Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (5) : 1125-1133    https://doi.org/10.1007/s11705-020-2012-z
RESEARCH ARTICLE
Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite
Yan Cui, Zequan Zeng(), Jianfeng Zheng, Zhanggen Huang(), Jieyang Yang
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
 Download: PDF(1288 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To realize the utilization of visible light and improve the photocatalytic efficiency of organic pollutant degradation in wastewater, a nitrogen-doped titanium-carbon composite (N-TiO2/AC) prepared by sol-gel methods was applied in the photodegradation of phenol assisted by persulfate under visible light irradiation (named N-TiO2/AC/PS/VIS). The results show that a synergistic effect exists between visible-light photocatalysis and persulfate activation. Compared with TiO2/PS/VIS, the phenol degradation rate was found to be observably improved by 65% in the N-TiO2/AC/PS/VIS system. This significant increase in degradation rate was mainly attributed to the following two factors: 1) The N and C doping can change the crystal structure of TiO2, which extends the TiO2 absorption wavelength range to the visible light region. 2) As an electron acceptor, PS can not only prevent electrons and holes from recombining with each other but can also generate strong oxidizing radicals such as ∙SO4 and ∙OH to accelerate the reaction dynamics. The process of phenol degradation was found to be consistent with the Langmuir pseudo-first-order kinetic model with an apparent rate constant k of 1.73 min–1. The N-TiO2/AC/PS/VIS process was proven to be a facile method for pollutant degradation with high pH adaptability, excellent visible-light utilization and good application prospects.

Keywords N-TiO2/AC      visible light      photocatalysis      persulfate activation      phenol     
Corresponding Author(s): Zequan Zeng,Zhanggen Huang   
Just Accepted Date: 11 January 2021   Online First Date: 11 February 2021    Issue Date: 30 August 2021
 Cite this article:   
Yan Cui,Zequan Zeng,Jianfeng Zheng, et al. Efficient photodegradation of phenol assisted by persulfate under visible light irradiation via a nitrogen-doped titanium-carbon composite[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1125-1133.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2012-z
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I5/1125
Fig.1  XRD spectrum of the catalysts.
Fig.2  SEM and EDS spectra for N-TiO2/AC.
Samples SBET/(m2·g–1) Pore volume/(cm3·g–1) Average pore size/nm
TiO2 11 0.05 18.12
N-TiO2 101 0.29 11.36
N-TiO2/AC 245 0.30 4.94
Tab.1  Specific surface area and pore distribution characteristics of the catalyst
Fig.3  XPS survey spectra for N-TiO2/AC.
Fig.4  UV-visible absorption spectrum of the catalyst.
Fig.5  Phenol removal of different catalysts (a:N-TiO2/AC, b: N-TiO2,c:TiO2; Reaction conditions: initial phenol concentration of 80 mg/L, initial pH of 5.0, PS concentration of 5 g/L and 25 °C).
Fig.6  (a) Effect of different reactive species scavengers in the visible light catalytic degradation of phenol and (b) the synergistic degradation of phenol by the visible light catalysis and the persulfate activation. Reaction conditions: initial phenol concentration of 80 mg/L, initial pH of 5.0, PS concentration of 5 g/L, scavengers concentration of 2 mol/L and 25 °C.
Fig.7  Effect of operation conditions on phenol removal: (a) N-TiO2/AC dosage; (b) initial pH; (c) PS concentration.
1 J W Lu, L Lan, X T T Liu, N Wang, X L Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light. Frontiers of Chemical Science and Engineering, 2019, 13(4): 665–671
https://doi.org/10.1007/s11705-019-1815-2
2 T H Zhang, Y J Liu, Y D Rao, X P Li, D L Yuan, S F Tang, Q X Zhao. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chemical Engineering Journal, 2020, 384: 123350
https://doi.org/10.1016/j.cej.2019.123350
3 L Yang, L Xu, X Bai, P Jin. Enhanced visible-light activation of persulfate by Ti3+ self-doped TiO2/graphene nanocomposite for the rapid and efficient degradation of micropollutants in water. Journal of Hazardous Materials, 2019, 365: 107–117
https://doi.org/10.1016/j.jhazmat.2018.10.090
4 E Grilla, V Matthaiou, Z Frontistis, I Oller, I Polo, S Malato, D Mantzavinos. Degradation of antibiotic trimethoprim by the combined action of sunlight, TiO2 and persulfate: a pilot plant study. Catalysis Today, 2019, 328: 216–222
https://doi.org/10.1016/j.cattod.2018.11.029
5 L He, Y N Dong, Y N Zheng, Q M Jia, S Y Shan, Y Q Zhang. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. Journal of Hazardous Materials, 2019, 361: 85–94
https://doi.org/10.1016/j.jhazmat.2018.08.079
6 L Q Hou, W Yang, X W Xu, B J Deng, Z Chen, S Wang, J B Tian, F Yang, Y F Li. In-situ activation endows the integrated Fe3C/Fe@ nitrogen-doped carbon hybrids with enhanced pseudocapacitance for electrochemical energy storage. Chemical Engineering Journal, 2019, 375: 10
https://doi.org/10.1016/j.cej.2019.122061
7 B Kakavandi, N Bahari, R R Kalantary, E D Fard. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system. Ultrasonics Sonochemistry, 2019, 55: 75–85
https://doi.org/10.1016/j.ultsonch.2019.02.026
8 D D Liu, Z S Wu, F Tian, B C Ye, Y B Tong. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene. Journal of Alloys and Compounds, 2016, 676: 489–498
https://doi.org/10.1016/j.jallcom.2016.03.124
9 X L Yang, F F Qian, Y Wang, M L Li, J R Lu, Y M Li, M T Bao. Constructing a novel ternary composite (C16H33(CH3)3N)4W10O32/g-C3N4/rGO with enhanced visible-light-driven photocatalytic activity for degradation of dyes and phenol. Applied Catalysis B: Environmental, 2017, 200: 283–296
https://doi.org/10.1016/j.apcatb.2016.07.024
10 R Asahi, T Morikawa, T Ohwaki, K Aoki, Y Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271
https://doi.org/10.1126/science.1061051
11 S Hoang, S P Berglund, N T Hahn, A J Bard, C B Mullins. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: synergistic effects between Ti3+ and N. Journal of the American Chemical Society, 2012, 134(8): 3659–3662
https://doi.org/10.1021/ja211369s
12 A C Martins, A L Cazetta, O Pezoti, J R B Souza, T Zhang, E J Pilau, T Asefa, V C Almeida. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceramics International, 2017, 43(5): 4411–4418
https://doi.org/10.1016/j.ceramint.2016.12.088
13 L Rimoldi, E Pargoletti, D Meroni, E Falletta, G Cerrato, F Turco, G Cappelletti. Concurrent role of metal (Sn, Zn) and N species in enhancing the photocatalytic activity of TiO2 under solar light. Catalysis Today, 2018, 313: 40–46
https://doi.org/10.1016/j.cattod.2017.12.017
14 J H Park, S Kim, A J Bard. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Letters, 2006, 6(1): 24–28
https://doi.org/10.1021/nl051807y
15 H Wang, J P Lewis. Effects of dopant states on photoactivity in carbon-doped TiO2. Journal of Physics Condensed Matter, 2005, 17(21): 209–213
https://doi.org/10.1088/0953-8984/17/21/L01
16 C Wang, S Y Jia, Y C Zhang, Y Nian, Y Wang, Y Han, Y Liu, H T Ren, S H Wu, K X Yao, X Han. Catalytic reactivity of Co3O4 with different facets in the hydrogen abstraction of phenol by persulfate. Applied Catalysis B: Environmental, 2020, 270: 12
https://doi.org/10.1016/j.apcatb.2020.118819
17 S Sanches, M T B Crespo, V J Pereira. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research, 2010, 44(6): 1809–1818
https://doi.org/10.1016/j.watres.2009.12.001
18 C H Chiou, C Y Wu, R S Juang. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 2008, 139(2): 322–329
https://doi.org/10.1016/j.cej.2007.08.002
19 J R Dominguez, J Beltran, O Rodriguez. Vis and UV photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2O82–, O3, H2O2, S2O82–, Fe3+/H2O2 and Fe3+/H2O2/C2O42–) for dyes treatment. Catalysis Today, 2005, 101(3-4): 389–395
https://doi.org/10.1016/j.cattod.2005.03.010
20 J C Garcia, U Oliveira, A E C Silva, C C Oliveira, J Nozaki, N E de Souza. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 2007, 147(1-2): 105–110
https://doi.org/10.1016/j.jhazmat.2006.12.053
21 M Harir, A Gaspar, B Kanawati, A Fekete, M Frommberger, D Martens, A Kettrup, M El Azzouzi, P Schmitt-Kopplin. Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces: kinetic and photoproducts study. Applied Catalysis B: Environmental, 2008, 84(3-4): 524–532
https://doi.org/10.1016/j.apcatb.2008.05.010
22 R Hazime, Q H Nguyen, C Ferronato, A Salvador, F Jaber, J M Chovelon. Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Applied Catalysis B: Environmental, 2014, 144: 286–291
https://doi.org/10.1016/j.apcatb.2013.07.001
23 M M Momenia, M G Hosseini. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation. Nanochemistry Research, 2016, 1(1): 9–18
24 G S Liu, S J You, Y Tan, N Q Ren. In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water. Environmental Science & Technology, 2017, 51(4): 2339–2346
https://doi.org/10.1021/acs.est.6b05090
25 B Ahmed, D H Anjum, M N Hedhili, Y Gogotsi, H N Alshareef. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale, 2016, 8(14): 7580–7587
https://doi.org/10.1039/C6NR00002A
26 E Lewin, P O A Persson, M Lattemann, M Stuber, M Gorgoi, A Sandell, C Ziebert, F Schadfers, W Braun, J Halbritter, et al. On the origin of a third spectral component of C1s XPS-spectra for nc-TiC/a-C nanocomposite thin films. Surface and Coatings Technology, 2008, 202(15): 3563–3570
https://doi.org/10.1016/j.surfcoat.2007.12.038
27 N Kodtharin, R Vongwatthaporn, J Nutariya, C Sricheewin, E N Timah, K Sivaleitporn, O Thumthana, U Tipparach. Structures and properties of N-doped TiO2 nanotubes arrays synthesized by the anodization method for hydrogen production. Materials Today: Proceedings, 2018, 5(6): 14091–14098
https://doi.org/10.1016/j.matpr.2018.02.068
28 G Soto. AES, EELS and XPS characterization of Ti(C, N, O) films prepared by PLD using a Ti target in N2, CH4, O2 and CO as reactive gases. Applied Surface Science, 2004, 233(1/4): 115–122
https://doi.org/10.1016/j.apsusc.2004.03.212
29 H S Huang, Y Song, N J Li, D Y Chen, Q F Xu, H Li, J H He, J M Lu. One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Applied Catalysis B: Environmental, 2019, 251: 154–161
https://doi.org/10.1016/j.apcatb.2019.03.066
30 H Li, Y Hao, H Lu, L Liang, Y Wang, J Qiu, X Shi, Y Wang, J Yao. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method. Applied Surface Science, 2015, 344: 112–118
https://doi.org/10.1016/j.apsusc.2015.03.071
31 X F Liu, Z P Xing, Y Zhang, Z Z Li, X Y Wu, S Y Tan, X J Yu, Q Zhu, W Zhou. Fabrication of 3D flower-like black N-TiO2−x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. Applied Catalysis B: Environmental, 2017, 201: 119–127
https://doi.org/10.1016/j.apcatb.2016.08.031
32 X Y Chen, W P Wang, H Xiao, C L Hong, F X Zhu, Y L Yao, Z Y Xue. Accelerated TiO2 photocatalytic degradation of acid orange 7 under visible light mediated by peroxymonosulfate. Chemical Engineering Journal, 2012, 193: 290–295
https://doi.org/10.1016/j.cej.2012.04.033
33 Y Guo, Z Zeng, Y Liu, Z Huang, Y Cui, J Yang. One-pot synthesis of sulfur doped activated carbon as a superior metal-free catalyst for the adsorption and catalytic oxidation of aqueous organics. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(9): 4055–4067
https://doi.org/10.1039/C7TA09814F
34 Y Guo, Z Zeng, Y Zhu, Z Huang, Y Cui, J Yang. Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene. Applied Catalysis B: Environmental, 2018, 220: 635–644
https://doi.org/10.1016/j.apcatb.2017.08.073
35 Y W Gao, S M Li, Y X Li, L Y Yao, H Zhang. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202: 165–174
https://doi.org/10.1016/j.apcatb.2016.09.005
36 X G Duan, H Q Sun, Y X Wang, J Kang, S B Wang. N-Doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catalysis, 2015, 5(2): 553–559
https://doi.org/10.1021/cs5017613
37 X Li, F Liao, L Ye, L Yeh. Controlled pyrolysis of MIL-88A to prepare iron/carbon composites for synergistic persulfate oxidation of phenol: catalytic performance and mechanism. Journal of Hazardous Materials, 2020, 398: 122938
https://doi.org/10.1016/j.jhazmat.2020.122938
[1] Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu. Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light[J]. Front. Chem. Sci. Eng., 2021, 15(4): 892-901.
[2] Zhenheng Diao, Lushi Cheng, Wen Guo, Xu Hou, Pengfei Zheng, Qiuyueming Zhou. Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 643-653.
[3] Jimei Zhang, Fuping Tian, Junwen Chen, Yanchun Shi, Hongbin Cao, Pengge Ning, Shanshan Sun, Yongbing Xie. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts[J]. Front. Chem. Sci. Eng., 2021, 15(2): 288-298.
[4] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[5] Feichao Wu, Yanling Wang, Xiongfu Zhang. Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water[J]. Front. Chem. Sci. Eng., 2020, 14(4): 651-660.
[6] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[7] Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Front. Chem. Sci. Eng., 2019, 13(4): 665-671.
[8] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[9] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[10] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[11] Nadir Abbas, Godlisten N. Shao, Syed M. Imran, Muhammad S. Haider, Hee Taik Kim. Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse[J]. Front. Chem. Sci. Eng., 2016, 10(3): 405-416.
[12] Xiaohong Kou,Lihua Han,Xingyuan Li,Zhaohui Xue,Fengjuan Zhou. Antioxidant and antitumor effects and immunomodulatory activities of crude and purified polyphenol extract from blueberries[J]. Front. Chem. Sci. Eng., 2016, 10(1): 108-119.
[13] Xiaojie Zhang,Lei Wang,Shuqing Chen,Yi Huang,Zhuonan Song,Miao Yu. Facile synthesis and enhanced visible-light photocatalytic activity of Ti3+-doped TiO2 sheets with tunable phase composition? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 349-358.
[14] Baohe WANG, Lili WANG, Jing ZHU, Shuang CHEN, Hao SUN. Condensation of phenol and acetone on a modified macroreticular ion exchange resin catalyst[J]. Front Chem Sci Eng, 2013, 7(2): 218-225.
[15] Qingchuan CHEN, Yicun WEN, Yu CANG, Li LI, Xuhong GUO, Rui ZHANG. Selective removal of phenol by spherical particles of α-, β- and BoldItalic-cyclodextrin polymers: kinetics and isothermal equilibrium[J]. Front Chem Sci Eng, 2013, 7(2): 162-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed