Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (4) : 665-671    https://doi.org/10.1007/s11705-019-1815-2
COMMUNICATION
Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light
Jianwei Lu1, Lan Lan2, Xiaoteng Terence Liu3(), Na Wang4(), Xiaolei Fan2()
1. School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
2. School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK
3. Department of Mechanical & Construction Engineering, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK
4. Advanced Manufacturing Institute of Polymer Industry (AMIPI), Shenyang University of Chemical Technology, Shenyang 110142, China
 Download: PDF(2213 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A strategy of intensifying the visible light harvesting ability of anatase TiO2 hollow spheres (HSs) was developed, in which both sides of TiO2 HSs were utilised for stabilising Au nanoparticles (NPs) through the sacrificial templating method and convex surface-induced confinement. The composite structure of single Au NP yolk-TiO2 shell-Au NPs, denoted as Au@Au(TiO2, was rendered and confirmed by the transmission electron microscopy analysis. Au@Au(TiO2 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(TiO2 by 77% and Au@P25 by 52%, respectively, in phenol degradation.

Keywords TiO2 hollow spheres      plasmonic Au nanoparticles      confinement      visible light      photocatalytic degradation     
Corresponding Author(s): Xiaoteng Terence Liu,Na Wang,Xiaolei Fan   
Just Accepted Date: 20 March 2019   Online First Date: 26 April 2019    Issue Date: 04 December 2019
 Cite this article:   
Jianwei Lu,Lan Lan,Xiaoteng Terence Liu, et al. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1815-2
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I4/665
Fig.1  Scheme of synthesis and formation of the single Au core-anatase TiO2 shell nanostructure. (a?d) TEM images showing the morphological evolution of the yolk-shell Au(TiO2
Fig.2  TEM images of the as-prepared materials: (a) Au(SiO2, (b) core-core-shell Au(SiO2(TiO2, (c) yolk-shell Au(TiO2, (d) Au@Au(TiO2, (e) SiO2 core, (f) SiO2(TiO2 core-shell, (g) TiO2 HSs, (h) Au@TiO2 HSs
Fig.3  (a) The rate of MB degradation under visible light promoted by various TiO2 photocatalysts; (b) The corresponding pseudo-first-order kinetic rate plot
Fig.4  (a) The rate of phenol degradation under visible light promoted by various TiO2 photocatalysts; (b) The corresponding pseudo-first-order kinetic rate plot
1 J N Schrauben, R Hayoun, C N Valdez, M Braten, L Fridley, J M Mayer. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science, 2012, 336(6086): 1298–1301
https://doi.org/10.1126/science.1220234
2 M Gratzel. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607
3 A Caravaca, H Daly, M Smith, A Mills, S Chansai, C Hardacre. Continuous flow gas phase photoreforming of methanol at elevated reaction temperatures sensitised by Pt/TiO2. Reaction Chemistry & Engineering, 2016, 1(6): 649–657
https://doi.org/10.1039/C6RE00140H
4 A Caravaca, W Jones, C Hardacre, M H Bowker. Hydrogen production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, 472
5 L Palmisano, A Sclafani. Thermodynamics and kinetics for heterogeneous photocatalytic processes. In: Schiavello M, ed. Heterogeneous Photocatalysis. New York: John Wiley & Sons, 1997, 109–132
6 Y Cong, J Zhang, F Chen, M Anpo. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007, 111(19): 6976–6982
https://doi.org/10.1021/jp0685030
7 Q Meng, T Wang, E Liu, X Ma, Q Ge, J Gong. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Physical Chemistry Chemical Physics, 2013, 15(24): 9549–9561
https://doi.org/10.1039/c3cp51476e
8 J Lu, F Su, Z Huang, C Zhang, Y Liu, X Ma, J Gong. N-Doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Advances, 2013, 3(3): 720–724
https://doi.org/10.1039/C2RA22713D
9 H Wang, L Zhang, Z Chen, J Hu, S Li, Z Wang, J Liu, X Wang. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244
https://doi.org/10.1039/C4CS00126E
10 H Pan, Y W Zhang, V B Shenoy, H Gao. Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. Journal of Physical Chemistry C, 2011, 115(24): 12224–12231
https://doi.org/10.1021/jp202385q
11 M Pelaez, N Nolan, S Pillai, M Seery, P Falaras, A G Patrick, S M Jeremy, W J Hamiltone, J A Byrne, K O’Shea, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012, 125: 331–349
https://doi.org/10.1016/j.apcatb.2012.05.036
12 M V Dozzi, E Selli. Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 14: 13–28
https://doi.org/10.1016/j.jphotochemrev.2012.09.002
13 P V Kamat. TiO2 nanostructures: Recent physical chemistry advances. Journal of Physical Chemistry C, 2012, 116(22): 11849–11851
https://doi.org/10.1021/jp305026h
14 L Li, J Yan, T Wang, Z J Zhao, J Zhang, J Gong, N Guan. 10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 5881
https://doi.org/10.1038/ncomms6881
15 S A Ansari, M M Khan, M O Ansari, M H Cho. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 2016, 40(4): 3000–3009
https://doi.org/10.1039/C5NJ03478G
16 L Li, F Meng, X Hu, L Qiao, C Q Sun, H Tian, W Zheng. TiO2 band restructuring by B and P dopants. PLoS One, 2016, 11(4): e0152726
https://doi.org/10.1371/journal.pone.0152726
17 J Lu, P Zhang, A Li, F Su, T Wang, Y Liu, J Gong. Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chemical Communications (Cambridge), 2013, 49(52): 5817–5819
https://doi.org/10.1039/c3cc42029a
18 Y Tian, T Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637
https://doi.org/10.1021/ja042192u
19 K Awazu, M Fujimaki, C Rockstuhl, J Tominaga, H Murakami, Y Ohki, N Yoshida, T Watanabe. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 2008, 130(5): 1676–1680
https://doi.org/10.1021/ja076503n
20 I Lee, J B Joo, Y D Yin, F Zaera. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10208–10211
https://doi.org/10.1002/anie.201007660
21 S Linic, P Christopher, D B Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011, 10(12): 911–921
https://doi.org/10.1038/nmat3151
22 Q Zhang, X Jin, Z Xu, J Zhang, U F Rendón, L Razzari, M Chaker, D Ma. Plasmonic Au-loaded hierarchical hollow Porous TiO2 spheres: Synergistic catalysts for nitroaromatic reduction. Journal of Physical Chemistry Letters, 2018, 9(18): 5317–5326
https://doi.org/10.1021/acs.jpclett.8b02393
23 J B Joo, M Dahl, N Li, F Zaera, Y Yin. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science, 2013, 6(7): 2082–2092
https://doi.org/10.1039/c3ee41155a
24 J B Joo, Q Zhang, M Dahl, I Lee, J Goebl, F Zaera, Y Yin. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5(4): 6321–6327
https://doi.org/10.1039/C1EE02533C
25 R J Dillon, J B Joo, F Zaera, Y Yin, C J Bardeen. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15(5): 1488–1496
https://doi.org/10.1039/C2CP43666C
26 Y J Lee, J B Joo, Y Yin, F Zaera. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@void@TiO2 yolk-shell nanostructures. ACS Energy Letters, 2016, 1(1): 52–56
https://doi.org/10.1021/acsenergylett.6b00040
27 I Lee, J B Joo, Y Yin, F Zaera. Au@Void@TiO2 yolk-shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648: 150–155
https://doi.org/10.1016/j.susc.2015.10.008
28 M José-Yacamán, C Gutierrez-Wing, M Miki, D Q Yang, K N Piyakis, E Sacher. Surface diffusion and coalescence of mobile metal nanoparticles. Journal of Physical Chemistry B, 2005, 109(19): 9703–9711
https://doi.org/10.1021/jp0509459
29 L M Liz-Marzan, M Giersig, P Mulvaney. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18): 4329–4335
https://doi.org/10.1021/la9601871
30 Z Bian, T Tachikawa, P Zhang, M Fujitsuka, T Majima. Au/TiO2 Superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. Journal of the American Chemical Society, 2014, 136(1): 458–465
https://doi.org/10.1021/ja410994f
31 J Prikulis, P Hanarp, L Olofsson, D Sutherland, M Käll. Optical spectroscopy of nanometric holes in thin gold films. Nano Letters, 2004, 4(6): 1003–1007
https://doi.org/10.1021/nl0497171
32 Z W Seh, S H Liu, M Low, S Y Zhang, Z L Liu, A Mlayah, M Y Han. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314
https://doi.org/10.1002/adma.201104241
33 X F Wu, H Y Song, J M Yoon, Y T Yu, Y F Chen. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir, 2009, 25(11): 6438–6447
https://doi.org/10.1021/la900035a
[1] FCE-18092-OF-LJ_suppl_1 Download
[1] Yan Cui, Zequan Zeng, Jianfeng Zheng, Zhanggen Huang, Jieyang Yang. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
[2] Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light[J]. Front. Chem. Sci. Eng., 2021, 15(4): 892-901.
[3] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[4] Njud S. Alharbi, Baowei Hu, Tasawar Hayat, Samar Omar Rabah, Ahmed Alsaedi, Li Zhuang, Xiangke Wang. Efficient elimination of environmental pollutants through sorption-reduction and photocatalytic degradation using nanomaterials[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1124-1135.
[5] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[6] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[7] Dishun ZHAO, Jialei WANG, Zhigang ZHANG, Juan ZHANG. Photocatalytic degradation of omethoate using NaY zeolite-supported TiO2[J]. Front Chem Eng Chin, 2009, 3(2): 206-210.
[8] XIAO Xinyan, ZHANG Huiping, CHEN Huanqin, LIAO Dongliang. Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation[J]. Front. Chem. Sci. Eng., 2007, 1(2): 178-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed