|
|
Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light |
Jianwei Lu1, Lan Lan2, Xiaoteng Terence Liu3( ), Na Wang4( ), Xiaolei Fan2( ) |
1. School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China 2. School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, M13 9PL, UK 3. Department of Mechanical & Construction Engineering, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK 4. Advanced Manufacturing Institute of Polymer Industry (AMIPI), Shenyang University of Chemical Technology, Shenyang 110142, China |
|
|
Abstract A strategy of intensifying the visible light harvesting ability of anatase TiO2 hollow spheres (HSs) was developed, in which both sides of TiO2 HSs were utilised for stabilising Au nanoparticles (NPs) through the sacrificial templating method and convex surface-induced confinement. The composite structure of single Au NP yolk-TiO2 shell-Au NPs, denoted as Au@Au(TiO2, was rendered and confirmed by the transmission electron microscopy analysis. Au@Au(TiO2 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(TiO2 by 77% and Au@P25 by 52%, respectively, in phenol degradation.
|
Keywords
TiO2 hollow spheres
plasmonic Au nanoparticles
confinement
visible light
photocatalytic degradation
|
Corresponding Author(s):
Xiaoteng Terence Liu,Na Wang,Xiaolei Fan
|
Just Accepted Date: 20 March 2019
Online First Date: 26 April 2019
Issue Date: 04 December 2019
|
|
1 |
J N Schrauben, R Hayoun, C N Valdez, M Braten, L Fridley, J M Mayer. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science, 2012, 336(6086): 1298–1301
https://doi.org/10.1126/science.1220234
|
2 |
M Gratzel. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607
|
3 |
A Caravaca, H Daly, M Smith, A Mills, S Chansai, C Hardacre. Continuous flow gas phase photoreforming of methanol at elevated reaction temperatures sensitised by Pt/TiO2. Reaction Chemistry & Engineering, 2016, 1(6): 649–657
https://doi.org/10.1039/C6RE00140H
|
4 |
A Caravaca, W Jones, C Hardacre, M H Bowker. Hydrogen production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, 472
|
5 |
L Palmisano, A Sclafani. Thermodynamics and kinetics for heterogeneous photocatalytic processes. In: Schiavello M, ed. Heterogeneous Photocatalysis. New York: John Wiley & Sons, 1997, 109–132
|
6 |
Y Cong, J Zhang, F Chen, M Anpo. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007, 111(19): 6976–6982
https://doi.org/10.1021/jp0685030
|
7 |
Q Meng, T Wang, E Liu, X Ma, Q Ge, J Gong. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Physical Chemistry Chemical Physics, 2013, 15(24): 9549–9561
https://doi.org/10.1039/c3cp51476e
|
8 |
J Lu, F Su, Z Huang, C Zhang, Y Liu, X Ma, J Gong. N-Doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Advances, 2013, 3(3): 720–724
https://doi.org/10.1039/C2RA22713D
|
9 |
H Wang, L Zhang, Z Chen, J Hu, S Li, Z Wang, J Liu, X Wang. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244
https://doi.org/10.1039/C4CS00126E
|
10 |
H Pan, Y W Zhang, V B Shenoy, H Gao. Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. Journal of Physical Chemistry C, 2011, 115(24): 12224–12231
https://doi.org/10.1021/jp202385q
|
11 |
M Pelaez, N Nolan, S Pillai, M Seery, P Falaras, A G Patrick, S M Jeremy, W J Hamiltone, J A Byrne, K O’Shea, et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012, 125: 331–349
https://doi.org/10.1016/j.apcatb.2012.05.036
|
12 |
M V Dozzi, E Selli. Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 14: 13–28
https://doi.org/10.1016/j.jphotochemrev.2012.09.002
|
13 |
P V Kamat. TiO2 nanostructures: Recent physical chemistry advances. Journal of Physical Chemistry C, 2012, 116(22): 11849–11851
https://doi.org/10.1021/jp305026h
|
14 |
L Li, J Yan, T Wang, Z J Zhao, J Zhang, J Gong, N Guan. 10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 5881
https://doi.org/10.1038/ncomms6881
|
15 |
S A Ansari, M M Khan, M O Ansari, M H Cho. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 2016, 40(4): 3000–3009
https://doi.org/10.1039/C5NJ03478G
|
16 |
L Li, F Meng, X Hu, L Qiao, C Q Sun, H Tian, W Zheng. TiO2 band restructuring by B and P dopants. PLoS One, 2016, 11(4): e0152726
https://doi.org/10.1371/journal.pone.0152726
|
17 |
J Lu, P Zhang, A Li, F Su, T Wang, Y Liu, J Gong. Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chemical Communications (Cambridge), 2013, 49(52): 5817–5819
https://doi.org/10.1039/c3cc42029a
|
18 |
Y Tian, T Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637
https://doi.org/10.1021/ja042192u
|
19 |
K Awazu, M Fujimaki, C Rockstuhl, J Tominaga, H Murakami, Y Ohki, N Yoshida, T Watanabe. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 2008, 130(5): 1676–1680
https://doi.org/10.1021/ja076503n
|
20 |
I Lee, J B Joo, Y D Yin, F Zaera. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10208–10211
https://doi.org/10.1002/anie.201007660
|
21 |
S Linic, P Christopher, D B Ingram. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011, 10(12): 911–921
https://doi.org/10.1038/nmat3151
|
22 |
Q Zhang, X Jin, Z Xu, J Zhang, U F Rendón, L Razzari, M Chaker, D Ma. Plasmonic Au-loaded hierarchical hollow Porous TiO2 spheres: Synergistic catalysts for nitroaromatic reduction. Journal of Physical Chemistry Letters, 2018, 9(18): 5317–5326
https://doi.org/10.1021/acs.jpclett.8b02393
|
23 |
J B Joo, M Dahl, N Li, F Zaera, Y Yin. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science, 2013, 6(7): 2082–2092
https://doi.org/10.1039/c3ee41155a
|
24 |
J B Joo, Q Zhang, M Dahl, I Lee, J Goebl, F Zaera, Y Yin. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5(4): 6321–6327
https://doi.org/10.1039/C1EE02533C
|
25 |
R J Dillon, J B Joo, F Zaera, Y Yin, C J Bardeen. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15(5): 1488–1496
https://doi.org/10.1039/C2CP43666C
|
26 |
Y J Lee, J B Joo, Y Yin, F Zaera. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@void@TiO2 yolk-shell nanostructures. ACS Energy Letters, 2016, 1(1): 52–56
https://doi.org/10.1021/acsenergylett.6b00040
|
27 |
I Lee, J B Joo, Y Yin, F Zaera. Au@Void@TiO2 yolk-shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648: 150–155
https://doi.org/10.1016/j.susc.2015.10.008
|
28 |
M José-Yacamán, C Gutierrez-Wing, M Miki, D Q Yang, K N Piyakis, E Sacher. Surface diffusion and coalescence of mobile metal nanoparticles. Journal of Physical Chemistry B, 2005, 109(19): 9703–9711
https://doi.org/10.1021/jp0509459
|
29 |
L M Liz-Marzan, M Giersig, P Mulvaney. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18): 4329–4335
https://doi.org/10.1021/la9601871
|
30 |
Z Bian, T Tachikawa, P Zhang, M Fujitsuka, T Majima. Au/TiO2 Superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. Journal of the American Chemical Society, 2014, 136(1): 458–465
https://doi.org/10.1021/ja410994f
|
31 |
J Prikulis, P Hanarp, L Olofsson, D Sutherland, M Käll. Optical spectroscopy of nanometric holes in thin gold films. Nano Letters, 2004, 4(6): 1003–1007
https://doi.org/10.1021/nl0497171
|
32 |
Z W Seh, S H Liu, M Low, S Y Zhang, Z L Liu, A Mlayah, M Y Han. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314
https://doi.org/10.1002/adma.201104241
|
33 |
X F Wu, H Y Song, J M Yoon, Y T Yu, Y F Chen. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir, 2009, 25(11): 6438–6447
https://doi.org/10.1021/la900035a
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|