|
|
Novel Ag-AgBr decorated composite membrane for dye rejection and photodegradation under visible light |
Yixing Wang, Liheng Dai, Kai Qu, Lu Qin, Linzhou Zhuang, Hu Yang, Zhi Xu( ) |
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China |
|
|
Abstract Photocatalytic membranes have received increasing attention due to their excellent separation and photodegradation of organic contaminants in wastewater. Herein, we bound Ag-AgBr nanoparticles onto a synthesized polyacrylonitrile-ethanolamine (PAN-ETA) membrane with the aid of a chitosan (CS)-TiO2 layer via vacuum filtration and in-situ partial reduction. The introduction of the CS-TiO2 layer improved surface hydrophilicity and provided attachment sites for the Ag-AgBr nanoparticles. The PAN-ETA/CS-TiO2/Ag-AgBr photocatalytic membranes showed a relatively high water permeation flux (~ 47 L·m–2·h–1·bar–1) and dyes rejection (methyl orange: 88.22%; congo red: 95%; methyl blue: 97.41%; rose bengal: 99.98%). Additionally, the composite membranes exhibited potential long-term stability for dye/salt separation (dye rejection: ~97%; salt rejection: ~6.5%). Moreover, the methylene blue and rhodamine B solutions (20 mL, 10 mg·L−1) were degraded approximately 90.75% and 96.81% in batch mode via the synthesized photocatalytic membranes under visible light irradiation for 30 min. This study provides a feasible method for the combination of polymeric membranes and inorganic catalytic materials.
|
Keywords
Ag-AgBr
dye rejection
photodegradation
visible light
|
Corresponding Author(s):
Zhi Xu
|
Just Accepted Date: 08 January 2021
Online First Date: 22 March 2021
Issue Date: 04 June 2021
|
|
1 |
C Dong, J Lu, B Qiu, B Shen, M Xing, J Zhang. Developing stretchable and graphene-oxide-based hydrogel for the removal of organic pollutants and metal ions. Applied Catalysis B: Environmental, 2018, 222: 146–156
https://doi.org/10.1016/j.apcatb.2017.10.011
|
2 |
H Liu, R Sun, S Feng, D Wang, H Liu. Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions. Chemical Engineering Journal, 2019, 359: 436–445
https://doi.org/10.1016/j.cej.2018.11.148
|
3 |
A Khalil, N M Aboamera, W S Nasser, W H Mahmoud, G G Mohamed. Photodegradation of organic dyes by PAN/SiO2-TiO2-NH2 nanofiber membrane under visible light. Separation and Purification Technology, 2019, 224: 509–514
https://doi.org/10.1016/j.seppur.2019.05.056
|
4 |
Y Zhao, S Kang, L Qin, W Wang, T Zhang, S Song, S Komarneni. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: Dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chemical Engineering Journal, 2020, 379: 122322
https://doi.org/10.1016/j.cej.2019.122322
|
5 |
P Samanta, P Chandra, A V Desai, S K Ghosh. Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from an aqueous medium. Materials Chemistry Frontiers, 2017, 1(7): 1384–1388
https://doi.org/10.1039/C6QM00362A
|
6 |
A K Verma, R R Dash, P Bhunia. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 2012, 93(1): 154–168
https://doi.org/10.1016/j.jenvman.2011.09.012
|
7 |
K Dutta, S Mukhopadhyay, S Bhattacharjee, B Chaudhuri. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials, 2001, 84(1): 57–71
https://doi.org/10.1016/S0304-3894(01)00202-3
|
8 |
G Zeng, Y He, Y Zhan, L Zhang, Y Pan, C Zhang, Z Yu. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. Journal of Hazardous Materials, 2016, 317: 60–72
https://doi.org/10.1016/j.jhazmat.2016.05.049
|
9 |
H Fan, J Gu, H Meng, A Knebel, J Caro. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angewandte Chemie International Edition, 2018, 57(15): 4083–4087
https://doi.org/10.1002/anie.201712816
|
10 |
A Liu, C C Wang, C Z Wang, H F Fu, W Peng, Y L Cao, H Y Chu, A F Du. Selective adsorption activities toward organic dyes and antibacterial performance of silver-based coordination polymers. Journal of Colloid and Interface Science, 2018, 512: 730–739
https://doi.org/10.1016/j.jcis.2017.10.099
|
11 |
T Dou, L Zang, Y Zhang, Z Sun, L Sun, C Wang. Hybrid g-C3N4 nanosheet/carbon paper membranes for the photocatalytic degradation of methylene blue. Materials Letters, 2019, 244: 151–154
https://doi.org/10.1016/j.matlet.2019.02.066
|
12 |
E Brillas, C A Martínez-Huitle. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 2015, 166-167: 603–643
https://doi.org/10.1016/j.apcatb.2014.11.016
|
13 |
J Li, S Yuan, J Zhu, B Van der Bruggen. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal. Chemical Engineering Journal, 2019, 373: 275–284
https://doi.org/10.1016/j.cej.2019.05.048
|
14 |
B Li, M Meng, Y Cui, Y Wu, Y Zhang, H Dong, Z Zhu, Y Feng, C Wu. Changing conventional blending photocatalytic membranes (BPMs): focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method. Chemical Engineering Journal, 2019, 365: 405–414
https://doi.org/10.1016/j.cej.2019.02.042
|
15 |
J Zhu, J Wang, J Hou, Y Zhang, J Liu, B Van der Bruggen. Graphene-based antimicrobial polymeric membranes: a review. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(15): 6776–6793
https://doi.org/10.1039/C7TA00009J
|
16 |
T Wang, Z Wang, P Wang, Y Tang. An integration of photo-Fenton and membrane process for water treatment by a PVDF@CuFe2O4 catalytic membrane. Journal of Membrane Science, 2019, 572: 419–427
https://doi.org/10.1016/j.memsci.2018.11.031
|
17 |
C S Ong, P S Goh, W J Lau, N Misdan, A F Ismail. Nanomaterials for biofouling and scaling mitigation of thin film composite membrane: a review. Desalination, 2016, 393: 2–15
https://doi.org/10.1016/j.desal.2016.01.007
|
18 |
V Kochkodan, N Hilal. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination, 2015, 356: 187–207
https://doi.org/10.1016/j.desal.2014.09.015
|
19 |
C P Athanasekou, N G Moustakas, S Morales-Torres, L M Pastrana-Martínez, J L Figueiredo, J L Faria, A M T Silva, J M Dona-Rodriguez, G E Romanos, P Falaras. Ceramic photocatalytic membranes for water filtration under UV and visible light. Applied Catalysis B: Environmental, 2015, 178: 12–19
https://doi.org/10.1016/j.apcatb.2014.11.021
|
20 |
S Mozia, D Darowna, A Orecki, R Wróbel, K Wilpiszewska, A W Morawski. Microscopic studies on TiO2 fouling of MF/UF polyethersulfone membranes in a photocatalytic membrane reactor. Journal of Membrane Science, 2014, 470: 356–368
https://doi.org/10.1016/j.memsci.2014.07.049
|
21 |
Y Gao, M Hu, B Mi. Membrane surface modification with TiO2-graphene oxide for enhanced photocatalytic performance. Journal of Membrane Science, 2014, 455: 349–356
https://doi.org/10.1016/j.memsci.2014.01.011
|
22 |
I Horovitz, D Avisar, M A Baker, R Grilli, L Lozzi, D Di Camillo, H Mamane. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: influence of physical parameters. Journal of Hazardous Materials, 2016, 310: 98–107
https://doi.org/10.1016/j.jhazmat.2016.02.008
|
23 |
H Rawindran, J W Lim, P S Goh, M N Subramaniam, A F Ismail, N M Radi bin Nik M Daud, M Rezaei-Dasht Arzhandi. Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO2 photocatalytic membrane. Journal of Cleaner Production, 2019, 221: 490–501
https://doi.org/10.1016/j.jclepro.2019.02.230
|
24 |
C Hu, M S Wang, C H Chen, Y R Chen, P H Huang, K L Tung. Phosphorus-doped g-C3N4 integrated photocatalytic membrane reactor for wastewater treatment. Journal of Membrane Science, 2019, 580: 1–11
https://doi.org/10.1016/j.memsci.2019.03.012
|
25 |
L Qu, G Zhu, J Ji, T P Yadav, Y Chen, G Yang, H Xu, H Li. Recyclable visible light-driven O-g-C3N4/graphene oxide/N-carbon nanotube membrane for efficient removal of organic pollutants. ACS Applied Materials & Interfaces, 2018, 10(49): 42427–42435
https://doi.org/10.1021/acsami.8b15905
|
26 |
A Qin, X Li, X Zhao, D Liu, C He. Engineering a highly hydrophilic PVDF membrane via binding TiO2 nanoparticles and a PVA layer onto a membrane surface. ACS Applied Materials & Interfaces, 2015, 7(16): 8427–8436
https://doi.org/10.1021/acsami.5b00978
|
27 |
W Li, B Li, M Meng, Y Cui, Y Wu, Y Zhang, H Dong, Y Feng. Bimetallic Au/Ag decorated TiO2 nanocomposite membrane for enhanced photocatalytic degradation of tetracycline and bactericidal efficiency. Applied Surface Science, 2019, 487: 1008–1017
https://doi.org/10.1016/j.apsusc.2019.05.162
|
28 |
J Tian, P Hao, N Wei, H Cui, H Liu. 3D Bi2MoO6 nanosheet/TiO2 nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catalysis, 2015, 5(8): 4530–4536
https://doi.org/10.1021/acscatal.5b00560
|
29 |
B Liu, L M Liu, X F Lang, H Y Wang, X W Lou, E S Aydil. Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy & Environmental Science, 2014, 7(8): 2592–2597
https://doi.org/10.1039/C4EE00472H
|
30 |
W Kong, S Wang, D Wu, C Chen, Y Luo, Y Pei, B Tian, J Zhang. Fabrication of 3D sponge@AgBr-AgCl/Ag and tubular photo-reactor for continuous waste water purification under sunlight irradiation. ACS Sustainable Chemistry & Engineering, 2019, 7(16): 14051–14063
https://doi.org/10.1021/acssuschemeng.9b02575
|
31 |
P Wang, B Huang, X Zhang, X Qin, Y Dai, Z Wang, Z Lou. Highly efficient visible light plasmonic photocatalysts Ag@Ag(Cl,Br) and Ag@AgCl-AgI. ChemCatChem, 2011, 3(2): 360–364
https://doi.org/10.1002/cctc.201000380
|
32 |
S S Madaeni, N Ghaemi. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. Journal of Membrane Science, 2007, 303(1): 221–233
https://doi.org/10.1016/j.memsci.2007.07.017
|
33 |
Y X Wang, S Ma, M N Huang, H Yang, Z L Xu, Z Xu. Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application. Separation and Purification Technology, 2019, 227: 115700
https://doi.org/10.1016/j.seppur.2019.115700
|
34 |
H S Lee, S J Im, J H Kim, H J Kim, J P Kim, B R Min. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 2008, 219(1): 48–56
https://doi.org/10.1016/j.desal.2007.06.003
|
35 |
Y X Wang, Y J Li, H Yang, Z L Xu. Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application. Journal of Membrane Science, 2019, 580: 40–48
https://doi.org/10.1016/j.memsci.2019.02.062
|
36 |
X Zhang, M Wang, C H Ji, X R Xu, X H Ma, Z L Xu. Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration. Separation and Purification Technology, 2018, 203: 84–92
https://doi.org/10.1016/j.seppur.2018.04.006
|
37 |
Y Qin, Y X Wang, H Yang, Z L Xu. ETA-m-PAN and its composite membrane with high performance prepared by in situ modification/NIPS principle. Macromolecular Materials and Engineering, 2019, 304(4): 1800745
https://doi.org/10.1002/mame.201800745
|
38 |
J Dai, Y Sun, Z Liu. Efficient degradation of tetracycline in aqueous solution by Ag/AgBr catalyst under solar irradiation. Materials Research Express, 2019, 6(8): 085512
https://doi.org/10.1088/2053-1591/ab1db3
|
39 |
P Wang, B Huang, X Zhang, X Qin, H Jin, Y Dai, Z Wang, J Wei, J Zhan, S Wang, J Wang, M H Whangbo. Highly efficient visible-light plasmonic photocatalyst Ag@AgBr. Chemistry (Weinheim an der Bergstrasse, Germany), 2009, 15(8): 1821–1824
https://doi.org/10.1002/chem.200802327
|
40 |
Z W Dai, L S Wan, Z K Xu. Surface glycosylation of polyacrylonitrile ultrafiltration membrane to improve its anti-fouling performance. Journal of Membrane Science, 2008, 325(1): 479–485
https://doi.org/10.1016/j.memsci.2008.08.013
|
41 |
J Wang, W Zhang, W Li, W Xing. Preparation and characterization of chitosan-poly(vinyl alcohol)/polyvinylidene fluoride hollow fiber composite membranes for pervaporation dehydration of isopropanol. Korean Journal of Chemical Engineering, 2015, 32(7): 1369–1376
https://doi.org/10.1007/s11814-014-0328-4
|
42 |
M M Beppu, R S Vieira, C G Aimoli, C C Santana. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. Journal of Membrane Science, 2007, 301(1): 126–130
https://doi.org/10.1016/j.memsci.2007.06.015
|
43 |
R S Vieira, M M Beppu. Interaction of natural and crosslinked chitosan membranes with Hg(II) ions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2006, 279(1): 196–207
https://doi.org/10.1016/j.colsurfa.2006.01.026
|
44 |
X Ye, Y Zhou, J Chen, Y Sun. Synthesis and infrared emissivity study of collagen-g-PMMA/Ag@TiO2 composite. Materials Chemistry and Physics, 2007, 106(2): 447–451
https://doi.org/10.1016/j.matchemphys.2007.06.056
|
45 |
R Dong, B Tian, C Zeng, T Li, T Wang, J Zhang. Ecofriendly synthesis and photocatalytic activity of uniform cubic Ag@AgCl plasmonic photocatalyst. Journal of Physical Chemistry C, 2013, 117(1): 213–220
https://doi.org/10.1021/jp311970k
|
46 |
M Zhu, P Chen, M Liu. Sunlight-driven plasmonic photocatalysts based on Ag/AgCl nanostructures synthesized via an oil-in-water medium: enhanced catalytic performance by morphology selection. Journal of Materials Chemistry, 2011, 21(41): 16413–16419
https://doi.org/10.1039/c1jm13326h
|
47 |
N K Eswar, V V Katkar, P C Ramamurthy, G Madras. Novel AgBr/Ag3PO4 decorated ceria nanoflake composites for enhanced photocatalytic activity toward dyes and bacteria under visible light. Industrial & Engineering Chemistry Research, 2015, 54(33): 8031–8042
https://doi.org/10.1021/acs.iecr.5b01993
|
48 |
R Zhang, Y Cai, X Zhu, Q Han, T Zhang, Y Liu, Y Li, A Wang. A novel photocatalytic membrane decorated with PDA/RGO/Ag3PO4 for catalytic dye decomposition. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2019, 563: 68–76
https://doi.org/10.1016/j.colsurfa.2018.11.069
|
49 |
D Zhang, F Dai, P Zhang, Z An, Y Zhao, L Chen. The photodegradation of methylene blue in water with PVDF/GO/ZnO composite membrane. Materials Science and Engineering C, 2019, 96: 684–692
https://doi.org/10.1016/j.msec.2018.11.049
|
50 |
Y Zhou, X Li, H Y Yu, G L Hu, J M Yao. Facile fabrication of controllable zinc oxide nanorod clusters on polyacrylonitrile nanofibers via repeatedly alternating immersion method. Journal of Nanoparticle Research, 2016, 18(12): 359
https://doi.org/10.1007/s11051-016-3678-5
|
51 |
J H Li, B F Yan, X S Shao, S S Wang, H Y Tian, Q Q Zhang. Influence of Ag/TiO2 nanoparticle on the surface hydrophilicity and visible-light response activity of polyvinylidene fluoride membrane. Applied Surface Science, 2015, 324: 82–89
https://doi.org/10.1016/j.apsusc.2014.10.080
|
52 |
M Zhang, Z Liu, Y Gao, L Shu. Ag modified g-C3N4 composite entrapped PES UF membrane with visible-light-driven photocatalytic antifouling performance. RSC Advances, 2017, 7(68): 42919–42928
https://doi.org/10.1039/C7RA07775K
|
53 |
M M Mahlambi, O T Mahlangu, G D Vilakati, B B Mamba. Visible light photodegradation of Rhodamine B dye by two forms of carbon-covered alumina supported TiO2/polysulfone membranes. Industrial & Engineering Chemistry Research, 2014, 53(14): 5709–5717
https://doi.org/10.1021/ie4038449
|
54 |
R Goei, Z Dong, T T Lim. High-permeability pluronic-based TiO2 hybrid photocatalytic membrane with hierarchical porosity: fabrication, characterizations and performances. Chemical Engineering Journal, 2013, 228: 1030–1039
https://doi.org/10.1016/j.cej.2013.05.068
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|