Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2017, Vol. 11 Issue (3) : 395-404    https://doi.org/10.1007/s11705-017-1643-1
RESEARCH ARTICLE
Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells
Zijian Cui1,2, Kaiyue Zhang1,2, Guangyu Xing1,2, Yaqing Feng1,2, Shuxian Meng1,2()
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, China
 Download: PDF(506 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three-dimensional TiO2 microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m2·g1 which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).

Keywords DSSCs      N doping      scattering layer      electron lifetime     
Corresponding Author(s): Shuxian Meng   
Just Accepted Date: 07 April 2017   Online First Date: 19 May 2017    Issue Date: 23 August 2017
 Cite this article:   
Zijian Cui,Kaiyue Zhang,Guangyu Xing, et al. Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2017, 11(3): 395-404.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1643-1
https://academic.hep.com.cn/fcse/EN/Y2017/V11/I3/395
Fig.1  SEM images of samples treated for different lengths of time (a,e) 8 h; (b,f) 12 h; (c,g) 15 h; (d,h) 20 h
Fig.2  (a) TEM and (b) HRTEM images of TMF microspheres
Fig.3  X-ray diffractograms of TMF and P25
Fig.4  Nitrogen adsorption-desorption isotherms (a: TMF, b: P25) and the pore-size distribution curve (inset) for the TMF powders
Fig.5  XPS spectra: N 1s (a, TMF), Ti 2p (b, TMF and P25) and O 1s (c, TMF and P25)
Fig.6  TEM image of (a) TMF and (b) element mapping results of N
Fig.7  UV-vis diffused reflectance spectra of PT-6/0, PT-5/1, PT-3/3, PT-1/5 and PT-0/6 photoanodes
Fig.8  (a) J-V curves of DSSCs based on different films; (b) Efficiency as a function of the number of scattering layers
ElectrodeJsc /(mA·cm?2)Voc /VFFη /%Amount of dye /(mol·cm?2 × 10?7)
PT-6/012.460.7569.806.521.021
PT-5/112.740.7871.797.071.124
PT-3/314.560.7871.948.081.289
PT-1/513.210.7871.757.301.417
PT-0/612.390.7871.276.811.476
Tab.1  Photovoltaic properties of DSSCs prepared with different photoanodes
Fig.9  IPCE spectra of DSSCs with different photoanodes
Fig.10  (a) Nyquist and (b) Bode plots of the DSSCs based on different films
ElectrodeRs /WR1 /WR2 /Wte /ms
PT-6/011.944.0325.6019.3
PT-5/113.424.0028.5028.3
PT-3/311.674.0329.9034.3
PT-1/512.284.3734.4050.4
PT-0/613.283.9939.5861.0
Tab.2  Electron dynamic parameters estimated from the Nyquist plots and Bode phase plots
1 O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740
https://doi.org/10.1038/353737a0
2 Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2003, 4(2): 145–153
https://doi.org/10.1016/S1389-5567(03)00026-1
3 Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Dye-sensitized solar cells. Chemical Reviews, 2010, 110(11): 6595–6663
https://doi.org/10.1021/cr900356p
4 Yella A, Lee H, Tsao H, Yi C, Chandiran A, Nazeeruddin M, Diau E, Yeh C, Zakeeruddin S, Grätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634
https://doi.org/10.1126/science.1209688
5 Chen W, Qiu Y, Yang S. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2010, 12(32): 9494–9501
https://doi.org/10.1039/c000584c
6 Chen X, Mao S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959
https://doi.org/10.1021/cr0500535
7 Tao X, Wang Y, Zhang X, Sun H, Zhang Q, Niu L, Liu J, Zhou X. Visible-light wavelength matched microsphere assembly of TiO2 superfine nanorods and the enhanced photovoltaic performance. Journal of Alloys and Compounds, 2015, 631: 202–208
https://doi.org/10.1016/j.jallcom.2015.01.079
8 Ke W, Fang G, Tao H, Qin P, Wang J, Lei H, Liu Q, Zhao X. In situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2014, 6(8): 5525–5530
https://doi.org/10.1021/am4059155
9 Liu Y, Wang S, Shan Z, Li X, Tian J, Mei Y, Ma H, Zhu K. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte. Electrochimica Acta, 2012, 60: 422–427
https://doi.org/10.1016/j.electacta.2011.11.088
10 Ding Y, Xia X, Chen W, Hu L, Mo L, Huang Y, Dai S. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2. Nano Research, 2016, 9(7): 1891–1903
https://doi.org/10.1007/s12274-016-1081-2
11 Haid S, Marszalek M, Mishra A, Wielopolski M, Teuscher J, Moser J, Humphry-Baker R, Zakeeruddin S, Grätzel M, Bäuerle P. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes. Advanced Functional Materials, 2012, 22(6): 1291–1302
https://doi.org/10.1002/adfm.201102519
12 Bach U, Daeneke T. A solid advancement for dye-sensitized solar cells. Angewandte Chemie International Edition, 2012, 51(42): 10451–10452
https://doi.org/10.1002/anie.201205437
13 Gao Y, Feng Y, Zhang B, Zhang F, Peng X, Liu L, Meng S. Double-N doping: A new discovery about N-doped TiO2 applied in dye-sensitized solar cells. RSC Advances, 2014, 4(33): 16992–16998
https://doi.org/10.1039/C4RA00053F
14 Zhang Z, Cui Z, Zhang K, Feng Y, Meng S. Samarium ions doped titania photoelectrodes for efficiency influence of dye-sensitized solar cells. Journal of the Electrochemical Society, 2016, 163(5): A644–A649
https://doi.org/10.1149/2.0371605jes
15 Cahen D, Hodes G, Grätzel M, Guillemoles J, Riess I. Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B, 2000, 104(9): 2053–2059
https://doi.org/10.1021/jp993187t
16 Pan H, Qian J, Cui Y, Xie H, Zhou X. Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties. Journal of Materials Chemistry, 2012, 22(13): 6002–6009
https://doi.org/10.1039/c2jm15925b
17 He X, Li X, Zhu M. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. Journal of Power Sources, 2016, 333: 10–16
https://doi.org/10.1016/j.jpowsour.2016.09.133
18 Bakhshayesh A, Azadfar S. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells. Frontiers of Chemical Science and Engineering, 2015, 9(4): 532–540
https://doi.org/10.1007/s11705-015-1549-8
19 Li W, Yang J, Jiang Q, Luo Y, Hou Y, Zhou S, Zhou Z. Bi-layer of nanorods and three-dimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 284: 428–434
https://doi.org/10.1016/j.jpowsour.2015.03.046
20 Kim D, Kim J, Shin S, Cho J, Cho I. Facile one-pot synthesis of self-assembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar water-splitting. Journal of Alloys and Compounds, 2017, 697: 222–230
https://doi.org/10.1016/j.jallcom.2016.12.112
21 Wang G, Zhu X, Yu J. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. Journal of Power Sources, 2015, 278: 344–351
https://doi.org/10.1016/j.jpowsour.2014.12.091
22 Zhao P, Yao S, Wang M, Wang B, Sun P, Liu F, Liang X, Sun Y, Lu G. High-efficiency dye-sensitized solar cells with hierarchical structures titanium dioxide to transfer photogenerated charge. Electrochimica Acta, 2015, 170: 276–283
https://doi.org/10.1016/j.electacta.2015.04.102
23 Sun X, Zhou X, Xu Y, Sun P, Huang N, Sun Y. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO2 based dye-sensitized solar cells. Applied Surface Science, 2015, 337: 188–194
https://doi.org/10.1016/j.apsusc.2015.02.090
24 Ding Y, Mo L, Tao L, Ma Y, Hu L, Huang Y, Fang X, Yao J, Xi X, Dai S. TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells. Journal of Power Sources, 2014, 272: 1046–1052
https://doi.org/10.1016/j.jpowsour.2014.09.007
25 Yan K, Qiu Y, Chen W, Zhang M, Yang S. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy & Environmental Science, 2011, 4(6): 2168–2176
https://doi.org/10.1039/c1ee01071a
26 Chen D, Huang F, Cheng Y, Caruso R. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210
https://doi.org/10.1002/adma.200802603
27 Kim Y, Lee M, Kim H, Lim G, Choi Y, Park N, Kim K, Lee W. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Advanced Materials, 2009, 21(36): 3668–3673
https://doi.org/10.1002/adma.200900294
28 Son S, Hwang S, Kim C, Yun J, Jang J. Designed, synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces, 2013, 5(11): 4815–4820
https://doi.org/10.1021/am400441v
29 Xiong Y, He D, Jin Y, Cameron P, Edler K. Ordered mesoporous particles in titania films with hierarchical structure as scattering layers in dye-sensitized solar cells. Journal of Physical Chemistry C, 2015, 119(39): 22552–22559
https://doi.org/10.1021/acs.jpcc.5b06977
30 Hwang D, Sung S. Controlled fabrication of mesoporous TiO2 hierarchical structures as scattering layers to enhance the power conversion efficiency of dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18(44): 30254–30260
https://doi.org/10.1039/C6CP05999F
31 Huber E, Frost M. Light scattering by small particles. Journal of Water Supply: Research & Technology—Aqua, 1998, 47(2): 87–94
https://doi.org/10.1046/j.1365-2087.1998.00086.x
32 Peng X, Feng Y, Meng S, Zhang B. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta, 2014, 115: 255–262
https://doi.org/10.1016/j.electacta.2013.10.126
33 Liu M, Piao L, Zhao L, Ju S, Yan Z, He T, Zhou C, Wang W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chemical Communications, 2010, 46(10): 1664–1666
https://doi.org/10.1039/b924172h
34 Lin J, Zhao L, Heo Y, Wang L, Bijarbooneh F, Mozer A, Nattestad A, Yamauchi Y, Dou S, Kim J. Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 2015, 11: 557–567
https://doi.org/10.1016/j.nanoen.2014.11.017
35 Zhang Y, Zhang B, Peng X, Liu L, Dong S, Lin L, Chen S, Meng S, Feng Y. Preparation of dye sensitized solar cells with high photocurrent and photovoltage by using mesoporous TiO2 particles as photoanode material. Nano Research, 2015, 8(12): 3830–3841
https://doi.org/10.1007/s12274-015-0883-y
36 Biswas S, Hossain M, Takahashi T. Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films, 2008, 517(3): 1284–1288
https://doi.org/10.1016/j.tsf.2008.06.010
37 Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
38 Ramasamy E, Lee J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(7): 2529–2536
https://doi.org/10.1039/c1ee01123e
39 Guo W, Shen Y, Wu L, Gao Y, Ma T. Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. Journal of Physical Chemistry C, 2011, 115(43): 21494–21499
https://doi.org/10.1021/jp2057496
40 Qiu X, Burda C. Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics, 2007, 339(1): 1–10
https://doi.org/10.1016/j.chemphys.2007.06.039
41 Fu Y, Du H, Zhang S, Huang W. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering A, 2005, 403(1): 25–31
https://doi.org/10.1016/j.msea.2005.04.036
42 Huo K, Wang H, Zhang X, Cao Y, Chu P. Heterostructured TiO2 nanoparticles/nanotube arrays: In situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem, 2012, 77(4): 323–329
https://doi.org/10.1002/cplu.201200024
43 Yu I, Kim Y, Kim H, Lee C, Lee W. Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21(2): 532–538
https://doi.org/10.1039/C0JM02606A
44 Xu J, Wang G, Fan J, Liu B, Cao S, Yu J. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. Journal of Power Sources, 2015, 274: 77–84
https://doi.org/10.1016/j.jpowsour.2014.10.033
45 Park N, van de Lagemaat J, Frank A. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. Journal of Physical Chemistry B, 2000, 104(38): 8989–8994
https://doi.org/10.1021/jp994365l
46 Kang T, Chun K, Hong J, Moon S, Kim K. Enhanced stability of photocurrent-voltage curves in Ru(II)-dye-sensitized nanocrystalline TiO2 electrodes with carboxylic acids. Journal of the Electrochemical Society, 2000, 147(8): 3049–3053
https://doi.org/10.1149/1.1393646
47 Tian H, Hu L, Zhang C, Liu W, Huang Y, Mo L, Guo L, Sheng J, Dai S. Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. Journal of Physical Chemistry C, 2010, 114(3): 1627–1632
https://doi.org/10.1021/jp9103646
48 Chang H, Lo Y. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy, 2010, 84(10): 1833–1837
https://doi.org/10.1016/j.solener.2010.07.009
49 Dai G, Zhao L, Li J, Wan L, Hu F, Xu Z, Dong B, Lu H, Wang S, Yu J. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. Journal of Colloid and Interface Science, 2012, 365(1): 46–52
https://doi.org/10.1016/j.jcis.2011.08.073
50 Yang J, Gao Z, Tian L, Ma P, Wu D, Yang L. Spindle-like TiO2 with high crystallinity and its application in dye sensitised solar cell. Micro & Nano Letters, 2011, 6(8): 737–740
https://doi.org/10.1049/mnl.2011.0317
51 Liu W, Liang Z, Kou D, Hu L, Dai S. Wide frequency range diagnostic impedance behavior of the multiple interfaces charge transport and transfer processes in dye-sensitized solar cells. Electrochimica Acta, 2013, 88: 395–403
https://doi.org/10.1016/j.electacta.2012.10.061
52 Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. Influence of TiO2 nanoparticle size on electron diffusion and Recombination in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B, 2003, 107(33): 8607–8611
https://doi.org/10.1021/jp034773w
53 Liao J, Lei B, Kuang D, Su C. Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy & Environmental Science, 2011, 4(10): 4079–4085
https://doi.org/10.1039/c1ee01574e
[1] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed