|
|
Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts |
Paramasivan GOMATHISANKAR1,*( ),Tomoko NODA1,Hideyuki KATSUMATA1,Tohru SUZUKI2,Satoshi KANECO1,*( ) |
1. Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Mie 514–8507, Japan 2. Environmental Preservation Center, Mie University, Mie 514-8507, Japan |
|
|
Abstract The photocatalytic hydrogen production from aqueous methanol solution using titanium dioxide (TiO2) was investigated in the addition of metal particles including copper, lead, tin, and zinc. The results show that only the addition of copper particles enhances the hydrogen production. The copper usage and reaction temperature were further optimized for TiO2/Cu photocatalyts. Under the optimal conditions, the hydrogen production using TiO2/Cu as photocatalysts is approximately 68 times higher than that obtained with only TiO2.
|
Keywords
photocatalytic hydrogen generation
methanol
copper particles
TiO2
metal-semiconductor interface
|
Corresponding Author(s):
Paramasivan GOMATHISANKAR
|
Issue Date: 22 May 2014
|
|
1 |
YuJ, HaiY, ChengB. Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. Journal of Physical Chemistry C, 2011, 115(11): 4953-4958 doi: 10.1021/jp111562d
|
2 |
CuberioM L, FierroJ L G. Partial oxidation of methanol over supported palladium catalysts. Applied Catalysis A, General, 1998, 168(2): 307-322 doi: 10.1016/S0926-860X(97)00361-X
|
3 |
AgrellJ, HasselboK, JanssonK, JarasS G, BoutonnetM. Production of hydrogen by partial oxidation of methanol over Cu/ZnO catalysts prepared by microemulsion technique. Applied Catalysis A, General, 2001, 211(2): 239-250 doi: 10.1016/S0926-860X(00)00876-0
|
4 |
de WildP J, VerhaakM J F M. Catalytic production of hydrogen from methanol. Catalysis Today, 2000, 60(1-2): 3-10 doi: 10.1016/S0920-5861(00)00311-4
|
5 |
ShishdoT, YamamotoY, MoriokaH, TakehiraK. Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming. Journal of Molecular Catalysis A Chemical, 2007, 268(1-2): 185-194 doi: 10.1016/j.molcata.2006.12.018
|
6 |
WuG S, WangL C, LiuY M, CaoY, DaiW L, HeH Y, FanK N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts. Applied Surface Science, 2006, 253(2): 974-982 doi: 10.1016/j.apsusc.2006.01.056
|
7 |
Murcia-MascardosS, NavarroR M, Gomez-SaineroL, CostantinoU, NocchettiM, FierroJ L G. Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors. Journal of Catalysis, 2001, 198(2): 338-347 doi: 10.1006/jcat.2000.3140
|
8 |
WuN L, LeeM S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605 doi: 10.1016/j.ijhydene.2004.02.013
|
9 |
YangX, SalzmannC, ShiH, WangH, GreenM L H, XiaoT. The role of photoinduced defects in TiO2 and its effects on hydrogen evolution from aqueous methanol solution. Journal of Physical Chemistry A, 2008, 112(43): 10784-10789 doi: 10.1021/jp804305u
|
10 |
LinW C, YangW D, HuangI L, WuT S, ChungZ J. Hydrogen production from methanol/water photocatalytic decomposition using Pt/TiO2-xNx catalyst. Energy & Fuels, 2009, 23(4): 2192-2196 doi: 10.1021/ef801091p
|
11 |
YuJ, QiL, JaroniecM. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. Journal of Physical Chemistry C, 2010, 114(30): 13118-13125 doi: 10.1021/jp104488b
|
12 |
NguyenV N H, AmalR, BeydounD. Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chemical Engineering Science, 2003, 58(19): 4429-4439 doi: 10.1016/S0009-2509(03)00336-1
|
13 |
PanP W, ChenY W. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 2007, 8(10): 1546-1549 doi: 10.1016/j.catcom.2007.01.006
|
14 |
KanecoS, RahmanM A, SuzukiT, KatsumataH, OhtaK. Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A Chemistry, 2004, 163(3): 419-424 doi: 10.1016/j.jphotochem.2004.01.012
|
15 |
LiM, LiY, PengS, LuG, LiS. Photocatalytic hydrogen generation using glycerol wastewater over Pt/TiO2. Frontiers of Chemistry in China, 2009, 4(1): 32-38 doi: 10.1007/s11458-009-0019-6
|
16 |
KorzhakA V, ErmokhinaN I, StroyukA L, BukhtiyarovV K, RaevskayaA E, LitvinV I, KuchmiyY S, IlyinV G, ManorikP A. Photocatalytic hydrogen evolution over mesoporous TiO2/metal nanocomposites. Journal of Photochemistry and Photobiology A Chemistry, 2008, 198(2-3): 126-134 doi: 10.1016/j.jphotochem.2008.02.026
|
17 |
MaedaK, DomenK. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655-2661 doi: 10.1021/jz1007966
|
18 |
MiwaT, KanecoS, KatsumataH, SuzukiT, OhtaK, VermaS C. Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 2010, 35(13): 6554-6560 doi: 10.1016/j.ijhydene.2010.03.128
|
19 |
TakaiA, KamatP V. Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano, 2011, 5(9): 7369-7376 doi: 10.1021/nn202294b
|
20 |
FurukawaS, TsukioD, ShishidoT, TeramuraK, TanakaT. Correlation between the oxidation state of copper and the photocatalytic activity of Cu/Nb2O5. Journal of Physical Chemistry C, 2012, 116(22): 12181-12186 doi: 10.1021/jp303625m
|
21 |
ChenT, FengZ C, WuG P, ShiJ Y, MaG J, YingP L, LiC. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. Journal of Physical Chemistry C, 2007, 111(22): 8005-8014 doi: 10.1021/jp071022b
|
22 |
SandovalM J, BellA T. Temperature-programmed desorption studies of the interactions of H2, CO, and CO2 with Cu/SiO2. Journal of Catalysis, 1993, 144(1): 227-237 doi: 10.1006/jcat.1993.1326
|
23 |
KovalenkoA, HirataF. Self-consistent description of a metal-water interface by the Kohn-Sham density functional theory and the three-dimensional reference interaction site model. Journal of Chemical Physics, 1999, 110(20): 10095-10112 doi: 10.1063/1.478883
|
24 |
ZhanpeisovN U, MiyamotoA. Interactions of water and methanol with a mixture of copper and zinc metals: A theoretical ab initio study. Research on Chemical Intermediates, 2003, 29(4): 417-428 doi: 10.1163/156856703765694354
|
25 |
BiY, LuG. Nano-Cu catalyze hydrogen production from formaldehyde solution at room temperature. International Journal of Hydrogen Energy, 2008, 33(9): 2225-2232 doi: 10.1016/j.ijhydene.2008.02.064
|
26 |
McBrideF, DarlingR, PussiK, HodgsonA. Tailoring the structure of water at a metal surface: A structural analysis of the water bilayer formed on an alloy template. Physical Review Letters, 2011, 106(22): 226101-226105 doi: 10.1103/PhysRevLett.106.226101
|
27 |
SreethawongT, YoshikawaS. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au loaded mesoporous TiO2 photocatalysts. Catalysis Communications, 2005, 6(10): 661-668 doi: 10.1016/j.catcom.2005.06.004
|
28 |
WuN L, LeeM S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. International Journal of Hydrogen Energy, 2004, 29(15): 1601-1605 doi: 10.1016/j.ijhydene.2004.02.013
|
29 |
BandaraJ, UdawattaC P K, RajapakseC S K. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochemical & Photobiological Sciences, 2005, 4(11): 857-861 doi: 10.1039/b507816d
|
30 |
ChoiH J, KangM. Hydrogen production from methanol/waterdecomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2. International Journal of Hydrogen Energy, 2007, 32(16): 3841-3848 doi: 10.1016/j.ijhydene.2007.05.011
|
31 |
LawtonT J, CarrascoJ, BaberA E, MichaelidescA, CharlesE, SykesH. Hydrogen-bonded assembly of methanol on Cu(111). Physical Chemistry Chemical Physics, 2012, 14(33): 11846-11852 doi: 10.1039/c2cp41875d
|
32 |
GuntherS, HaveckerM, Knop-GerickeA, KleimenovE, SchlogR.Adsorbate coverages and surface reactivity in methanol oxidation over Cu (110): An in situ photoelectron spectroscopy study. The Journal of Chemical Physics, 2006, 125(11): 114709 (1-10)
|
33 |
LideD R, ed. CRC Handbook of Chemistry and Physics. 85th edition. Florida: CRC Press, 2005, 4-160, 9-76, 10-169
|
34 |
MichaelsonH B. The work function of the elements and its periodicity. Journal of Applied Physics, 1977, 48(11): 4729-4733 doi: 10.1063/1.323539
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|