Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (4) : 878-892    https://doi.org/10.1007/s11705-018-1744-5
REVIEW ARTICLE
Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis
Andrea P. Reverberi1(), P.S. Varbanov2, M. Vocciante1, B. Fabiano3
1. Department of Chemistry and Industrial Chemistry, Genoa University, 16146 Genoa, Italy
2. Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, 1083 Budapest, Hungary
3. Department of Civil, Chemical and Environmental Engineering, Polytechnic School, Genoa University, 16145 Genoa, Italy
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A survey addressing the uses of bismuth oxide in photocatalysis is presented. The richness of literature on such a specific topic proves the growing importance of this compound as a valid tool in pollution abatement and environmental decontamination. Many research groups have focused their activity on how to improve the photocatalytic properties of this semiconductor and several solutions have been adopted in the synthesis method, often based on wet-chemical processes. The impressive development of nanoscience helped in understanding and identifying process variables and operative conditions aiming at optimizing the yield of this promising photocatalytic material in the utilization of solar energy.

Keywords photocatalysis      visible light      bismuth compounds      nanotechnology      environmental remediation      decontamination      pollution abatement     
Corresponding Author(s): Andrea P. Reverberi   
Just Accepted Date: 14 May 2018   Online First Date: 13 September 2018    Issue Date: 03 January 2019
 Cite this article:   
Andrea P. Reverberi,P.S. Varbanov,M. Vocciante, et al. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1744-5
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I4/878
Fig.1  Uses of Bi compounds in nanotechnology
Fig.2  Schemes of electron-hole pair generation by photoexcitation. (a) Production of an electron-hole pair in a phase; (b) Electron and hole transfer across an heterojunction between phases; (c) Electron jump and hole formation between shallow traps in a single phase. VBM and CBM are valence and conduction band minima levels, respectively.
Compound Synthesis Form and properties Light type Pollutant type;
Cin = initial pollutant conc.;
Cph = photocatalyst conc.;
max % removal
Ref.
Bi2O3 (25% Eu) Sol-gel; calcination at 300–600°C Microsized plates; Eg = 2.75–2.98 eV; (1.17–1.57) m2·g1 Visible light; 450 W PH
Cin = 5 mg·L1
Cph = 5 g·L1
71% (1 h)
[40]
α-, β-Bi2O3 (1%–4% La,1%–3% Ce) Hydrothermal; calcination at 300°C Nanosheets; Eg = 2.55–2.98 eV; (11.5–21.0) m2·g1 Visible light; 300 W AO-II
Cin = 30 mg·L1
Cph = 0.625 g·L1
72% (1 h)
[41]
α-, β-Bi2O3 (2%–4% Pr) Hydrothermal; calcination at 500°C Microsized plates; Eg = 2.33–2.35 eV Visible light; 1000 W RhB; 2-4 DCP
Cin(RhB) = 10−5 mol·L1
Cin(2-4 DCP) = 20 mg·L1 Cph = 1 g·L1
50% (RhB, 1 h)
18% (2-4 DCP, 1 h)
[42]
α-Bi2O3 (Co)
Co/Bi= 0.05 molar ratio
Hydrothermal; calcination at 500°C Nanosheets, nanoplates; Eg = 1.94–2.21 eV Direct sunlight MB
Cin = 5 mg·L1
Cph = 1.5 g·L1
58% (1 h)
[43]
δ-Bi2O3 (0.8% Cu) Sol-gel; impregnation on Bi2O3; drying at 100°C Hierarchical flower-like nanosheets; Eg = 2.57 eV Visible light; UV-A; UV-B; UV-C AT
Cin = 5 mg·L1
Cph = 1 g·L1
6% (vis. light, 1 h)
32% (UV-A, 1 h)
38% (UV-B, 1 h)
27% (UV-C, 1 h)
[18]
α-, β-Bi2O3 (Cu); Cu/Bi= (0–0.02) molar ratio Sol-gel, glass substrate; drying 100°C; annealing 550°C Nanosized surface on glass; Eg (direct) = 2.94–2.99 eV Visible light; 500 W RhB
Cin = 10 mg·L1
catalyst area= 2.5 cm2 88% (1 h)
[44]
α-Bi2O3 (0–4% La, 0–1.2% Er) Sol-gel; drying at 80°C Nanorods; Eg = 2.42–2.55 eV; (16.1–39.9) m2·g1 Visible light; 500 W AY-29, CBBG-250, AG-25
Cin(AY-29) = 0.25 mmol·L1; Cin(CBBG-250) = 0.05 mmol·L1
Cph = 1.2 g·L1
77% (AY-29, 1 h);
84% (CBBG-250, 1 h);
75% (AG-25, 1 h)
[45]
β-Bi2O3 (Gd); Gd/Bi= (0–0.04) molar ratio Hydrothermal; drying at 60°C; calcination at 375°C Porous microspheres; Eg = 2.20–2.26 eV; (6.2–15.1) m2·g1 Visible light; 300 W MO, RhB, PH
Cin(MO) = 10 mg·L1 Cin(RhB) = 10 mg·L1
Cin(PH) = 0.1 mmol·L1
Cph = 1 g·L1
87.5% (MO, 20 min)
9% (RhB, 20 min)
17% (PH, 20 min)
[46]
α-, β-, δ-Bi2O3 (Y)
Y/Bi= (0–0.15) molar ratio
Hydrothermal; calcination at 500°C Nanosized clusters; Eg= 2.03-–2.68 eV; (2.48–5.76) m2·g1 Visible light; 100 W MO
Cin = 20 mg·L1
Cph = 1 g·L1
95.1% (1h)
[17]
β-Bi2O3 (1% Au) Solvothermal dissociation; annealing at 270°C; chemical reduction Agglomerated nanoclusters;
Eg (0% Au) = 2.77 eV; 14.9 m2·g1
Visible light; 300 W SA
Cin = 25 mmol·L1
Cph = 0.2 g·L1
16% (1 h)
[47]
α-Bi2O3 (Se) Chemical precipitation; drying at 60°C Same structure as α-Bi2O3 ; Eg = 2.73 eV Visible light; 100 mW·cm2 MB
Cin = 0.01mmol·L1
Cph = 50 mg·L1
45% (1 h)
[48]
β-Bi2O3 (Fe)
Fe/Bi= (0–0.05) molar ratio
Hydrothermal; calcination at 375°C Nanoparticles agglomerated in microspheres;
Eg = 1.67–2.14 eV
(12.6–16.9) m2·g1
Visible light; 400 W MO
Cin = 10 mg·L1
Cph = 1 g·L1
86% (1 h)
[49]
α-, β-Bi2O3 (Dy)
Dy/Bi= (0–0.04) molar ratio
Sol-gel; calcination at 500°C Nanocrystals;
Eg = 2.23–2.27 eV;
(1.74–2.15) m2·g1
UV light; 30W MO
Cin = 10 mg·L1
Cph = 1 g·L1
31.5% (1 h)
[50]
α-Bi2O3 (Ag)
Ag/Bi= (0–0.09) molar ratio
Co-precipitation; drying at 90°C; annealing at 500°C Nanosheets;
Eg = 2.25–2.59 eV
Visible light; 500 W MO
Cin = 20 mg·L1
Cph = 1 g·L1
28% (1 h)
[51]
α-Bi2O3 (0–10% Sr) Hydrothermal; drying at room temperature Nanosheets, nanocrystals;
Eg = 2.75–2.85 eV
Visible light 250 W MB
Cin = 0.022 mmol·L1
Cph = 1 g·L1
62% (1h)
[52]
β-Bi2O3 (0.5%–4% Ag) Hydrothermal; thermolysis of (BiO)2CO3 at 360°C; Ag impregnation Nanosheets assembled in microspheres; Eg = 2.22–2.34 eV Visible light; 400 W RhB
Cin = 10 mg·L1
Cph = 1 g·L1
50% (1 h)
[53]
α-Bi2O3 (Ag-Ti-Si) Solvothermal; annealing at 550°C Nanoporous microspheres; Eg = 2.51–2.72 eV; UV and visible light; 500 W (vis) TCS
Cin = 5 mg·L1
Cph = 1 g·L1
>99% UV (30 min)
>99% vis (30 min)
[54]
α-, β-Bi2O3 (Au) Hydrothermal; calcination at 200–500°C; Au deposited by sputtering Nanoflowers Visible light; 500 W Rh6G
Cin = 25 mg·L1
Cph = 0.4 g·L1
87% (30 min; pH= 2.5)
[55]
α-, β-Bi2O3 (0.5%–2% Sm) Hydrothermal; calcination at 550°C Powder with nanosized crystallites; Eg = 2.0–2.21 eV; (6.0–11.0) m2·g1 Visible light; 1.3·105 lux MB, PH
Cin(MB) = 50 mg·L1
Cin(PH) = 0.1 mmol·L1
Cph (MB) = 1 g·L1
Cph (PH) = 3 g·L1
69% (MB, 1 h)
39% (PH, 1 h)
[56]
α-Bi2O3 (1%–9% S) Chemical precipitation; calcination at 350°C Microsized rods Visible light; 375 W RhB
Cin = 0.02 mmol·L1
Cph = 1.86 g·L1/L
13% (1 h)
[57]
α-Bi2O3 (F)
F/Bi= (0–0.3) molar ratio
Chemical precipitation; solvothermal process; calcination at 300°C Microsized rods; Eg = 2.69–2.74 eV; (0.39–0.80) m2·g1 Visible light; 300 W MO
Cin = 0.04 mmol·L1
Cph = 1 g·L1
65% (1 h)
[58]
α-Bi2O3 (N, S) Chemical precipitation; calcination at 300°C under NH3 Crystalline powder Visible light; 350 W RhB
Cin = 0.02 mmolo·L1
Cph = 1.25 g·L1
13% (S-doped, 1 h)
10% (N-doped, 1 h)
[59]
Tab.1  List of papers concerning investigations about doped-Bi2O3a)
1 RBagatin, J J Klemeš, A PReverberi, DHuisingh. Conservation and improvements in water resource management: A global challenge. Journal of Cleaner Production, 2014, 77: 1–9
https://doi.org/10.1016/j.jclepro.2014.04.027
2 É SVan-Dal, C Bouallou. Design and simulation of a methanol production plant from CO2 hydrogenation. Journal of Cleaner Production, 2013, 57: 38–45
https://doi.org/10.1016/j.jclepro.2013.06.008
3 LYu, SRuan, XXu, RZou, JHu. One-dimensional nanomaterial-assembled macroscopic membranes for water treatment. Nano Today, 2017, 17: 79–95
https://doi.org/10.1016/j.nantod.2017.10.012
4 VPascariu, O Avadanei, PGasner, IStoica, A P Reverberi, LMitoseriu. Preparation and characterization of PbTiO 3-epoxy resin compositionally graded thick films. Phase Transitions, 2013, 86(7): 715–725
https://doi.org/10.1080/01411594.2012.726727
5 JWang, HGu. Novel metal nanomaterials and their catalytic applications. Molecules, 2015, 20(9): 17070–17092
https://doi.org/10.3390/molecules200917070 pmid: 26393550
6 MMehring. From molecules to bismuth oxide-based materials: Potential homo- and heterometallic precursors and model compounds. Coordination Chemistry Reviews, 2007, 251(7-8): 974–1006
https://doi.org/10.1016/j.ccr.2006.06.005
7 JKoziorowski, A E Stanciu, VGómez-Vallejo, JLlop. Radiolabeled nanoparticles for cancer diagnosis and therapy. Anti-cancer Agents in Medicinal Chemistry, 2017, 17(3): 333–354
https://doi.org/10.2174/1871520616666160219162902 pmid: 26899184
8 X DZhang, JChen, YMin, G B Park, XShen, S SSong, Y MSun, HWang, W Long, JXie, KGao, LZhang, SFan, F Fan, UJeong. Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Advanced Functional Materials, 2014, 24(12): 1718–1729
https://doi.org/10.1002/adfm.201302312
9 PDebbage, W Jaschke. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochemistry and Cell Biology, 2008, 130(5): 845–875
https://doi.org/10.1007/s00418-008-0511-y pmid: 18825403
10 MHernández-Rivera, IKumar, S YCho, B YCheong, M X Pulikkathara, S EMoghaddam, K HWhitmire, L JWilson. High-performance hybrid Bismuth-carbon nanotube based contrast agent for X-ray CT imaging. ACS Applied Materials & Interfaces, 2017, 9(7): 5709–5716
https://doi.org/10.1021/acsami.6b12768 pmid: 28072512
11 BFabiano, F Pistritto, AReverberi, EPalazzi. Ethylene-air mixtures under flowing conditions: A model-based approach to explosion conditions. Clean Technologies and Environmental Policy, 2015, 17(5): 1261–1270
https://doi.org/10.1007/s10098-015-0966-1
12 CSolisio, A P Reverberi, ADel Borghi, V GDovi'. Inverse estimation of temperature profiles in landfills using heat recovery fluids measurements. Journal of Applied Mathematics, 2012, 2012: 747410
13 EPalazzi, PPerego, BFabiano. Mathematical modelling and optimization of hydrogen continuous production in a fixed bed bioreactor. Chemical Engineering Science, 2002, 57(18): 3819–3830
https://doi.org/10.1016/S0009-2509(02)00322-6
14 EPalazzi, C Caviglione, A PReverberi, BFabiano. A short-cut analytical model of hydrocarbon pool fire of different geometries, with enhanced view factor evaluation. Process Safety and Environmental Protection, 2017, 110: 89–101
https://doi.org/10.1016/j.psep.2017.08.021
15 A MAbu-Dief, W S Mohamed. α-Bi2O3 nanorods: Synthesis, characterization and UV-photocatalytic activity. Materials Research Express, 2017, 4(3): 035039
https://doi.org/10.1088/2053-1591/aa6712
16 SDing, JNiu, YBao, L Hu. Evidence of superoxide radical contribution to demineralization of sulfamethoxazole by visible-light-driven Bi2O3/Bi2O2CO3/Sr6Bi2O9 photocatalyst. Journal of Hazardous Materials, 2013, 262: 812–818
https://doi.org/10.1016/j.jhazmat.2013.09.048 pmid: 24140532
17 XLiu, HDeng, WYao, Q Jiang, JShen. Preparation and photocatalytic activity of Y-doped Bi2O3. Journal of Alloys and Compounds, 2015, 651: 135–142
https://doi.org/10.1016/j.jallcom.2015.08.068
18 HSudrajat. Cu(II)/Bi2O3 photocatalysis for toxicity reduction of atrazine in water environment under different light wavelengths. Environmental Processes, 2017, 4(2): 439–449
https://doi.org/10.1007/s40710-017-0241-z
19 A LLinsebiegler, G Lu, J TYates Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms and selected results. Chemical Reviews, 1995, 95(3): 735–758
https://doi.org/10.1021/cr00035a013
20 A WXu, YGao, H QLiu. The preparation, characterization, and their photocatalytic activities of rare-earth doped TiO2 nanoparticles. Journal of Catalysis, 2002, 207(2): 151–157
https://doi.org/10.1006/jcat.2002.3539
21 MDrache, P Roussel, J PWignacourt. Structures and oxide mobility in Bi-Ln-O materials: Heritage of Bi2O3. Chemical Reviews, 2007, 107(1): 80–96
https://doi.org/10.1021/cr050977s pmid: 17212471
22 JXie, LLi, CTian, C Han, DZhao. Template-free synthesis of hierarchical constructed flower-like d-Bi2O3 microspheres with photocatalytic performance. Micro & Nano Letters, 2012, 7(7): 651–653
https://doi.org/10.1049/mnl.2012.0201
23 SSanna, V Esposito, J WAndreasen, JHjelm, WZhang, TKasama, S B Simonsen, MChristensen, SLinderoth, NPryds. Enhancement of the chemical stability in confined  d-Bi2O3. Nature Materials, 2015, 14(5): 500–504
https://doi.org/10.1038/nmat4266 pmid: 25849531
24 FWang, KCao, QZhang, X Gong, YZhou. A computational study on the photoelectric properties of various Bi2O3 polymorphs as visible-light driven photocatalysts. Journal of Molecular Modeling, 2014, 20(11): 2506
https://doi.org/10.1007/s00894-014-2506-z pmid: 25381618
25 C HHo, C HChan, Y SHuang, L C Tien, L CChao. The study of optical band edge property of bismuth oxide nanowires α-Bi2O3. Optics Express, 2013, 21(10): 11965–11972
https://doi.org/10.1364/OE.21.011965 pmid: 23736418
26 GZhang, XZhang, YWu, WShi, WGuan. Rapid microwave-assisted synthesis of Bi2O3 tubes and photocatalytic properties for antibiotics. Micro & Nano Letters, 2013, 8(4): 177–180
https://doi.org/10.1049/mnl.2013.0074
27 RYuvakkumar, S IHong. Structural, compositional and textural properties of monoclinic α-Bi2O3 nanocrystals. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2015, 144: 281–286
https://doi.org/10.1016/j.saa.2015.02.093 pmid: 25770823
28 SIyyapushpam, S T Nishanthi, DPathinettam Padiyan. Synthesis of β-Bi2O3 towards the application of photocatalytic degradation of methyl orange and its instability. Journal of Physics and Chemistry of Solids, 2015, 81: 74–78
https://doi.org/10.1016/j.jpcs.2015.02.005
29 MSchlesinger, MWeber, SSchulze, M Hietschold, MMehring. Metastable β-Bi2O3 nanoparticles with potential for photocatalytic water purification using visible light irradiation. ChemistryOpen, 2013, 2(4): 146–155
https://doi.org/10.1002/open.201300013 pmid: 24551555
30 YYan, ZZhou, YCheng, L Qiu, CGao, JZhou. Template-free fabrication of α- and β-Bi2O3 hollow spheres and their visible light photocatalytic activity for water purification. Journal of Alloys and Compounds, 2014, 605: 102–108
https://doi.org/10.1016/j.jallcom.2014.03.111
31 XXiao, RHu, CLiu, C Xing, CQian, XZuo, JNan, LWang. Facile large-scale synthesis of β-Bi2O3 nanospheres as a highly efficient photocatalyst for the degradation of acetaminophen under visible light irradiation. Applied Catalysis B: Environmental, 2013, 140–141: 433–443
https://doi.org/10.1016/j.apcatb.2013.04.037
32 YQiu, MYang, HFan, Y Zuo, YShao, YXu, XYang, SYang. Nanowires of α- and β-Bi2O3: Phase selective synthesis and application in photocatalysis. CrystEngComm, 2011, 13(6): 1843–1850
https://doi.org/10.1039/C0CE00508H
33 JHou, CYang, ZWang, W Zhou, SJiao, HZhu. In situ synthesis of α-β phase heterojunctions on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2013, 142–143: 504–511
https://doi.org/10.1016/j.apcatb.2013.05.050
34 YAstuti, P Arnelli, AFauziyah, SNurhayati, A D Wulansari, RAndianingrum, HWidiyandari, G A Bhaduri. Studying impact of different precipitating agents on crystal sructure, morphology, and photocatalytic activity of bismuth oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(3): 478–484
https://doi.org/10.9767/bcrec.12.3.1144.478-484
35 BJia, JZhang, JLuan, F Li, JHan. Synthesis and growth mechanism of various structures Bi2O3 via chemical precipitate method. Journal of Materials Science Materials in Electronics, 2017, 28(15): 11084–11090
https://doi.org/10.1007/s10854-017-6893-7
36 YHu, DLi, FSun, Y Weng, SYou, YShao. Temperature-induced phase changes in bismuth oxides and efficient photodegradation of phenol and p-chlorophenol. Journal of Hazardous Materials, 2016, 301: 362–370
https://doi.org/10.1016/j.jhazmat.2015.09.008 pmid: 26384997
37 WWang, XChen, GLiu, Z Shen, DXia, P KWong, J CYu. Monoclinic dibismuth tetraoxide: A new visible-light-driven photocatalyst for environmental remediation. Applied Catalysis B: Environmental, 2015, 176–177: 444–453
https://doi.org/10.1016/j.apcatb.2015.04.026
38 SSajjad, S A K Leghari, JZhang. Nonstoichiometric Bi2O3: Efficient visible light photocatalyst. RSC Advances, 2013, 3(5): 1363–1367
https://doi.org/10.1039/C2RA22239F
39 YAzizian-Kalandaragh, F Sedaghatdoust-Bodagh, AHabibi-Yangjeh. Ultrasound-assisted preparation and characterization of β-Bi2O3 nanostructures: Exploring the photocatalytic activity against rhodamine B. Superlattices and Microstructures, 2015, 81: 151–160
https://doi.org/10.1016/j.spmi.2014.12.038
40 SZhong, SZou, XPeng, J Ma, FZhang. Effects of calcination temperature on preparation and properties of europium-doped bismuth oxide as visible light catalyst. Journal of Sol-Gel Science and Technology, 2015, 74(1): 220–226
https://doi.org/10.1007/s10971-014-3602-3
41 SXue, HHe, QFan, C Yu, KYang, WHuang, YZhou, YXie. La/Ce-codoped Bi2O3 composite photocatalysts with high photocatalytic performance in removal of high concentration dye. Journal of Environmental Sciences, 2017, 60: 70–77
https://doi.org/10.1016/j.jes.2016.09.022 pmid: 29031448
42 SWu, JFang, WXua, C Cen. Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ doping. Journal of Chemical Technology and Biotechnology, 2013, 88(10): 1828–1835
https://doi.org/10.1002/jctb.4034
43 GViruthagiri, PKannan. Visible light mediated photocatalytic activity of cobalt doped Bi2O3 nanoparticles. Journal of Materials Research and Technology, 2017 (in press) doi:10.1016/j.jmrt.2017.06.011
44 WQin, JQi, XWu. Photocatalytic property of Cu2+-doped Bi2O3 films under visible light prepared by the sol-gel method. Vacuum, 2014, 107: 204–207
https://doi.org/10.1016/j.vacuum.2014.02.003
45 WRaza, D Bahnemann, MMuneer. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catalysis Today, 2018, 300: 89–98
https://doi.org/10.1016/j.cattod.2017.07.029
46 XLuo, GZhu, JPeng, X Wei, MHojamberdiev, LJin, PLiu. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation. Applied Surface Science, 2015, 351: 260–269
https://doi.org/10.1016/j.apsusc.2015.05.137
47 HLim, S BRawal. Integrated Bi2O3 nanostructure modified with Au nanoparticles for enhanced photocatalytic activity under visible light irradiation. Progress in Natural Science: Materials International, 2017, 27(3): 289–296
https://doi.org/10.1016/j.pnsc.2017.04.003
48 RSharma, M Khanuja, S NSharma, O PSinha. Reduced band gap & charge recombination rate in Se doped α-Bi2O3 leads to enhanced photoelectrochemical and photocatalytic performance: Theoretical & experimental insight. International Journal of Hydrogen Energy, 2017, 42(32): 20638–20648
https://doi.org/10.1016/j.ijhydene.2017.07.011
49 JLiang, GZhu, PLiu, X Luo, CTan, LJin, JZhou. Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity. Superlattices and Microstructures, 2014, 72: 272–282
https://doi.org/10.1016/j.spmi.2014.05.005
50 J ZLi, JZhong, JZeng, F Feng, JHe. Feng, He J. Improved photocatalytic activity of dysprosium-doped Bi2O3 prepared by sol-gel method. Materials Science in Semiconductor Processing, 2013, 16(2): 379–384
https://doi.org/10.1016/j.mssp.2012.09.007
51 YLi, ZZhang, YZhang, X Sun, JZhang, CWang, ZPeng, HSi. Preparation of Ag doped Bi2O3 nanosheets with highly enhanced visible light photocatalytic performances. Ceramics International, 2014, 40(8): 13275–13280
https://doi.org/10.1016/j.ceramint.2014.05.037
52 MFaisal, A A Ibrahim, HBouzid, S AAl-Sayari, M S Al-Assiri, A AIsmail. Hydrothermal synthesis of Sr-doped α-Bi2O3 nanosheets as highly efficient photocatalysts under visible light. Journal of Molecular Catalysis A: Chemical, 2014, 387: 69–75
https://doi.org/10.1016/j.molcata.2014.02.018
53 GZhu, WQue, JZhang. Synthesis and photocatalytic performance of Ag-loaded β-Bi2O3 microspheres under visible light irradiation. Journal of Alloys and Compounds, 2011, 509(39): 9479–9486
https://doi.org/10.1016/j.jallcom.2011.07.046
54 YDai, LYin. Synthesis and photocatalytic activity of Ag-Ti-Si ternary modified α-Bi2O3 nanoporous spheres. Materials Letters, 2015, 142: 225–228
https://doi.org/10.1016/j.matlet.2014.12.013
55 HHu, CXiao, XLin, K Chen, HLi, XZhang. Controllable fabrication of heterostructured Au/Bi2O3 with plasmon effect for efficient photodegradation of rhodamine 6G. Journal of Experimental Nanoscience, 2017, 12(1): 33–44
https://doi.org/10.1080/17458080.2016.1255790
56 J KReddy, B Srinivas, V DDurga Kumari, MSubrahmanyam. Sm3+-doped Bi2O3 photocatalyst prepared by hydrothermal synthesis. ChemCatChem, 2009, 1: 492–496
https://doi.org/10.1002/cctc.200900189
57 SJiang, LWang, WHao, W Li, HXin, WWang, TWang. Visible-light photocatalytic activity of S-doped α-Bi2O3. Journal of Physical Chemistry C, 2015, 119: 14094–14101
58 H YJiang, JLiu, KCheng, W Sun, JLin. Enhanced visible light photocatalysis of Bi2O3 upon fluorination. Journal of Physical Chemistry C, 2013, 117(39): 20029–22003
https://doi.org/10.1021/jp406834d
59 JShang, YGao, W CHao, X Jing, H JXin, LWang, H FFeng, T MWang. Enhancing visible-light photocatalytic activity of α-Bi2O3 via non-metal N and S doping. Chinese Physics B, 2014, 23(3): 038103
https://doi.org/10.1088/1674-1056/23/3/038103
60 J LOrtiz-Quiñonez, IZumeta-Dubé, D Díaz, NNava-Etzana, ECruz-Zaragoza, P Santiago-Jacinto. Bismuth oxide nanoparticles partially substituted with EuIII, MnIV, and SiIV: Structural, spectroscopic, and optical findings. Inorganic Chemistry, 2017, 56(6): 3394–3403
https://doi.org/10.1021/acs.inorgchem.6b02923 pmid: 28252972
61 AKudo, YMiseki. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
https://doi.org/10.1039/B800489G pmid: 19088977
62 SRamandi, M H Entezari, NGhows. Sono-synthesis of novel magnetic nanocomposite (Ba-α-Bi2O3-g-Fe2O3) for the solar mineralization of amoxicillin in an aqueous solution. Physical Chemistry Research, 2017, 5(2): 253–268
63 A PReverberi, LMaga, CCerrato, B Fabiano. Membrane processes for water recovery and decontamination. Current Opinion in Chemical Engineering, 2014, 6: 75–82
https://doi.org/10.1016/j.coche.2014.10.004
64 F HMargha, M S Abdel-Wahed, T AGad-Allah. Nanocrystalline Bi2O3-B2O3-(MoO3 or V2O5) glass-ceramic systems for organic pollutants degradation. Ceramics International, 2015, 41(4): 5670–5676
https://doi.org/10.1016/j.ceramint.2014.12.152
65 S PPatil, BBethi, G HSonawane, V SShrivastava, S Sonawane. Efficient adsorption and photocatalytic degradation of Rhodamine B dye over Bi2O3-bentonite nanocomposites: A kinetic study. Journal of Industrial and Engineering Chemistry, 2016, 34: 356–363
https://doi.org/10.1016/j.jiec.2015.12.002
66 S PPatil, V S Shrivastava, G HSonawane, S HSonawane. Synthesis of novel Bi2O3-montmorillonite nanocomposite with enhanced photocatalytic performance in dye degradation. Journal of Environmental Chemical Engineering, 2015, 3(4): 2597–2603
https://doi.org/10.1016/j.jece.2015.09.005
67 K HChew, J J Klemeš, S R WAlwi, Z AManan, A P Reverberi. Total site heat integration considering pressure drops. Energies, 2015, 8(2): 1114–1137
https://doi.org/10.3390/en8021114
68 TXie, CLiu, LXu, JYang, WZhou. Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. Journal of Physical Chemistry C, 2013, 117(46): 24601–24610
https://doi.org/10.1021/jp408627e
69 DXia, I M CLo. Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Research, 2016, 100: 393–404
https://doi.org/10.1016/j.watres.2016.05.026 pmid: 27219049
70 ARen, CLiu, YHong, W Shi, SLin, PLi. Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures. Chemical Engineering Journal, 2014, 258: 301–308
https://doi.org/10.1016/j.cej.2014.07.071
71 JLi, JZhong, XHe, SHuang, JZeng, J He, WShi. Enhanced photocatalytic activity of Fe2O3 decorated Bi2O3. Applied Surface Science, 2013, 284: 527–532
https://doi.org/10.1016/j.apsusc.2013.07.128
72 P YAyekoe, DRobert, DLanciné Goné. TiO2/Bi2O3 photocatalysts for elimination of water contaminants. Part 1: Synthesis of α- and β-Bi2O3 nanoparticles. Environmental Chemistry Letters, 2015, 13(3): 327–332
https://doi.org/10.1007/s10311-015-0505-7
73 A KChakraborty, M E Hossain, M MRhaman, K M ASobahan. Fabrication of Bi2O3/TiO2 nanocomposites and their applications to the degradation of pollutants in air and water under visible-light. Journal of Environmental Sciences, 2014, 26(2): 458–465
https://doi.org/10.1016/S1001-0742(13)60428-3 pmid: 25076538
74 MMalligavathy, S Iyyapushpam, S TNishanthi, DPathinettam Padiyan. Remarkable catalytic activity of Bi2O3/TiO2 nanocomposites prepared by hydrothermal method for the degradation of methyl orange. Journal of Nanoparticle Research, 2017, 19(4): 144
https://doi.org/10.1007/s11051-017-3806-x
75 SBalachandran, M Swaminathan. Facile fabrication of heterostructured Bi2O3-ZnO photocatalyst and its enhanced photocatalytic activity. Journal of Physical Chemistry C, 2012, 116(50): 26306–26312
https://doi.org/10.1021/jp306874z
76 VŠtengl, JHenych, MSlušná, JTolasz, K Zetková. ZnO/Bi2O3 nanowire composites as a new family of photocatalysts. Powder Technology, 2015, 270: 83–91
https://doi.org/10.1016/j.powtec.2014.09.047
77 C YChen, J CWeng, J HChen, S H Ma, K HChen, T LHorng, C YTsay, C JChang, C K Lin, J JWug. Photocatalyst ZnO-doped Bi2O3 powder prepared by spray pyrolysis. Powder Technology, 2015, 272: 316–321
https://doi.org/10.1016/j.powtec.2014.11.036
78 XWang, PRen, HFan. Room-temperature solid state synthesis of ZnO/Bi2O3 heterojunction and their solar light photocatalytic performance. Materials Research Bulletin, 2015, 64: 82–87
https://doi.org/10.1016/j.materresbull.2014.12.037
79 EAbdelkader, LNadjia, BAhmed. Synthesis, characterization and UV-A light photocatalytic activity of 20 wt% SrO-CuBi2O4 composite. Applied Surface Science, 2012, 258(12): 5010–5024
https://doi.org/10.1016/j.apsusc.2012.01.044
80 A MAbdulkarem, A AAref, AAbdulhabeeb, Y FLi, YYu. Synthesis of Bi2O3/Cu2O nanoflowers by hydrothermal method and its photocatalytic activity enhancement under simulated sunlight. Journal of Alloys and Compounds, 2013, 560: 132–141
https://doi.org/10.1016/j.jallcom.2013.01.134
81 M KHossain, G FSamu, KGandha, S Santhanagopalan, JPing Liu, CJanáky, K Rajeshwar. Solution combustion synthesis, characterization, and photocatalytic activity of CuBi2O4 and Its nanocomposites with CuO and α-Bi2O3. Journal of Physical Chemistry C, 2017, 121(15): 8252–8261
https://doi.org/10.1021/acs.jpcc.6b13093
82 YXie, YZhang, GYang, C Liu, JWang. Hydrothermal synthesis of CuBi2O4 nanosheets and their photocatalytic behavior under visible light irradiation. Materials Letters, 2013, 107: 291–294
https://doi.org/10.1016/j.matlet.2013.06.029
83 TLi, SLuo. Hydrothermal synthesis of Ag2O/Bi2O3 microspheres for efficient photocatalytic degradation of Rhodamine B under visible light irradiation. Ceramics International, 2015, 41(10): 13135–13146
https://doi.org/10.1016/j.ceramint.2015.07.066
84 HCheng, JHou, HZhu, X M Guo. Plasmonic Z-scheme α/β-Bi2O3-Ag-AgCl photocatalyst with enhanced visible-light photocatalytic performance. RSC Advances, 2014, 4(78): 41622–41630
https://doi.org/10.1039/C4RA07938H
85 WGou, PWu, DJiang, X Ma. Synthesis of AgBr@Bi2O3 composite with enhanced photocatalytic performance under visible light. Journal of Alloys and Compounds, 2015, 646: 437–445
https://doi.org/10.1016/j.jallcom.2015.05.137
86 DD’Angelo, S Filice, AScarangella, DIannazzo, G Compagnini, SScalese. Bi2O3/Nexar® polymer nanocomposite membranes for azo dyes removal by UV-vis or visible light irradiation. Catalysis Today, 2017 (in press) doi: 10.1016/j.cattod.2017.12.013
87 QQue, YXing, ZHe, YYang, XYin, W Que. Bi2O3/Carbon quantum dots heterostructured photocatalysts with enhanced photocatalytic activity. Materials Letters, 2017, 209: 220–223
https://doi.org/10.1016/j.matlet.2017.07.115
88 XDang, XZhang, YChen, X Dong, GWang, CMa, XZhang, HMa, MXue. Preparation of β-Bi2O3/g-C3N4 nanosheet p–n junction for enhanced photocatalytic ability under visible light illumination. Journal of Nanoparticle Research, 2015, 17(2): 1–8
https://doi.org/10.1007/s11051-014-2808-1
89 DChen, SWu, JFang, S Lu, GZhou, WFeng, FYang, YChen, Z Fang. A nanosheet-like α-Bi2O3/g-C3N4 heterostructure modified by plasmonic metallic Bi and oxygen vacancies with high photodegradation activity of organic pollutants. Separation and Purification Technology, 2018, 193: 232–241
https://doi.org/10.1016/j.seppur.2017.11.011
90 JZhang, YHu, XJiang, S Chen, SMeng, XFu. Design of a direct Z-scheme photocatalyst: Preparation and characterization of Bi2O3/g-C3N4 with high visible light activity. Journal of Hazardous Materials, 2014, 280: 713–722
https://doi.org/10.1016/j.jhazmat.2014.08.055 pmid: 25232654
91 SHan, JLi, KYang, J Lin. Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chinese Journal of Catalysis, 2015, 36(12): 2119–2126
https://doi.org/10.1016/S1872-2067(15)60974-3
92 LCheng, XLiu, YKang. Bi5O7I/Bi2O3: A novel heterojunction-structured visible light-driven photocatalyst. Materials Letters, 2014, 134: 218–221
https://doi.org/10.1016/j.matlet.2014.07.089
93 LChen, QZhang, RHuang, S F Yin, S LLuo, C TAu. Porous peanut-like Bi2O3-BiVO4 composites with heterojunctions: one-step synthesis and their photocatalytic properties. Dalton Transactions, 2012, 41(31): 9513–9518
https://doi.org/10.1039/c2dt30543g pmid: 22751937
94 LChen, JHe, QYuan, Y Liu, C TAu, S FYin. Environmentally benign synthesis of branched Bi2O3-Bi2S3 photocatalysts by an etching and re-growth method. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(3): 1096–1102
https://doi.org/10.1039/C4TA05346J
95 ACharanpahari, S SUmare, RSasikala. Enhanced photodegradation of dyes on Bi2O3 microflakes: Effect of GeO2 addition on photocatalytic activity. Separation and Purification Technology, 2014, 133: 438–442
https://doi.org/10.1016/j.seppur.2014.05.035
96 JZeng, JLi, JZhong, S Huang, WShi, JHe. Synthesis,characterization and solar photocatalytic performance of In2O3-decorated Bi2O3. Materials Science in Semiconductor Processing, 2013, 16(6): 1808–1812
https://doi.org/10.1016/j.mssp.2013.06.020
97 YPeng, MYan, Q GChen, C M Fan, H YZhou, A WXu. Novel one-dimensional Bi2O3-Bi2WO6 p-n hierarchical heterojunction with enhanced photocatalytic activity. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(22): 8517–8524
https://doi.org/10.1039/C4TA00274A
98 JMa, L ZZhang, Y HWang, S L Lei, X BLuo, S HChen, G SZeng, J PZou, S L Luo, C TAu. Mechanism of 2,4-dinitrophenol photocatalytic degradation by z-Bi2O3/Bi2MoO6 composites under solar and visible light irradiation. Chemical Engineering Journal, 2014, 251: 371–380
https://doi.org/10.1016/j.cej.2014.04.085
99 SChen, YHu, LJi, XJiang, XFu. Preparation and characterization of direct Z-scheme photocatalyst Bi2O3/NaNbO3 and its reaction mechanism. Applied Surface Science, 2014, 292: 357–366
https://doi.org/10.1016/j.apsusc.2013.11.144
100 CLarosa, M Salerno, PNanni, A PReverberi. Cobalt cementation in an ethanol-water system: Kinetics and morphology of metal aggregates. Industrial & Engineering Chemistry Research, 2012, 51(51): 16564–16572
https://doi.org/10.1021/ie300918y
101 A PReverberi, N T Kuznetsov, V PMeshalkin, MSalerno, B Fabiano. Systematical analysis of chemical methods in metal nanoparticles synthesis. Theoretical Foundations of Chemical Engineering, 2016, 50(1): 59–66
https://doi.org/10.1134/S0040579516010127
102 CToccafondi, SDante, A PReverberi, MSalerno. Biomedical applications of anodic porous alumina. Current Nanoscience, 2015, 11(5): 572–580
https://doi.org/10.2174/1573413711666150415225541
103 A PReverberi, M Vocciante, ELunghi, LPietrelli, B Fabiano. New trends in the synthesis of nanoparticles by green methods. Chemical Engineering Transactions, 2017, 61: 667–672
104 XMeng, ZZhang. Bismuth-based photocatalytic semiconductors: Introduction, challenges and possible approaches. Journal of Molecular Catalysis A: Chemical, 2016, 423: 533–549
https://doi.org/10.1016/j.molcata.2016.07.030
105 SLi, GYe, GChen. Low-temperature preparation and characterization of nanocrystalline anatase TiO2. Journal of Physical Chemistry C, 2009, 113(10): 4031–4037
https://doi.org/10.1021/jp8076936
106 J YYong, J J Klemeš, P SVarbanov, DHuisingh. Cleaner energy for cleaner production: Modelling, simulation, optimisation and waste management. Journal of Cleaner Production, 2016, 111: 1–16
https://doi.org/10.1016/j.jclepro.2015.10.062
107 Y VFan, P S Varbanov, J JKlemeš, ANemet. Process efficiency optimisation and integration for cleaner production. Journal of Cleaner Production, 2018, 174: 177–183
https://doi.org/10.1016/j.jclepro.2017.10.325
108 A PReverberi, J J Klemeš, P SVarbanov, BFabiano. A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. Journal of Cleaner Production, 2016, 136: 72–80
https://doi.org/10.1016/j.jclepro.2016.04.139
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[3] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[4] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
[5] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[6] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[7] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[8] Tzu-Lan CHANG, Honglei ZHAN, Danni LIANG, Jun F. LIANG. Nanocrystal technology for drug formulation and delivery[J]. Front. Chem. Sci. Eng., 2015, 9(1): 1-14.
[9] Yeonhee YUN,Byung Kook LEE,Kinam PARK. Controlled drug delivery systems: the next 30 years[J]. Front. Chem. Sci. Eng., 2014, 8(3): 276-279.
[10] Yuwei WANG,David W. Grainger. Barriers to advancing nanotechnology to better improve and translate nanomedicines[J]. Front. Chem. Sci. Eng., 2014, 8(3): 265-275.
[11] John TELLAM, Xu ZONG, Lianzhou WANG. Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor[J]. Front Chem Sci Eng, 2012, 6(1): 53-57.
[12] QIAN Qinghua, HU Yuyan, WEN Gaofei, FENG Xin, LU Xiao-hua. Preparation and gaseous photocatalytic activity of smooth potassium dititanate film[J]. Front. Chem. Sci. Eng., 2008, 2(3): 308-314.
[13] ZHANG Dongxiang, XUE Min, XU Hang, XU Wenguo, TARASOV V. Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process[J]. Front. Chem. Sci. Eng., 2008, 2(3): 319-324.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed