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration. Frontiers of Chemical Science and Engineering, 2015, 9(4): 450–460
https://doi.org/10.1007/s11705-015-1542-2
6 S Xu, X Zhang, D Cheng, F Chen, X Ren. Effect of hierarchical ZSM-5 zeolite crystal size on diffusion and catalytic performance of n-heptane cracking. Frontiers of Chemical Science and Engineering, 2018, 12(4): 780–789
https://doi.org/10.1007/s11705-018-1733-8
7 Q Yu, C Cui, Q Zhang, J Chen, Y Li, J Sun, C Li, Q Cui, C Yang, H Shan. Hierarchical ZSM-11 with intergrowth structures: Synthesis, characterization and catalytic properties. Journal of Energy Chemistry, 2013, 22(5): 761–768
https://doi.org/10.1016/S2095-4956(13)60101-1
8 Y Jia, J Wang, K Zhang, G Chen, Y Yang, S Liu, C Ding, Y Meng, P Liu. Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol. Powder Technology, 2018, 28: 415–429
https://doi.org/10.1016/j.powtec.2018.01.022
9 G T Kokotailo, N J Woodbury. US Patent, 4229424, 1979
10 X Wang, H Chen, F Meng, F Gao, C Sun, L Sun, S Wang, L Wang, Y Wang. CTAB resulted direct synthesis and properties of hierarchical ZSM-11/5 composite zeolite in the absence of template. Microporous and Mesoporous Materials, 2017, 243: 271–280
https://doi.org/10.1016/j.micromeso.2017.02.054
11 L Zhang, S Liu, S Xie, L Xu. Organic template-free synthesis of ZSM-5/ZSM-11 co-crystalline zeolite. Microporous and Mesoporous Materials, 2012, 147(1): 117–126
https://doi.org/10.1016/j.micromeso.2011.05.033
12 L Zhang, H Liu, X Li, S Xie, Y Wang, W Xin, S Liu, L Xu. Differences between ZSM-5 and ZSM-11 zeolite catalysts in 1-hexene aromatization and isomerization. Fuel Processing Technology, 2010, 91(5): 449–455
https://doi.org/10.1016/j.fuproc.2009.12.003
13 G Jablonski, L Sand, J Gard. Synthesis and identification of ZSM-5/ZSM-11 pentasil intergrowth structures. Zeolites, 1986, 6(5): 396–402
https://doi.org/10.1016/0144-2449(86)90069-2
14 M Conte, B Xu, T Davies, J Bartley, A Carley, S Taylor, K Khalid, G Hutchings. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous and Mesoporous Materials, 2012, 164: 207–213
https://doi.org/10.1016/j.micromeso.2012.05.001
15 Y Xin, P Qi, X Duan, H Lin, Y Yuan. Enhanced performance of Zn-Sn/HZSM-5 catalyst for the conversion of methanol to aromatics. Catalysis Letters, 2013, 143(8): 798–806
https://doi.org/10.1007/s10562-013-1031-5
16 J Zhang, W Qian, C Kong, F Wei. Increasing para-xylene selectivity in making aromatics from methanol with a surface-modified Zn/P/ZSM-5 catalyst. ACS Catalysis, 2015, 5(5): 2982–2988
https://doi.org/10.1021/acscatal.5b00192
17 G Zhang, T Bai, T Chen, W Fan, X Zhang. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014, 53(39): 14932–14940
https://doi.org/10.1021/ie5021156
18 T Wang, X Tang, X Huang, W Qian, Y Cui, X Hui, W Yang, F Wei. Conversion of methanol to aromatics in fluidized bed reactor. Catalysis Today, 2014, 233: 8–13
https://doi.org/10.1016/j.cattod.2014.02.007
19 N Wang, W Sun, Y Hou, B Ge, L Hu, J Nie, W Qian, F Wei. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons. Journal of Catalysis, 2018, 360: 89–96
https://doi.org/10.1016/j.jcat.2017.12.024
20 D Mier, A Aguayo, A Gayubo, M Olazar, J Bilbao. Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst. Chemical Engineering Journal, 2010, 160(2): 760–769
https://doi.org/10.1016/j.cej.2010.04.016
21 K Yang, L Zhu, J Zhang, X Huo, W Lai, Y Lian, W Fang. Co-aromatization of n-butane and methanol over PtSnK-Mo/ZSM-5 zeolite catalysts: The promotion effect of ball-milling. Catalysis, 2018, 307(8): 3–20
https://doi.org/10.3390/catal8080307
22 F Chang, Y Wei, X Liu, Y Qi, D Zhang, Y He, Z Liu. An improved catalytic cracking of n-hexane via methanol coupling reaction over HZSM-5 zeolite catalysts. Catalysis Letters, 2006, 106(3-4): 171–176
https://doi.org/10.1007/s10562-005-9626-0
23 F Chang, Y Wei, X Liu, Y Zhao, L Xu, Y Sun, D Zhang, Y He, Z Liu. A mechanistic investigation of the coupled reaction of n-hexane and methanol over HZSM-5. Applied Catalysis A, General, 2007, 328(2): 163–173
https://doi.org/10.1016/j.apcata.2007.06.005
24 A Aguayo, P Castaño, D Mier, A Gayubo, M Olazar, J Bilbao. Effect of cofeeding butane with methanol on the deactivation by coke of a HZSM-5 zeolite catalyst. Industrial & Engineering Chemistry Research, 2011, 50(17): 9980–9988
https://doi.org/10.1021/ie200946n
25 B Lücke, A Martin, H Günschel, S Nowark. CMHC: Coupled methanol hydrocarbon cracking formation of lower olefins from methanol and hydrocarbons over modified zeolites. Microporous and Mesoporous Materials, 1999, 29: 145–157
26 D Mier, A Aguayo, A Gayubo, M Olazar, J Bilbao. Cataylst discrimination for olefin production by coupled methanol/n-butane cracking. Applied Catalysis A, General, 2010, 383(1-2): 202–210
https://doi.org/10.1016/j.apcata.2010.05.052
27 C Song, K Liu, D Zhang, S Liu, X Li, S Xie, L Xu. Effect of cofeeding n-butane with methanol on aromatization performance and coke formation over a Zn loaded ZSM-5/ZSM-11 zeolite. Applied Catalysis A, General, 2014, 470: 15–23
https://doi.org/10.1016/j.apcata.2013.10.036
28 C Song, X Li, X Zhu, S Liu, F Chen, F Liu, L Xu. Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects of cofeeding n-butane with methanol. Applied Catalysis A, General, 2016, 519: 48–55
https://doi.org/10.1016/j.apcata.2016.03.023
29 C Su, W Qian, Q Xie, Y Cui, X Tang, X Xu, T Wang, X Huang, F Wei. Conversion of methanol with C5-C6 hydrocarbons into aromatics in a two-stage fluidized bed reactor. Catalysis Today, 2016, 264: 63–69
https://doi.org/10.1016/j.cattod.2015.09.022
30 W Dai, L Yang, C Wang, X Wang, G Wu, N Guan, U Obenaus, M Hunger, L Li. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano H-ZSM-5 and its mechanistic interpretation. ACS Catalysis, 2018, 8(2): 1352–1362
https://doi.org/10.1021/acscatal.7b03457
31 T Gong, X Zhang, T Bai, Q Zhang, L Tao, M Qi, C Duan, L Zhang. Coupling conversion of methanol and C4 hydrocarbon to propylene on La-modified HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2012, 51(42): 13589–13598
https://doi.org/10.1021/ie300515z
32 P Li, W Zhang, X Han, X Bao. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites. Catalysis Letters, 2010, 134(1-2): 124–130
https://doi.org/10.1007/s10562-009-0214-6
33 S Brunauer, P Emmett, E Teller. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 1938, 60(2): 309–319
https://doi.org/10.1021/ja01269a023
34 B De, B Linsen, T Osinga. Studies on pore systems in catalysts: VI. The universal t curve. Journal of Catalysis, 1965, 4(6): 319–323
35 X Zhang, J Wang, J Zhong, A Liu, J Gao. Characterization and catalytic performance of SAPO-11/Hb composite molecular sieve compared with the mechanical mixture. Microporous and Mesoporous Materials, 2008, 108(1-3): 13–21
https://doi.org/10.1016/j.micromeso.2007.03.022
36 C Emeis. Determination of integrated molar extinction coefficient for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis, 1993, 141(2): 347–354
https://doi.org/10.1006/jcat.1993.1145
37 T Hughes, H White. A study of the surface structure of decationized Y zeolite by quantitative infrared spectroscopy. Journal of Physical Chemistry, 1967, 7(71): 2192–2201
https://doi.org/10.1021/j100866a035
38 J Li, M Liu, S Li, X Guo, C Song. Influence of diffusion and acid properties on methane and propane selectivity in methanol-to-olefins reaction. Industrial & Engineering Chemistry Research, 2019, 58(5): 1896–1905
https://doi.org/10.1021/acs.iecr.8b03969
39 D Jin, G Ye, J Zheng, W Yang, K Zhu, M Coppens, X Zhou. Hierarchical silicoaluminophosphatecatalysts with enhanced hydroisomerization selectivity by directing the orientated assembly of premanufactured building blocks. ACS Catalysis, 2017, 7(9): 5887–5902
https://doi.org/10.1021/acscatal.7b01646
40 D Serrano, J Aguado, G Morales, J Rodrıíguez, A Peral, M Thommes, J Epping, B Chmelka. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009, 21(4): 641–654
https://doi.org/10.1021/cm801951a
[1] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[2] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[3] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[4] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[5] Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Front. Chem. Sci. Eng., 2018, 12(1): 77-82.
[6] German Sastre. Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 76-89.
[7] Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
[8] Mehdi SEDIGHI,Kamyar KEYVANLOO. Kinetic study of the methanol to olefin process on a SAPO-34 catalyst[J]. Front. Chem. Sci. Eng., 2014, 8(3): 306-311.
[9] Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA,Tohru SUZUKI,Satoshi KANECO. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
[10] Jorge MEDINA-VALTIERRA, Jorge RAMIREZ-ORTIZ. Biodiesel production from waste frying oil in sub- and supercritical methanol on a zeolite Y solid acid catalyst[J]. Front Chem Sci Eng, 2013, 7(4): 401-407.
[11] Xinmei LIU, Shaofen BAI, Huidong ZHUANG, Zifeng YAN. Preparation of Cu/ZrO2 catalysts for methanol synthesis from CO2/H2[J]. Front Chem Sci Eng, 2012, 6(1): 47-52.
[12] Baowei WANG, Xu ZHANG, Haiying BAI, Yijun Lü, Shuanghui HU. Hydrogen production from methanol through dielectric barrier discharge[J]. Front Chem Sci Eng, 2011, 5(2): 209-214.
[13] Qian WANG, Lei WANG, Hui WANG, Zengxi LI, Xiangping ZHANG, Suojiang ZHANG, Kebin ZHOU. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts[J]. Front Chem Sci Eng, 2011, 5(1): 79-88.
[14] Guoqiang ZHANG, Lin GAO, Hongguang JIN, Rumou LIN, Sheng LI. Sensitivity analysis of a methanol and power polygeneration system fueled with coke oven gas and coal gas[J]. Front Chem Eng Chin, 2010, 4(4): 491-497.
[15] Wei HUANG, Linmei YU, Wenhui LI, Zhili MA. Synthesis of methanol and ethanol over CuZnAl slurry catalyst prepared by complete liquid-phase technology[J]. Front Chem Eng Chin, 2010, 4(4): 472-475.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed