Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 194-208    https://doi.org/10.1007/s11705-017-1647-x
RESEARCH ARTICLE
New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate
Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank()
Department of Chemical Engineering, University of Michigan-Ann Arbor, Ann Arbor, MI 48109, USA
 Download: PDF(670 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A significant portion of the world’s population does not have access to safe drinking water. This problem is most acute in remote, resource-constrained rural settings in developing countries. Water filtration using activated carbon is one of the important steps in treating contaminated water. Lignocellulosic biomass is generally available in abundance in such locations, such as the African rain forests. Our work is focused on developing a simple method to synthesize activated biochar from locally available materials. The preparation of activated biochar with diammonium hydrogenphosphate (DAP) as the activating agent is explored under N2 flow and air. The study, carried out with cellulose as a model biomass, provides some insight into the interaction between DAP and biomass, as well as the char forming mechanism. Various characterization techniques such as N2 physisorption, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy are utilized to compare the properties between biochar formed under nitrogen and partial oxidative conditions. At a temperature of 450 °C, the loading of DAP over cellulose is systematically varied, and its effect on activation is examined. The activated biochar samples are predominantly microporous in the range of concentrations studied. The interaction of DAP with cellulose is investigated and the nature of bonding of the heteroatoms to the carbonaceous matrix is elucidated. The results indicate that the quality of biochar prepared under partial oxidation condition is comparable to that of biochar prepared under nitrogen, leading to the possibility of an activated biochar production scheme on a small scale in resource-constrained settings.

Keywords cellulose      DAP      activation      heteroatom      microporous     
Corresponding Author(s): Johannes Schwank   
Just Accepted Date: 07 April 2017   Online First Date: 23 June 2017    Issue Date: 26 February 2018
 Cite this article:   
Mohit Nahata,Chang Y. Seo,Pradeep Krishnakumar, et al. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate[J]. Front. Chem. Sci. Eng., 2018, 12(1): 194-208.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1647-x
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/194
PrecursorMass of cellulose /mgConcentration of DAP solution /(mg·mL1)Volume of DAP solution /mLDAP loading /(g DAP per 100 g cellulose)DAP content /(wt-%)
MCC-11-DAP a)10001011.111.110
MCC-50-DAP100050105033.33
MCC-75-DAP10001007.57542.85
MCC-100-DAP10001001010050
Tab.1  Explanation of concentration basis and nomenclature of the biochar precursors
Fig.1  Reactor setups used for experiments. (a) Flow-through type reactor and (b) POX reactor in an environment of ambient air with a small opening at its top. The dotted line shows the quartz insert containing the reactant
Fig.2  (a) Thermogravimetric and (b) differential thermogravimetric analysis of (A) MCC and (B) MCC-11-DAP under N2 flow
Fig.3  DRIFT spectra of various precursors of biochar (A) MCC, (B) MCC-11-DAP, (C) MCC-50-DAP, and (D) MCC-100-DAP
MCC (Literature) ν/cm1MCC (sample used in this work) ν/cm1Band assignment
898899νas (ring)(out of phase) or δCH (wag)
11581135νas C?O?C (bridge)
14291433δsCH2
16341645δOH (adsorbed water)
29002906νCH
Tab.2  Band assignment for cellulose in the DRIFT spectrum
Fig.4  Nitrogen adsorption isotherm for (A) biochar obtained by the decomposition of MCC-control sample and (B) AC-50-N2 with its associated pore size distribution
Fig.5  (a) Decomposition of (A) MCC, (B) MCC-11-DAP in air flow; (b) differential thermogravimetric (DTG) curves corresponding to Figs. 5(a) and (c) FTIR spectral snapshot of the decomposition of MCC and MCC-11-DAP at their respective peak temperatures of decomposition identified from the DTG curve
Fig.6  Nitrogen adsorption-desorption isotherms and associated pore size distributions for samples (A) AC-50-POX, (B) AC-75-POX and (C) AC-100-POX
Biochar sampleBET S.A. /(m2·g1)Micropore volume /(cm3·g1)Median micropore size/nmMesopore size /nmMesopore volume /(cm3·g1)
AC-50-POX6750.3160.564N/A0.024
AC-75-POX7830.3710.600N/A0.019
AC-100-POX7880.3580.6223.50.094
Tab.3  Textural properties of the activated biochar samples from the POX reactor
Biochar sampleC /(wt-%)O /(wt-%)N /(wt-%)P /(wt-%)
AC-50-N280.1410.774.344.75
AC-50-POX78.3112.227.382.08
AC-75-POX80.459.338.671.55
AC-100-POX74.2611.5311.093.12
Tab.4  Surface elemental composition by XPS
RegionPeakAC-50-N2 /eVAC-50-POX /eVAC-75-POX /eVAC-100-POX /eVAssignment
C 1sA284.35284.40284.42284.35Graphite
B285.19285.51285.20285.15ROH , C?O?C, C?O?P
C286.84286.78286.48286.38RCOR?, ?CN
D288.83288.36288.59288.38RCOOH, RCOOR?
E?290.12?290.43ππ*
O 1sA530.73530.88530.78530.67=O in carbonyl, carboxyl and phosphates
B532.47532.71532.48532.36?O?
C535.95536.17536.00535.69Chemisorbed O
N 1sA398.27398.25398.28398.23Pyridinic-N
B400.21400.22400.29400.05Pyrrole, Pyridones, ?CN
C?404.11403.46403.40?N?Oa)
P 2pA?130.20129.44?Elemental P
B132.88132.91133.26133.11Phosphates and pyrophosphates
C?133.93?134.11Metaphosphates
D135.86136.19135.55135.53P2O5
Tab.5  Deconvolution results of various samples of activated biochar
Fig.7  High-resolution XPS deconvolution spectra for (a) C 1s, (b) O 1s, (c) N 1s and (d) P 2p excitations
Fig.8  Low magnification SEM micrographs of (a) AC-50-N2, (b) AC-50-POX, (c) AC-50-N2 and (d) AC-50-POX showing the morphology of the samples
Fig.9  High magnification SEM micrographs of (a) AC-50-N2, (b) AC-50-POX, (c) AC-50-N2 and (d) AC-50-POX showing the morphology of the samples
Fig.10  HRTEM micrographs of (a) AC-50-N2, (b) AC-50-POX, (c) AC-50-N2 and (d) AC-50-POX
Fig.11  Deconvoluted Raman spectra of (a) AC-50-N2, (b) AC-50-POX, (c) AC-75-POX and (d) AC-100-POX showing the D, G bands and the values of I(D)/I(G)
Fig.12  Adsorption isotherms at room temperature showing the uptake of (a) Mn and (b) methylene blue for samples (A) AC-50-POX and (B) commercial beaded activated carbon (BAC)
1 Collard F X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews, 2014, 38: 594–608
https://doi.org/10.1016/j.rser.2014.06.013
2 Antal M J, Grønli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619–1640
https://doi.org/10.1021/ie0207919
3 Downie A E, Van Zwieten L, Smernik R J, Morris S, Munroe P R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture, Ecosystems & Environment, 2011, 140(1): 137–147
https://doi.org/10.1016/j.agee.2010.11.020
4 Huggins T M, Haeger A, Biffinger J C, Ren Z J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research, 2016, 94: 225–232
https://doi.org/10.1016/j.watres.2016.02.059
5 Rodríguez-Reinoso F, Molina-Sabio M, González M T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon, 1995, 33(1): 15–23
https://doi.org/10.1016/0008-6223(94)00100-E
6 Caturla F, Molina-Sabio M, Rodríguez-Reinoso F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991, 29(7): 999–1007
https://doi.org/10.1016/0008-6223(91)90179-M
7 Molina-Sabio M, Almansa C, Rodríguez-Reinoso F. Phosphoric acid activated carbon discs for methane adsorption. Carbon, 2003, 41(11): 2113–2119
https://doi.org/10.1016/S0008-6223(03)00237-9
8 Yoon S H, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon, 2004, 42(8): 1723–1729
https://doi.org/10.1016/j.carbon.2004.03.006
9 Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 1998, 36(7): 1085–1097
https://doi.org/10.1016/S0008-6223(98)00082-7
10 Molina-Sabio M, Rodríguez-Reinoso F, Caturla F, Sellés M J. Porosity in granular carbons activated with phosphoric acid. Carbon, 1995, 33(8): 1105–1113
https://doi.org/10.1016/0008-6223(95)00059-M
11 Fitzer E, Geigl K H, Hüttner W, Weiss R. Chemical interactions between the carbon fibre surface and epoxy resins. Carbon, 1980, 18(6): 389–393
https://doi.org/10.1016/0008-6223(80)90029-9
12 Puziy A, Poddubnaya O, Martínez-Alonso A, Suárez-García F, Tascón J M. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon, 2002, 40(9): 1493–1505
https://doi.org/10.1016/S0008-6223(01)00317-7
13 Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828
https://doi.org/10.1002/adma.200902812
14 Hu B, Yu S H, Wang K, Liu L, Xu X W. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Transactions (Cambridge, England), 2008, 40(40): 5414–5423
https://doi.org/10.1039/b804644c
15 Benaddi H, Bandosz T, Jagiello J, Schwarz J, Rouzaud J, Legras D, Béguin F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, 38(5): 669–674
https://doi.org/10.1016/S0008-6223(99)00134-7
16 Mohan D, Pittman Charles U, Steele P H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 2006, 20(3): 848–889
https://doi.org/10.1021/ef0502397
17 Di Blasi C, Branca C, Galgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemistry Research, 2007, 46(2): 430–438
https://doi.org/10.1021/ie0612616
18 Ilharco L M, Garcia A R, Lopes da Silva J, Vieira Ferreira L F. Infrared approach to the study of adsorption on cellulose: Influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir, 1997, 13(15): 4126–4132
https://doi.org/10.1021/la962138u
19 Bouchard J, Abatzoglou N, Chornet E, Overend R P. Characterization of depolymerized cellulosic residues. Wood Science and Technology, 1989, 23(4): 343–355
https://doi.org/10.1007/BF00353250
20 Branca C, Di B C. Oxidation characteristics of chars generated from wood impregnated with (NH4)2HPO4 and (NH4)2SO4. Thermochimica Acta, 2007, 456(2): 120–127
https://doi.org/10.1016/j.tca.2007.02.009
21 Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
22 Molina-Sabio M, Rodríguez-Reinoso F. Role of chemical activation in  the  development  of  carbon  porosity. Colloids  and  Surfaces. A,  Physicochemical  and  Engineering Aspects,  2004,  241(1):  15–25
https://doi.org/10.1016/j.colsurfa.2004.04.007
23 Oshida K, Kogiso K, Matsubayashi K, Takeuchi K, Kobayashi S, Endo M, Dresselhaus M S, Dresselhaus G. Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing. Journal of Materials Research, 1995, 10(10): 2507–2517
https://doi.org/10.1557/JMR.1995.2507
24 Puziy A M, Poddubnaya O I, Socha R P, Gurgul J, Wisniewski M. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46(15): 2113–2123
https://doi.org/10.1016/j.carbon.2008.09.010
25 Kannan A G, Choudhury N R, Dutta N K. Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications. Polymer, 2007, 48(24): 7078–7086
https://doi.org/10.1016/j.polymer.2007.09.050
26 Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33(11): 1641–1653
https://doi.org/10.1016/0008-6223(95)00154-6
27 Sethia G, Sayari A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon, 2015, 93: 68–80
https://doi.org/10.1016/j.carbon.2015.05.017
28 Pelavin M, Hendrickson D N, Hollander J M, Jolly W L. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. Journal of Physical Chemistry, 1970, 74(5): 1116–1121
https://doi.org/10.1021/j100700a027
29 Marsh H, Rodríguez-Reinoso F. Activated carbon. Elsevier, 2006, 224–225
30 Zhou Y, Candelaria S L, Liu Q, Uchaker E, Cao G. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577
https://doi.org/10.1016/j.nanoen.2015.01.026
31 Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33(11): 1561–1565
https://doi.org/10.1016/0008-6223(95)00117-V
32 Shimodaira N, Masui A. Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics, 2002, 92(2): 902–909
https://doi.org/10.1063/1.1487434
[1] Bangxian Peng, Rusen Zhou, Ying Chen, Song Tu, Yingwu Yin, Liyi Ye. Immobilization of nano-zero-valent irons by carboxylated cellulose nanocrystals for wastewater remediation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1006-1017.
[2] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[3] Maria L. Odyniec, Jordan E. Gardiner, Adam C. Sedgwick, Xiao-Peng He, Steven D. Bull, Tony D. James. Dual enzyme activated fluorescein based fluorescent probe[J]. Front. Chem. Sci. Eng., 2020, 14(1): 117-121.
[4] Songshan Jiang, Helen Daly, Huan Xiang, Ying Yan, Huiping Zhang, Christopher Hardacre, Xiaolei Fan. Microwave-assisted catalyst-free hydrolysis of fibrous cellulose for deriving sugars and biochemicals[J]. Front. Chem. Sci. Eng., 2019, 13(4): 718-726.
[5] Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Front. Chem. Sci. Eng., 2019, 13(1): 46-58.
[6] Peiwen Liu, Carsten Mai, Kai Zhang. Preparation of hydrogels with uniform and gradient chemical structures using dialdehyde cellulose and diamine by aerating ammonia gas[J]. Front. Chem. Sci. Eng., 2018, 12(3): 383-389.
[7] Hong Xu, Yulin Dai, Honghai Cao, Jinglei Liu, Li Zhang, Mingjie Xu, Jun Cao, Peng Xu, Jianshu Liu. Tubes with coated and sintered porous surface for highly efficient heat exchangers[J]. Front. Chem. Sci. Eng., 2018, 12(3): 367-375.
[8] Bozhen Wu, Biyao Geng, Yufei Chen, Hongzhi Liu, Guangyao Li, Qiang Wu. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films[J]. Front. Chem. Sci. Eng., 2017, 11(4): 554-563.
[9] Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia. Alkali-thermal gasification and hydrogen generation potential of biomass[J]. Front. Chem. Sci. Eng., 2017, 11(3): 369-378.
[10] Renxing Wang,Zhenyu Liu,Leiming Ji,Xiaojin Guo,Xi Lin,Junfei Wu,Qingya Liu. Reaction kinetics of CaC2 formation from powder and compressed feeds[J]. Front. Chem. Sci. Eng., 2016, 10(4): 517-525.
[11] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[12] Min Liu,Shenghui Liu,Zhenliang Xu,Yongming Wei,Hu Yang. Formation of microporous polymeric membranes via thermally induced phase separation: A review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 57-75.
[13] Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(4): 461-466.
[14] Xiaoxue SUN,Yuzhu SUN,Jianguo YU. Leaching of aluminum from coal spoil by mechanothermal activation[J]. Front. Chem. Sci. Eng., 2015, 9(2): 216-223.
[15] Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor[J]. Front Chem Sci Eng, 2013, 7(2): 202-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed