Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2014, Vol. 8 Issue (2) : 197-202    https://doi.org/10.1007/s11705-014-1417-y
COMMUNICATION ARTICLE
Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts
Paramasivan GOMATHISANKAR1,*(),Tomoko NODA1,Hideyuki KATSUMATA1,Tohru SUZUKI2,Satoshi KANECO1,*()
1. Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514–8507, Japan
2. Environmental Preservation Center, Mie University, Mie 514-8507, Japan
 Download: PDF(484 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The photocatalytic hydrogen production from aqueous methanol solution using titanium dioxide (TiO2) was investigated in the addition of metal particles including copper, lead, tin, and zinc. The results show that only the addition of copper particles enhances the hydrogen production. The copper usage and reaction temperature were further optimized for TiO2/Cu photocatalyts. Under the optimal conditions, the hydrogen production using TiO2/Cu as photocatalysts is approximately 68 times higher than that obtained with only TiO2.

Keywords photocatalytic hydrogen generation      methanol      copper particles      TiO2      metal-semiconductor interface     
Corresponding Author(s): Paramasivan GOMATHISANKAR   
Issue Date: 22 May 2014
 Cite this article:   
Paramasivan GOMATHISANKAR,Tomoko NODA,Hideyuki KATSUMATA, et al. Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts[J]. Front. Chem. Sci. Eng., 2014, 8(2): 197-202.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1417-y
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I2/197
Fig.1  Effect of methanol concentration on the photocatalaytic hydrogen generation from aqueous methanol using TiO2. Reaction conditions: TiO2, 20 mg; time, 3 h; pH, 6.5; temperature, 50°C
Fig.2  Effect of catalyst loading on the photocatalaytic hydrogen generation from aqueous methanol using TiO2. Reaction conditions: methanol, 10 v-%; time, 3 h; pH, 6.5; temperature, 50°C
Fig.3  Effect of pH on the photocatalaytic hydrogen generation from aqueous methanol using TiO2. Reaction conditions: TiO2, 20 mg; methanol, 10 v-%; time, 3 h; temperature, 50°C
Fig.4  Effect of addition of metal on the photocatalaytic hydrogen generation from aqueous methanol using TiO2. Reaction conditions: TiO2, 20 mg; metal, 20 mg; methanol, 10 v-%; time, 3 h; pH, 6.5; temperature, 50°C
Fig.5  Effect of Cu usage on the photocatalaytic hydrogen generation from aqueous methanol using TiO2 with Cu particles. Reaction conditions: TiO2, 20 mg; methanol, 10 vol-%; time, 3 h; pH, 6.5; temperature, 50°C
Fig.6  Effect of temperature on the photocatalaytic hydrogen generation from aqueous methanol using TiO2 with Cu particles. Reaction conditions: TiO2, 20 mg; Cu particles, 10 mg; methanol, 10 v-%; time, 3 h; pH, 6.5
Fig.7  Schematic diagram for photocatalytic hydrogen generation
MetalCrytal strurcture [33]Work function/eV [34]Electronegativity [33]Polarizability*
CuFcca)4.651.906.1-6.2
PbFcc4.251.806.8
SnFcc4.421.967.7
ZnHcpb)4.331.655.76-6.1
Tab.1  Properties of metals used in the present work
1 YuJ, HaiY, ChengB. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. Journal of Physical Chemistry C, 2011, 115(11): 4953-4958
doi: 10.1021/jp111562d
2 CuberioM L, FierroJ L G. Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A, General, 1998, 168(2): 307-322
doi: 10.1016/S0926-860X(97)00361-X
3 AgrellJ, HasselboK, JanssonK, JarasS G, BoutonnetM. Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Applied Catalysis A, General, 2001, 211(2): 239-250
doi: 10.1016/S0926-860X(00)00876-0
4 de WildP J, VerhaakM J F M. Catalytic production of hydrogen from methanol. Catalysis Today, 2000, 60(1-2): 3-10
doi: 10.1016/S0920-5861(00)00311-4
5 ShishdoT, YamamotoY, MoriokaH, TakehiraK. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A Chemical, 2007, 268(1-2): 185-194
doi: 10.1016/j.molcata.2006.12.018
6 WuG S, WangL C, LiuY M, CaoY, DaiW L, HeH Y, FanK N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts. Applied Surface Science, 2006, 253(2): 974-982
doi: 10.1016/j.apsusc.2006.01.056
7 Murcia-MascardosS, NavarroR M, Gomez-SaineroL, CostantinoU, NocchettiM, FierroJ L G. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors. Journal of Catalysis, 2001, 198(2): 338-347
doi: 10.1006/jcat.2000.3140
8 WuN L, LeeM S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605
doi: 10.1016/j.ijhydene.2004.02.013
9 YangX, SalzmannC, ShiH, WangH, GreenM L H, XiaoT. The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. Journal of Physical Chemistry A, 2008, 112(43): 10784-10789
doi: 10.1021/jp804305u
10 LinW C, YangW D, HuangI L, WuT S, ChungZ J. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels, 2009, 23(4): 2192-2196
doi: 10.1021/ef801091p
11 YuJ, QiL, JaroniecM. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. Journal of Physical Chemistry C, 2010, 114(30): 13118-13125
doi: 10.1021/jp104488b
12 NguyenV N H, AmalR, BeydounD. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chemical Engineering Science, 2003, 58(19): 4429-4439
doi: 10.1016/S0009-2509(03)00336-1
13 PanP W, ChenY W. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 2007, 8(10): 1546-1549
doi: 10.1016/j.catcom.2007.01.006
14 KanecoS, RahmanM A, SuzukiT, KatsumataH, OhtaK. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A Chemistry, 2004, 163(3): 419-424
doi: 10.1016/j.jphotochem.2004.01.012
15 LiM, LiY, PengS, LuG, LiS. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Frontiers of Chemistry in China, 2009, 4(1): 32-38
doi: 10.1007/s11458-009-0019-6
16 KorzhakA V, ErmokhinaN I, StroyukA L, BukhtiyarovV K, RaevskayaA E, LitvinV I, KuchmiyY S, IlyinV G, ManorikP A. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. Journal of Photochemistry and Photobiology A Chemistry, 2008, 198(2-3): 126-134
doi: 10.1016/j.jphotochem.2008.02.026
17 MaedaK, DomenK. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661
doi: 10.1021/jz1007966
18 MiwaT, KanecoS, KatsumataH, SuzukiT, OhtaK, VermaS C. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 2010, 35(13): 6554-6560
doi: 10.1016/j.ijhydene.2010.03.128
19 TakaiA, KamatP V. Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano, 2011, 5(9): 7369-7376
doi: 10.1021/nn202294b
20 FurukawaS, TsukioD, ShishidoT, TeramuraK, TanakaT. Correlation between the oxidation state of copper and the photocatalytic activity of Cu/Nb2O5. Journal of Physical Chemistry C, 2012, 116(22): 12181-12186
doi: 10.1021/jp303625m
21 ChenT, FengZ C, WuG P, ShiJ Y, MaG J, YingP L, LiC. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. Journal of Physical Chemistry C, 2007, 111(22): 8005-8014
doi: 10.1021/jp071022b
22 SandovalM J, BellA T. Temperature-programmed desorption studies of the interactions of H2, CO, and CO2 with Cu/SiO2. Journal of Catalysis, 1993, 144(1): 227-237
doi: 10.1006/jcat.1993.1326
23 KovalenkoA, HirataF. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model. Journal of Chemical Physics, 1999, 110(20): 10095-10112
doi: 10.1063/1.478883
24 ZhanpeisovN U, MiyamotoA. Interactions of water and methanol with a mixture of copper and zinc metals: A theoretical ab initio study. Research on Chemical Intermediates, 2003, 29(4): 417-428
doi: 10.1163/156856703765694354
25 BiY, LuG. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. International Journal of Hydrogen Energy, 2008, 33(9): 2225-2232
doi: 10.1016/j.ijhydene.2008.02.064
26 McBrideF, DarlingR, PussiK, HodgsonA. Tailoring the structure of water at a metal surface: A structural analysis of the water bilayer formed on an alloy template. Physical Review Letters, 2011, 106(22): 226101-226105
doi: 10.1103/PhysRevLett.106.226101
27 SreethawongT, YoshikawaS. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au loaded mesoporous TiO2 photocatalysts. Catalysis Communications, 2005, 6(10): 661-668
doi: 10.1016/j.catcom.2005.06.004
28 WuN L, LeeM S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605
doi: 10.1016/j.ijhydene.2004.02.013
29 BandaraJ, UdawattaC P K, RajapakseC S K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical & Photobiological Sciences, 2005, 4(11): 857-861
doi: 10.1039/b507816d
30 ChoiH J, KangM. Hydrogen production from methanol/waterdecomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy, 2007, 32(16): 3841-3848
doi: 10.1016/j.ijhydene.2007.05.011
31 LawtonT J, CarrascoJ, BaberA E, MichaelidescA, CharlesE, SykesH. Hydrogen-bonded assembly of methanol on Cu(111). Physical Chemistry Chemical Physics, 2012, 14(33): 11846-11852
doi: 10.1039/c2cp41875d
32 GuntherS, HaveckerM, Knop-GerickeA, KleimenovE, SchlogR.Adsorbate coverages and surface reactivity in methanol oxidation over Cu (110): An in situ photoelectron spectroscopy study. The Journal of Chemical Physics, 2006, 125(11): 114709 (1-10)
33 LideD R, ed. CRC Handbook of Chemistry and Physics. 85th edition. Florida: CRC Press, 2005, 4-160, 9-76, 10-169
34 MichaelsonH B. The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729-4733
doi: 10.1063/1.323539
[1] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[2] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[3] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[4] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[5] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[6] Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Front. Chem. Sci. Eng., 2019, 13(3): 517-530.
[7] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[8] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[9] Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Front. Chem. Sci. Eng., 2018, 12(1): 77-82.
[10] Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation[J]. Front. Chem. Sci. Eng., 2017, 11(3): 387-394.
[11] Kanchapogu Suresh, G. Pugazhenthi, R. Uppaluri. Preparation and characterization of hydrothermally engineered TiO2-fly ash composite membrane[J]. Front. Chem. Sci. Eng., 2017, 11(2): 266-279.
[12] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[13] German Sastre. Confinement effects in methanol to olefins catalysed by zeolites: A computational review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 76-89.
[14] A. M. Bakhshayesh,S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2015, 9(4): 532-540.
[15] Zhenhao Wei,Tengfei Xia,Minghui Liu,Qingsheng Cao,Yarong Xu,Kake Zhu,Xuedong Zhu. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front. Chem. Sci. Eng., 2015, 9(4): 450-460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed