Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2011, Vol. 5 Issue (2) : 209-214    https://doi.org/10.1007/s11705-010-1018-3
RESEARCH ARTICLE
Hydrogen production from methanol through dielectric barrier discharge
Baowei WANG(), Xu ZHANG, Haiying BAI, Yijun Lü, Shuanghui HU
Key Laboratory for Green Chemical Technology, School of Chemical Engineering Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(152 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The hydrogen fuel cell is a promising option as a future energy resource and the production of hydrogen is mainly depended on fossil fuels now. In this paper, methanol reforming to produce H2 through dielectric-barrier discharge (DBD) plasma reaction was studied. Effects of the power supply parameters, reactor parameters and process conditions on conversion of methanol and distribution of products were investigated. The best reaction conditions were following: input power (45 W), material of inner electrode (stainless steel), discharge gap (3.40 mm), length of reaction zone (90.00 mm), dielectric thickness (1.25 mm), and methanol content (37.65%). The highest conversion of methanol and the yield of H2 were 82.38% and 27.43%, respectively.

Keywords methanol      dielectric-barrier discharge      hydrogen      plasma     
Corresponding Author(s): WANG Baowei,Email:wangbw@tju.edu.cn   
Issue Date: 05 June 2011
 Cite this article:   
Baowei WANG,Xu ZHANG,Haiying BAI, et al. Hydrogen production from methanol through dielectric barrier discharge[J]. Front Chem Sci Eng, 2011, 5(2): 209-214.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-010-1018-3
https://academic.hep.com.cn/fcse/EN/Y2011/V5/I2/209
numberquartz tubediameter of inner electrode /mmlength of discharge zone /mm
outer diameter /mminner diameter /mm
1#159.83/4/5/660/70/80/90
2#14.110.00390
3#13.810.6390
4#12.910.4390
Tab.1  The parameters of DBD reactors
Fig.1  Effect of input power on methanol conversion and H yield
Fig.2  Effect of input power on selectivity of products
1# reactor: stainless steel inner electrode, discharge gap= 3.4 mm, length of discharge zone= 90 mm, fixed input flow rate= 30 smL/min, methanol content= 44.63%
Fig.3  Effect of inner electrode material on methanol conversion
Fig.4  Effect of inner electrode material on selectivity of products and H yield
1# reactor: discharge gap= 3.4 mm, length of discharge zone= 90 mm, fixed input flow rate= 30 smL/min, input power= 40 W, methanol content= 44.63%
Fig.5  Effect of discharge gap on methanol conversion and H yield
Fig.6  Effect of discharge gap on selectivity of products
Stainless steel inner electrode, length of discharge zone= 90 mm, input power= 40 W, methanol content= 44.63%
Fig.7  Effect of the length of discharge zone on methanol conversion and H yield
Fig.8  Effect of the length of discharge zone on selectivity of products
1# reactor: stainless steel inner electrode, discharge gap= 3.4 mm, Input powe r= 40 W, methanol content= 44.63%, fixed Ar flow rate= 30 smL/min
thickness of quartz tube /mmconversion /%selectivity of H2 /%selectivity of CO /%yield of H2 /%
1.2582.3832.2951.8126.60
1.6077.7032.0049.7324.86
2.0567.2834.7852.0023.40
2.6074.3331.3549.1223.31
Tab.2  Effect of thickness of quartz tube on methanol conversion, H yield and selectivity of H and CO*
residence time /sconversion /%selectivity of H2 /%selectivity of CO /%yield of H2 /%
6.1552.0215.6034.008.12
7.3853.1418.3339.959.74
9.2263.6621.9038.8713.94
12.365.8429.5452.5219.45
Tab.3  Effect of residence time on methanol conversion, H yield and selectivity of H and CO*
methanol content /%conversion /%selectivity of H2 /%selectivity of CO /%yield of H2 /%
37.6575.8036.1856.9627.42
44.6374.3331.3549.1223.30
54.1658.4527.7538.4816.22
60.9145.7127.5235.7212.58
Tab.4  Effect of methanol content on methanol conversion, H yield and selectivity of H and CO*
1 Jiménez M, Yubero C, Calzada M D. Study on the reforming of alcohols in a surface wave discharge (SWD) at atmospheric pressure. Journal of Physics D: Applied Physics , 2008, 41: 175–201
2 Li X S, Zhu A M, Wang K J, Xu Y, Song Z M. Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques. Catalysis Today , 2004, 98(4): 617–624
doi: 10.1016/j.cattod.2004.09.048
3 Indarto A. Hydrogen production from methane in a dielectric barrier discharge using oxide zinc and chromium as catalyst. Journal of the Chinese Institute of Chemical Engineers , 2008, 39: 23–28
4 Sá S, Silva H, Sousa J M, Mendes A.Hydrogen production by methanol steam reforming in a membrane reactor: Palladium vs carbon molecular sieve membranes. Journal of Membrane Science , 2009, 339(1-2): 160–170
doi: 10.1016/j.memsci.2009.04.045
5 Zong C Y, Chen L, Wang H L. Hydrogen generation by glow discharge plasma electrolysis of methanol solutions. International Journal of Hydrogen Energy , 2009, 34(1): 48–55
doi: 10.1016/j.ijhydene.2008.09.099
6 Chang F W, Roselin L S, Ou T C. Hydrogen production by partial oxidation of methanol over bimetallic Au-Ru/Fe2O3 catalysts. Applied Catalysis A, General , 2008, 334(1-2): 147–155
doi: 10.1016/j.apcata.2007.10.003
7 Indarto A, Yang D R, Palgunadi J, Choi J W, Lee H, Song H K. Partial oxidation of methane with Cu-Zn-Al catalyst in a dielectric barrier discharge. Chemical Engineering and Processing , 2008, 47(5): 780–786
doi: 10.1016/j.cep.2006.12.015
8 Besancon B M, Hasanov V, Imbault-Lastapis R, Beneschb R, Barrio M, M?lnvikc M J. Hydrogen quality from decarbonized fossil fuels to fuel cells. International Journal of Hydrogen Energy , 2009, 34(5): 2350–2360
doi: 10.1016/j.ijhydene.2008.12.071
9 Das D, Veziro?lu T N. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy , 2001, 26(1): 13–28
doi: 10.1016/S0360-3199(00)00058-6
10 Take T, Tsurutani K, Umeda M. Hydrogen production by methanol-water solution electrolysis. Journal of Power Sources , 2007, 164(1): 9–16
doi: 10.1016/j.jpowsour.2006.10.011
11 Gondal M A, Hameed A, Yamani Z H. Hydrogen generation by laser transformation of methanol using n-type WO3 semiconductor catalyst. Journal of Molecular Catalysis A: Chemical , 2004, 222(1-2): 259–264
doi: 10.1016/j.molcata.2004.08.022
12 Medinsky M A, Dorman D C. Recent developments in methanol toxicity. Toxicology Letters , 1995, 82-83: 707–711
doi: 10.1016/0378-4274(95)03515-X
13 Li H Q, Zou J J, Zhang Y P, Liu C J. Plasma methanol decomposition using corona discharges. Journal of Industrial and Engineering Chemistry (China) , 2004, 55: 1989–1993 (in Chinese)
14 Deminsky M, Jivotov V, Potapkin B, Rusanov V. Plasma-assisted production of hydrogen from hydrocarbons. Pure and Applied Chemistry , 2002, 74(3): 413–418
doi: 10.1351/pac200274030413
15 Li H Q, Zou J J, Liu C J. Progress in hydrogen generation using plasmas. Progress in Chem , 2005, 17: 69–77
17 Wang B W, Cao X L, Yang K H, Xu G H. Conversion of methane through dielectric-barrier discharge plasma. Frontiers of Chemical Engineering in China , 2008, 2(4): 373–378
doi: 10.1007/s11705-008-0070-8
18 Xu D J, Li Z H, Lv J, Wang B W, Xu G H. Conversion of methane to C2 hydrocarbons through dielectric-barrier discharge plasma at low temperature and atmospheric pressure. Chem Reaction Eng & Tech , 2006, 22: 356–360 (in Chinese)
19 Zhang X, Wang B W, Liu Y W, Xu G H. Conversion of methane by steam reforming using dielectric-barrier discharge. Chinese Journal of Chemical Engineering , 2009, 17(4): 625–629
doi: 10.1016/S1004-9541(08)60254-2
20 Kogelschatz U. Advanced ozone generation. Process Technologies for Water Treatment. Stucki S ed. New York & London: Plenum, 1988, 87–120
[1] Xin Wang, Wei Cui, Bin Li, Xiaojie Zhang, Yongxin Zhang, Yaodong Huang. Supramolecular self-assembly of two-component systems comprising aromatic amides/Schiff base and tartaric acid[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1112-1121.
[2] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[3] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[4] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[5] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[6] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[7] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[8] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[9] Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
[10] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[11] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[12] Romain Chanson, Remi Dussart, Thomas Tillocher, P. Lefaucheux, Christian Dussarrat, Jean François de Marneffe. Low-k integration: Gas screening for cryogenic etching and plasma damage mitigation[J]. Front. Chem. Sci. Eng., 2019, 13(3): 511-516.
[13] Liangliang Lin, Xintong Ma, Sirui Li, Marly Wouters, Volker Hessel. Plasma-electrochemical synthesis of europium doped cerium oxide nanoparticles[J]. Front. Chem. Sci. Eng., 2019, 13(3): 501-510.
[14] Bin Xu, Toshiro Kaneko, Toshiaki Kato. Improvement in growth yield of single-walled carbon nanotubes with narrow chirality distribution by pulse plasma CVD[J]. Front. Chem. Sci. Eng., 2019, 13(3): 485-492.
[15] Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication[J]. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed