Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (4) : 522-533    https://doi.org/10.1007/s11705-019-1822-3
RESEARCH ARTICLE
Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene
Xinxiang Cao1,2,3, Tengteng Lyu1, Wentao Xie1, Arash Mirjalili1, Adelaide Bradicich1, Ricky Huitema1, Ben W.-L. Jang1(), Jong K. Keum4, Karren More4, Changjun Liu3, Xiaoliang Yan5
1. Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
2. Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
3. Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
4. Center for Nanophase Materials Sciences and Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
5. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 Download: PDF(2922 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A series of PdCu bimetallic catalysts with low Cu and Pd loadings and different Cu: Pd atomic ratios were prepared by conventionally sequential impregnation (CSI) and modified sequential impregnation (MSI) of Cu and Pd for selective hydrogenation of acetylene. Characterization indicates that the supported copper (II) nitrate in the PdCu bimetallic catalysts prepared by MSI can be directly reduced to Cu metal particles due to the hydrogen spillover from Pd to Cu(NO3)2 crystals. In addition, for the catalysts prepared by MSI, Pd atoms can form PdCu alloy on the surface of metal particles, however, for the catalysts prepared by CSI, Pd tends to migrate and exist below the surface layer of Cu. Reaction results indicate that compared with CSI, the MSI method enables samples to possess preferable stability as well as comparable reaction activity. This should be due to the MSI method in favor of the formation of PdCu alloy on the surface of metal particles. Moreover, even Pd loading is super low, <0.045 wt-% in this study, by through adjusting Cu loading to an appropriate value, attractive reactivity and selectivity still can be achieved.

Keywords copper      palladium      catalysts      acetylene      selective hydrogenation     
Corresponding Author(s): Ben W.-L. Jang   
Just Accepted Date: 04 April 2019   Online First Date: 18 June 2019    Issue Date: 22 May 2020
 Cite this article:   
Xinxiang Cao,Tengteng Lyu,Wentao Xie, et al. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1822-3
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I4/522
Samples Loading /wt-% Atomic ratio
Cu:Pd
Cu Pd
Cu1.25-cal 1.19
Cu2.5-cal 2.33
Cu12-cal 12.17
Cu1.25-vac 1.15
Cu2.5-vac 2.21
Cu12-vac 12.08
Pd0.05-cal 0.0468
Pd0.05Cu0.5-cal 0.46 0.0480 16.0
Pd0.05Cu2.5-cal 2.26 0.0474 79.8
Pd0.05Cu2.5-vac 2.20 0.0445 82.8
Pd0.24Cu12-vac 11.89 0.2175 91.5
Tab.1  Metal loadings and Cu:Pd ratios of as-prepared catalysts
Fig.1  H2-TPR patterns of as prepared fresh samples
Fig.2  (a) In situ XRD profiles of Cu12-vac and (b) Pd0.24Cu12-vac in 4 vol-% H2/He flow at different temperatures
Fig.3  CO-DRIFTs spectra of reduced samples, Cu2.5-vac, Pd0.05Cu2.5-vac, Pd0.05Cu2.5-cal and Pd0.05-cal
Fig.4  High-angle annular dark field (HAADF) STEM images of (a) Cu2.5-vac, (b) Pd0.05Cu2.5-cal and (c) Pd0.05Cu2.5-vac and their corresponding lattice fringe (d), (e) and (f), respectively; STEM–EDS elemental maps (g, h and i) of a random particle in Pd0.05Cu2.5-vac
Fig.5  (a) Acetylene conversion and (b) selectivity to ethylene versus reaction temperature and the selectivity vs. the conversion over Pd0.05-cal, Pd0.05Cu0.5-cal, Pd0.05Cu2.5-cal and Pd0.05Cu2.5-vac. H2:C2H2:C2H4 = 3:1:99, GHSV= 60000 cc?g–1?h–1
Fig.6  (a) Acetylene conversion and (b) selectivity to ethylene versus reaction time over Pd0.05Cu2.5-cal and Pd0.05Cu2.5-vac. H2:C2H2:C2H4 = 3:1:99, GHSV= 60000 cc?g–1?h–1, reaction temperature: 120°C
Fig.7  (a) TG results of fresh and used Pd0.05Cu2.5-cal and Pd0.05Cu2.5-vac and (b) corresponding DTG results of the two used samples derived from TG
1 E Vignola, S N Steinmann, A A Farra, B D Vandegehuchte, D Curulla, P Sautet. Evaluating the risk of C–C bond formation during selective hydrogenation of acetylene on palladium. ACS Catalysis, 2018, 8(3): 1662–1671
https://doi.org/10.1021/acscatal.7b03752
2 M Hu, J Zhang, W Zhu, Z Chen, X Gao, X Du, J Wan, K Zhou, C Chen, Y Li. 50 ppm of Pd dispersed on Ni(OH)2 nanosheets catalyzing semi-hydrogenation of acetylene with high activity and selectivity. Nano Research, 2018, 11(2): 905–912
https://doi.org/10.1007/s12274-017-1701-5
3 G X Pei, X Liu, X Yang, L Zhang, A Wang, L Li, H Wang, X Wang, T Zhang. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS Catalysis, 2017, 7(2): 1491–1500
https://doi.org/10.1021/acscatal.6b03293
4 A J McCue, A M Shepherd, J A Anderson. Optimisation of preparation method for Pd doped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890
https://doi.org/10.1039/C5CY00253B
5 A J McCue, R T Baker, J A Anderson. Acetylene hydrogenation over structured Au-Pd catalysts. Faraday Discussions, 2016, 188: 499–523
https://doi.org/10.1039/C5FD00188A
6 J Feng, Y Liu, M Yin, Y He, J Zhao, J Sun, D Li. Preparation and structure-property relationships of supported trimetallic PdAuAg catalysts for the selective hydrogenation of acetylene. Journal of Catalysis, 2016, 344: 854–864
https://doi.org/10.1016/j.jcat.2016.08.003
7 Y Liu, J Zhao, Y He, J Feng, T Wu, D Li. Highly efficient PdAg catalyst using a reducible Mg-Ti mixed oxide for selective hydrogenation of acetylene: Role of acidic and basic sites. Journal of Catalysis, 2017, 348: 135–145
https://doi.org/10.1016/j.jcat.2017.02.020
8 H Zhou, X Yang, L Li, X Liu, Y Huang, X Pan, A Wang, J Li, T Zhang. PdZn intermetallic nanostructure with Pd-Zn-Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catalysis, 2016, 6(2): 1054–1061
https://doi.org/10.1021/acscatal.5b01933
9 F Meuniera, M Maffrea, Y Schuurmana, S Colussib, A Trovarelli. Acetylene semi-hydrogenation over Pd-Zn/CeO2: Relevance of CO adsorption and methanation as descriptors of selectivity. Catalysis Communications, 2018, 105: 52–55
https://doi.org/10.1016/j.catcom.2017.11.012
10 C M Kruppe, J D Krooswyk, M Trenary. Selective hydrogenation of acetylene to ethylene in the presence of a carbonaceous surface layer on a Pd/Cu (111) single-atom alloy. ACS Catalysis, 2017, 7(12): 8042–8049
https://doi.org/10.1021/acscatal.7b02862
11 A J McCue, A Guerrero-Ruiz, I Rodríguez-Ramos, J A Anderson. Palladium sulphide—a highly selective catalyst for the gas phase hydrogenation of alkynes to alkenes. Journal of Catalysis, 2016, 340: 10–16
https://doi.org/10.1016/j.jcat.2016.05.002
12 M Hu, X Wang. Effect of N3-species on selective acetylene hydrogenation over Pd/SAC catalysts. Catalysis Today, 2016, 263: 98–104
https://doi.org/10.1016/j.cattod.2015.06.021
13 A J McCue, F M McKenna, J A Anderson. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459
https://doi.org/10.1039/C5CY00065C
14 G Kyriakou, M B Boucher, A D Jewell, E A Lewis, T J Lawton, A E Baber, H L Tierney, M Flytzani-Stephanopoulos, E C H Sykes. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212
https://doi.org/10.1126/science.1215864
15 X Cao, Y Ji, Y Luo. Dehydrogenation of propane to propylene by a Pd/Cu single-atom catalyst: Insight from first-principles calculations. Journal of Physical Chemistry C, 2015, 119(2): 1016–1023
https://doi.org/10.1021/jp508625b
16 X Cao, Q Fu, Y Luo. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst. Physical Chemistry Chemical Physics, 2014, 16(18): 8367–8375
https://doi.org/10.1039/C4CP00399C
17 M B Boucher, B Zugic, G Cladaras, J Kammert, M D Marcinkowski, T J Lawton, E C H Sykes, M Flytzani-Stephanopoulos. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196
https://doi.org/10.1039/c3cp51538a
18 X Cao, A Mirjalili, J Wheeler, W Xie, B W Jang L. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene. Frontiers of Chemical Science & Engineering, 2015, 9(4): 442–449
https://doi.org/10.1007/s11705-015-1547-x
19 Y Liu, Y He, D Zhou, J Feng, D Li. Catalytic performance of Pd-promoted Cu hydrotalcite-derived catalysts in partial hydrogenation of acetylene: Effect of Pd-Cu alloy formation. Catalysis Science & Technology, 2016, 6(9): 3027–3037
https://doi.org/10.1039/C5CY01516B
20 Y N Li, B W L Jang. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1-2): 173–179
https://doi.org/10.1016/j.apcata.2010.11.008
21 C J Liu, M Li, J Wang, X Zhou, Q Guo, J Yan, Y Li. Plasma methods for preparing green catalysts: Current status and perspective. Chinese Journal of Catalysis, 2016, 37(3): 340–348
https://doi.org/10.1016/S1872-2067(15)61020-8
22 W P Dow, Y Wang, T Huang. TPR and XRD studies of yttria-doped ceria/g-alumina-supported copper oxide catalyst. Applied Catalysis A, General, 2000, 190(1-2): 25–34
https://doi.org/10.1016/S0926-860X(99)00286-0
23 N K Renuka, A V Shijina, A K Praveen, C U Aniz. Redox properties and catalytic activity of CuO/g-Al2O3 Meso phase. Journal of Colloid and Interface Science, 2014, 434: 195–200
https://doi.org/10.1016/j.jcis.2014.08.005
24 G V Sagar, P V R Rao, C S Srikanth, K V R Chary. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2. Journal of Physical Chemistry B, 2006, 110(28): 13881–13888
https://doi.org/10.1021/jp0575153
25 Y Li, B W L Jang. Selective hydrogenation of acetylene over Pd/Al2O3 catalysts: Effect of non-thermal RF plasma preparation methodologies. Topics in Catalysis, 2017, 60(12-14): 1–12
https://doi.org/10.1007/s11244-017-0765-5
26 J Sa, G D Arteaga, R A Daley, J Bernardi, J A Anderson. Factors influencing hydride formation in a Pd/TiO2 Catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095
https://doi.org/10.1021/jp062205l
27 S K Ryu, W K Lee, S J Park. Thermal decomposition of hydrated copper nitrate [Cu(NO3)2·3H2O] on activated carbon fibers. Carbon letters, 2004, 5: 180–185
28 C Wu, W Yuan, Y Huang, Y Xia, H Yang, H Wang, X Liu. Conversion of xylose into furfural catalyzed by bifunctional acidic ionic liquid immobilized on the surface of magnetic g-Al2O3. Catalysis Letters, 2017, 147(4): 953–963
https://doi.org/10.1007/s10562-017-1982-z
29 C S Chen, J H Lin, T W Lai. Low-temperature water gas shift reaction on Cu/SiO2 prepared by an atomic layer epitaxy technique. Chemical Communications, 2008, 40(40): 4983–4985
https://doi.org/10.1039/b807428c
30 O Dulaurent, X Courtois, V Perrichon, D J Bianchi. Heats of adsorption of CO on a Cu/Al2O3 catalyst using FTIR spectroscopy at high temperatures and under adsorption equilibrium conditions. Journal of Physical Chemistry B, 2000, 104(25): 6001–6011
https://doi.org/10.1021/jp9943629
31 M Fernández-García, J A Anderson, G L Haller. Alloy formation and stability in Pd-Cu bimetallic catalysts. Journal of Chemical Physics, 1996, 100(40): 16247–16254
https://doi.org/10.1021/jp9608133
32 P Mierczynski, K Vasilev, A Mierczynsk, W Maniukiewicz, T P Maniecki. Highly selective Pd-Cu/ZnAl2O4 catalyst for hydrogen production. Applied Catalysis A, General, 2014, 479(6): 26–34
https://doi.org/10.1016/j.apcata.2014.04.011
33 A J McCue, J A Anderson. CO induced surface segregation as a means of improving surface composition and enhancing performance of CuPd bimetallic catalysts. Journal of Catalysis, 2016, 344: 854–864
34 V S Marakatti, S C Sarma, B Joseph, D Banerjee, S C Peter. Synthetically tuned atomic ordering in PdCu nanoparticles with enhanced catalytic activity towards solvent free benzylamine oxidation. ACS Applied Materials & Interfaces, 2017, 9(4): 3602–3615
https://doi.org/10.1021/acsami.6b12253
35 L D Shao, W Zhang, M Armbruster, D Teschner, F Girgsdies, B S Zhang, O Timpe, M Friedrich, R Schlogl, D S Su. Nanosizing intermetallic compounds onto carbon nanotubes: Active and selective hydrogenation catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10231–10235
https://doi.org/10.1002/anie.201008013
36 S Zhang, C Y Chen, B W L Jang, A M Zhu. Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256: 161–169
https://doi.org/10.1016/j.cattod.2015.04.002
37 J W Lee, X Liu, C Y Mou. Selective hydrogenation of acetylene over SBA-15 supported Au-Cu bimetallic catalysts. Journal of the Chinese Chemical Society (Taipei), 2013, 60(7): 907–914
https://doi.org/10.1002/jccs.201300160
[1] Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
[2] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[3] Sen Wang, Shiyun Liu, Danhua Mei, Rusen Zhou, Congcong Jiang, Xianhui Zhang, Zhi Fang, Kostya (Ken) Ostrikov. Liquid discharge plasma for fast biomass liquefaction at mild conditions: The effects of homogeneous catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 763-771.
[4] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[5] Tongzhou Lu, Yongzheng Zhang, Chun Cheng, Yanbin Wang, Yongming Zhu. One-step synthesis of recoverable CuCo2S4 anode material for high-performance Li-ion batteries[J]. Front. Chem. Sci. Eng., 2020, 14(4): 595-604.
[6] Weixing Deng, Pengfei Sun, Quli Fan, Lei Zhang, Tsuyoshi Minami. Highly selective detection of copper(II) by a “ligand-free” conjugated copolymer in nucleophilic solvents[J]. Front. Chem. Sci. Eng., 2020, 14(1): 105-111.
[7] Marcela Achimovičová, Erika Dutková, Erika Tóthová, Zdenka Bujňáková, Jaroslav Briančin, Satoshi Kitazono. Structural and optical properties of nanostructured copper sulfide semiconductor synthesized in an industrial mill[J]. Front. Chem. Sci. Eng., 2019, 13(1): 164-170.
[8] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[9] Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares. Engineering operando methodology: Understanding catalysis in time and space[J]. Front. Chem. Sci. Eng., 2018, 12(3): 509-536.
[10] Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
[11] Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 113-123.
[12] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
[13] Yong Zhu, Zhishan Bai, Bingjie Wang, Linlin Zhai, Wenqiang Luo. Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II)[J]. Front. Chem. Sci. Eng., 2017, 11(2): 238-251.
[14] Hajime Nakatani,Katsutoshi Hori. Cell surface protein engineering for high-performance whole-cell catalysts[J]. Front. Chem. Sci. Eng., 2017, 11(1): 46-57.
[15] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed