|
|
Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer |
Pengwei Zhang1,2, Junxiao Ye1, Ergang Liu1,2, Lu Sun2, Jiacheng Zhang2, Seung Jin Lee3, Junbo Gong1,2( ), Huining He2( ), Victor C. Yang1,4( ) |
1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostic), Tianjin Medical University, Tianjin 300072, China 3. Department of Pharmacy, Ewha Womans University, Seoul 120-750, Korea 4. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, MI 48109-1065, USA |
|
|
Abstract An anticancer drug delivery system consisting of DNA nanoparticles synthesized by rolling circle amplification (RCA) was developed for prostate cancer membrane antigen (PSMA) targeted cancer therapy. The template of RCA was a DNA oligodeoxynucleotide coded with PSMA-targeted aptamer, drug-loading domain, primer binding site and pH-sensitive spacer. Anticancer drug doxorubicin, as the model drug, was loaded into the drug-loading domain (multiple GC-pair sequences) of the DNA nanoparticles by intercalation. Due to the integrated pH-sensitive spacers in the nanoparticles, in an acidic environment, the cumulative release of doxorubicin was far more than the cumulative release of the drug in the normal physiological environment. In cell uptake experiments, treated with doxorubicin loaded DNA nanoparticles, PSMA-positive C4-2 cells could take up more doxorubicin than PSMA-null PC-3 cells. The prepared DNA nanoparticles showed the potential as drug delivery system for PSMA targeting prostate cancer therapy.
|
Keywords
aptamer
DNA nanoparticles
rolling circle amplification
doxorubicin
drug delivery
pH sensitive
|
Corresponding Author(s):
Junbo Gong,Huining He,Victor C. Yang
|
Just Accepted Date: 07 April 2017
Online First Date: 10 May 2017
Issue Date: 06 November 2017
|
|
1 |
ChenW, ZhengR, BaadeP D, Zhang S, ZengH , BrayF, JemalA, YuX Q, He J. Cancer statistics in China, 2015.CA: A Cancer Journal for Clinicians, 2016, 66(2): 115–132
https://doi.org/10.3322/caac.21338
|
2 |
BillinghamM E, Bristow M R, GlatsteinE , MasonJ W, MasekM A, DanielsJ R. Adriamycin cardiotoxicity: Endomyocardial biopsy evidence of enhancement by irradiation.American Journal of Surgical Pathology, 1977, 1(1): 17–23
https://doi.org/10.1097/00000478-197701010-00002
|
3 |
Brannon-PeppasL, Blanchette J O. Nanoparticle and targeted systems for cancer therapy.Advanced Drug Delivery Reviews, 2004, 56(11): 1649–1659
https://doi.org/10.1016/j.addr.2004.02.014
|
4 |
GhoshA, HestonW D. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer.Journal of Cellular Biochemistry, 2004, 91(3): 528–539
https://doi.org/10.1002/jcb.10661
|
5 |
FarokhzadO C, JonS, KhademhosseiniA , TranT N, LavanD A, LangerR. Nanoparticle-aptamer bioconjugates: A new approach for targeting prostate cancer cells.Cancer Research, 2004, 64(21): 7668–7672
https://doi.org/10.1158/0008-5472.CAN-04-2550
|
6 |
KanwarJ, RoyK, MaremandaN, Subramanian K, VeeduR , BawaR. Nucleic acid-based aptamers: Applications, development and clinical trials.Current Medicinal Chemistry, 2015, 22(21): 2539–2557
https://doi.org/10.2174/0929867322666150227144909
|
7 |
JiaR, WangT, JiangQ, Wang Z, SongC , DingB. Self-assembled DNA nanostructures for drug delivery.Chinese Journal of Chemistry, 2016, 34(3): 265–272
https://doi.org/10.1002/cjoc.201500838
|
8 |
ZhuG, NiuG, ChenX. Aptamer-drug conjugates.Bioconjugate Chemistry, 2015, 26(11): 2186–2197
https://doi.org/10.1021/acs.bioconjchem.5b00291
|
9 |
StoltenburgR, Reinemann C, StrehlitzB . SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands.Biomolecular Engineering, 2007, 24(4): 381–403
https://doi.org/10.1016/j.bioeng.2007.06.001
|
10 |
ZhuH, LiJ, ZhangX B, Ye M, TanW . Nucleic acid aptamer—mediated drug delivery for targeted cancer therapy.ChemMedChem, 2015, 10(1): 39–45
https://doi.org/10.1002/cmdc.201402312
|
11 |
KeefeA D, PaiS, EllingtonA. Aptamers as therapeutics.Nature Reviews. Drug Discovery, 2010, 9(7): 537–550
https://doi.org/10.1038/nrd3141
|
12 |
NimjeeS M, Rusconi C P, SullengerB A . Aptamers: An emerging class of therapeutics.Annual Review of Medicine, 2005, 56(1): 555–583
https://doi.org/10.1146/annurev.med.56.062904.144915
|
13 |
PalchettiI, Mascini M. Nucleic acid biosensors for environmental pollution monitoring.Analyst (London), 2008, 133(7): 846–854
https://doi.org/10.1039/b802920m
|
14 |
LupoldS E, HickeB J, LinY, Coffey D S. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen.Cancer Research, 2002, 62(14): 4029–4033
|
15 |
DharS, GuF X, LangerR, Farokhzad O C, LippardS J . Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt (IV) prodrug-PLGA-PEG nanoparticles.Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(45): 17356–17361
https://doi.org/10.1073/pnas.0809154105
|
16 |
BagalkotV, Farokhzad O C, LangerR , JonS. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform.Angewandte Chemie International Edition, 2006, 45(48): 8149–8152
https://doi.org/10.1002/anie.200602251
|
17 |
LeeI H, AnS, YuM K, Kwon H K, ImS H . Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates.Journal of Controlled Release, 2011, 155(3): 435–441
https://doi.org/10.1016/j.jconrel.2011.05.025
|
18 |
TanL, NeohK G, KangE T, Choe W S, SuX . PEGylated anti-MUC1 aptamer-doxorubicin complex for targeted drug delivery to MCF7 breast cancer cells.Macromolecular Bioscience, 2011, 11(10): 1331–1335
https://doi.org/10.1002/mabi.201100173
|
19 |
BoyaciogluO, StuartC H, KulikG, Gmeiner W H. Dimeric DNA aptamer complexes for high-capacity-targeted drug delivery using pH-sensitive covalent linkages.Mol Therapy-Nucleic Acids, 2013, 2(1): e107
|
20 |
StuartC H, SinghR, SmithT L, D’Agostino R Jr, CaudellD , BalajiK C, Gmeiner W H. Prostate-specific membrane antigen-targeted liposomes specifically deliver the Zn(2+) chelator TPEN inducing oxidative stress in prostate cancer cells.Nanomedicine (London), 2016, 11(10): 1207–1222
https://doi.org/10.2217/nnm-2015-0017
|
21 |
FireA, XuS Q. Rolling replication of short DNA circles.Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4641–4645
https://doi.org/10.1073/pnas.92.10.4641
|
22 |
ZhaoW, AliM M, BrookM A, Li Y. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids.Angewandte Chemie International Edition, 2008, 47(34): 6330–6337
https://doi.org/10.1002/anie.200705982
|
23 |
AliM M, LiF, ZhangZ, Zhang K, KangD K , AnkrumJ A, LeX C, ZhaoW. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine.Chemical Society Reviews, 2014, 43(10): 3324–3341
https://doi.org/10.1039/c3cs60439j
|
24 |
RohY H, LeeJ B, ShopsowitzK E , DreadenE C, MortonS W, PoonZ, Hong J, YaminI , BonnerD K, Hammond P T. Layer-by-layer assembled antisense DNA microsponge particles for efficient delivery of cancer therapeutics.ACS Nano, 2014, 8(10): 9767–9780
https://doi.org/10.1021/nn502596b
|
25 |
LeeH Y, JeongH, JungI Y, Jang B, SeoY C , LeeH, LeeH. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels.Advanced Materials, 2015, 27(23): 3513–3517
https://doi.org/10.1002/adma.201500414
|
26 |
HamblinG D, Carneiro K M, FakhouryJ F , BujoldK E, Sleiman H F. Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability.Journal of the American Chemical Society, 2012, 134(6): 2888–2891
https://doi.org/10.1021/ja2107492
|
27 |
MeiL, ZhuG, QiuL, Wu C, ChenH , LiangH, CansizS, LvY, ZhangX, TanW. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery.Nano Research, 2015, 8(11): 3447–3460
https://doi.org/10.1007/s12274-015-0841-8
|
28 |
LizardiP M, HuangX, ZhuZ, Brayward P, ThomasD C , WardD C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification.Nature Genetics, 1998, 19(3): 225–232
https://doi.org/10.1038/898
|
29 |
Am HongC, JangB, JeongE H, Jeong H, LeeH . Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.Chemical Communications, 2014, 50(86): 13049–13051
https://doi.org/10.1039/C4CC03834G
|
30 |
LvY, HuR, ZhuG, Zhang X, MeiL , LiuQ, QiuL, WuC, TanW. Preparation and biomedical applications of programmable and multifunctional DNA nanoflowers.Nature Protocols, 2015, 10(10): 1508–1524
https://doi.org/10.1038/nprot.2015.078
|
31 |
ZhangL, ZhuG, MeiL, Wu C, QiuL , CuiC, LiuY, TengI T, Tan W. Self-assembled DNA immuno nanoflowers as multivalent CpG nanoagents.ACS Applied Materials & Interfaces, 2015, 7(43): 24069–24074
https://doi.org/10.1021/acsami.5b06987
|
32 |
SunW, JiangT, LuY, ReiffM, MoR, GuZ. Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery.Journal of the American Chemical Society, 2014, 136(42): 14722–14725
https://doi.org/10.1021/ja5088024
|
33 |
MalloyA. Count, size and visualize nanoparticles.Materials Today, 2011, 14(4): 170–173
https://doi.org/10.1016/S1369-7021(11)70089-X
|
34 |
ZhuG, HuR, ZhaoZ, Chen Z, ZhangX , TanW. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications.Journal of the American Chemical Society, 2013, 135(44): 16438–16445
https://doi.org/10.1021/ja406115e
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|