|
|
Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis |
Jiang-Wei Shen1,2, Xue Cai1,2, Bao-Juan Dou1,2, Feng-Yu Qi1,2, Xiao-Jian Zhang1,2, Zhi-Qiang Liu1,2( ), Yu-Guo Zheng1,2 |
1. The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, China 2. Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China |
|
|
Abstract A lipase from Sporisorium reilianum SRZ2 (SRL) with 73% amino acid sequence identity to Candida antarctica lipase B (CALB) was cloned and overexpressed in Pichia pastoris. The recombinant SRL showed a preference for short-chain p-nitrophenyl esters. It achieved maximum activity at pH 8.0 and 65°C for p-nitrophenyl hexanoate (C6) with Km and kcat/Km values of 0.14 mmol∙L−1 and 1712 min−1∙mmol∙L−1 at 30°C, respectively. SRL displayed excellent thermostability and pH stability, retaining more than 79% of its initial activity after incubation at 60°C for 72 h and 75% at pH 3 to 11 for 72 h. It also maintained most of its activity in the presence of inhibitors and detergents except sodium dodecyl sulfate, and it tolerated organic solvents. SRL was covalently immobilized and successfully used for ethyl hexanoate synthesis in cyclohexane or in a solvent-free system with a high conversion yield (>95%). Furthermore, high conversion yield was also achieved for the synthesis of various short-chain flavor esters when high substrate concentrations of 2 mol∙L−1 were applied. This study indicated that a CALB-type lipase from S. reilianum SRZ2 showed great potential in organic ester synthesis.
|
Keywords
lipase
Sporisorium reilianum
biochemical characterization
short-chain flavor ester
solvent-free system
|
Corresponding Author(s):
Zhi-Qiang Liu
|
Just Accepted Date: 19 December 2019
Online First Date: 12 March 2020
Issue Date: 25 May 2020
|
|
1 |
P Adlercreutz. Immobilisation and application of lipases in organic media. Chemical Society Reviews, 2013, 42(15): 6406–6436
https://doi.org/10.1039/c3cs35446f
|
2 |
P Y Stergiou, A Foukis, M Filippou, M Koukouritaki, M Parapouli, L G Theodorou, E Hatziloukas, A Afendra, A Pandey, E M Papamichael. Advances in lipase-catalyzed esterification reactions. Biotechnology Advances, 2013, 31(8): 1846–1859
https://doi.org/10.1016/j.biotechadv.2013.08.006
|
3 |
T Tan, J Lu, K Nie, L Deng, F Wang. Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 2010, 28(5): 628–634
https://doi.org/10.1016/j.biotechadv.2010.05.012
|
4 |
R Fernández-Lafuente. Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis. B, Enzymatic, 2010, 62(3-4): 197–212
https://doi.org/10.1016/j.molcatb.2009.11.010
|
5 |
S Javed, F Azeem, S Hussain, I Rasul, M H Siddique, M Riaz, M Afzal, A Kouser, H Nadeem. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 2018, 132: 23–34
https://doi.org/10.1016/j.pbiomolbio.2017.07.014
|
6 |
E M Anderson, K M Larsson, O Kirk. One biocatalyst—many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatalysis and Biotransformation, 1998, 16(3): 181–204
https://doi.org/10.3109/10242429809003198
|
7 |
C Buerth, F Kovacic, J Stock, M Terfruchte, S Wilhelm, K E Jaeger, M Feldbrugge, K Schipper, J F Ernst, D Tielker. Uml2 is a novel CalB-type lipase of Ustilago maydis with phospholipase A activity. Applied Microbiology and Biotechnology, 2014, 98(11): 4963–4973
https://doi.org/10.1007/s00253-013-5493-6
|
8 |
M E Vaquero, L I de Eugenio, M J Martinez, J Barriuso. A novel calb-type lipase discovered by fungal genomes mining. PLoS One, 2015, 10(4): e0124882
https://doi.org/10.1371/journal.pone.0124882
|
9 |
S Park. Exploration and functional expression of homologous lipases of Candida antarctica lipase B. Korean Journal of Microbiology, 2015, 51(3): 187–193
https://doi.org/10.7845/kjm.2015.5037
|
10 |
K P Dhake, D D Thakare, B M Bhanage. Lipase: A potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour and Fragrance Journal, 2013, 28(2): 71–83
https://doi.org/10.1002/ffj.3140
|
11 |
A G A Sá, A C Meneses, P H H Araújo, D Oliveira. A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries. Trends in Food Science & Technology, 2017, 69: 95–105
https://doi.org/10.1016/j.tifs.2017.09.004
|
12 |
S Serra, C Fuganti, E Brenna. Biocatalytic preparation of natural flavours and fragrances. Trends in Biotechnology, 2005, 23(4): 193–198
https://doi.org/10.1016/j.tibtech.2005.02.003
|
13 |
W Gao, K Wu, L Chen, H Fan, Z Zhao, B Gao, H Wang, D Wei. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microbial Cell Factories, 2016, 15(1): 41
https://doi.org/10.1186/s12934-016-0435-5
|
14 |
H D Yan, Q Zhang, Z Wang. Biocatalytic synthesis of short-chain flavor esters with high substrate loading by a whole-cell lipase from Aspergillus oryzae. Catalysis Communications, 2014, 45: 59–62
https://doi.org/10.1016/j.catcom.2013.10.018
|
15 |
P Lozano, J M Bernal, A Navarro. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chemistry, 2012, 14(11): 3026–3033
https://doi.org/10.1039/c2gc36081k
|
16 |
A B Martins, J L Friedrich, J C Cavalheiro, C Garcia-Galan, O Barbosa, M A Ayub, R Fernández-Lafuente, R C Rodrigues. Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene-divinylbenzene beads. Bioresource Technology, 2013, 134: 417–422
https://doi.org/10.1016/j.biortech.2013.02.052
|
17 |
Y G Zheng, H H Yin, D F Yu, X Chen, X L Tang, X J Zhang, Y P Xue, Y J Wang, Z Q Liu. Recent advances in biotechnological applications of alcohol dehydrogenases. Applied Microbiology and Biotechnology, 2017, 101(3): 987–1001
https://doi.org/10.1007/s00253-016-8083-6
|
18 |
Z Q Liu, L Wu, L Zheng, W Z Wang, X J Zhang, L Q Jin, Y G Zheng. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media. Bioresource Technology, 2018, 249: 161–167
https://doi.org/10.1016/j.biortech.2017.09.204
|
19 |
Z Q Liu, M M Lu, X H Zhang, F Cheng, J M Xu, Y P Xue, L Q Jin, Y S Wang, Y G Zheng. Significant improvement of the nitrilase activity by semi-rational protein engineering and its application in the production of iminodiacetic acid. International Journal of Biological Macromolecules, 2018, 116: 563–571
https://doi.org/10.1016/j.ijbiomac.2018.05.045
|
20 |
D S Dheeman, G T Henehan, J M Frias. Purification and properties of Amycolatopsis mediterranei DSM 43304 lipase and its potential in flavour ester synthesis. Bioresource Technology, 2011, 102(3): 3373–3379
https://doi.org/10.1016/j.biortech.2010.11.074
|
21 |
Y Wang, D H Zhang, N Chen, G Y Zhi. Synthesis of benzyl cinnamate by enzymatic esterification of cinnamic acid. Bioresource Technology, 2015, 198: 256–261
https://doi.org/10.1016/j.biortech.2015.09.028
|
22 |
Y H Kim, S Park. Surveying enantioselectivity of two Candida antarctica-lipase-B homologs towards chiral sec-alcohols. Bulletin of the Korean Chemical Society, 2017, 38(11): 1358–1361
https://doi.org/10.1002/bkcs.11289
|
23 |
Z Q Liu, X B Zheng, S P Zhang, Y G Zheng. Cloning, expression and characterization of a lipase gene from the Candida antarctica ZJB09193 and its application in biosynthesis of vitamin A esters. Microbiological Research, 2012, 167(8): 452–460
https://doi.org/10.1016/j.micres.2011.12.004
|
24 |
J W Shen, J M Qi, X J Zhang, Z Q Liu, Y G Zheng. Significantly increased catalytic activity of Candida antarctica lipase B for the resolution of cis-(±)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate. Catalysis Science & Technology, 2018, 8(18): 4718–4725
https://doi.org/10.1039/C8CY01340C
|
25 |
U K Winkler. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 1979, 138: 663–670
|
26 |
A B Martins, A M da Silva, M F Schein, C Garcia-Galan, M A Záchia Ayub, R Fernández-Lafuente, R C Rodrigues. Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. Journal of Molecular Catalysis. B, Enzymatic, 2014, 105: 18–25
https://doi.org/10.1016/j.molcatb.2014.03.021
|
27 |
V Juturu, J C Wu. Heterologous protein expression in Pichia pastoris: Latest research progress and applications. ChemBioChem, 2018, 19(1): 7–21
https://doi.org/10.1002/cbic.201700460
|
28 |
G T Eom, S H Lee, B K Song, K W Chung, Y W Kim, J K Song. High-level extracellular production and characterization of Candida antarctica lipase B in Pichia pastoris. Journal of Bioscience and Bioengineering, 2013, 116(2): 165–170
https://doi.org/10.1016/j.jbiosc.2013.02.016
|
29 |
I B B Romdhane, A Fendri, Y Gargouri, A Gargouri, H Belghith. A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochemical Engineering Journal, 2010, 53(1): 112–120
https://doi.org/10.1016/j.bej.2010.10.002
|
30 |
Y Y Zheng, X H Guo, N N Song, D C Li. Thermophilic lipase from Thermomyces lanuginosus: Gene cloning, expression and characterization. Journal of Molecular Catalysis. B, Enzymatic, 2011, 69(3-4): 127–132
https://doi.org/10.1016/j.molcatb.2011.01.006
|
31 |
X F Zhang, G Y Yang, Y Zhang, Y Xie, S G Withers, Y Feng. A general and efficient strategy for generating the stable enzymes. Scientific Reports, 2016, 6(1): 33797
https://doi.org/10.1038/srep33797
|
32 |
X F Zhang, Y H Ai, Y Xu, X W Yu. High-level expression of Aspergillus niger lipase in Pichia pastoris: Characterization and gastric digestion in vitro. Food Chemistry, 2019, 274: 305–313
https://doi.org/10.1016/j.foodchem.2018.09.020
|
33 |
W Xie, M Huang. Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 2018, 159: 42–53
https://doi.org/10.1016/j.enconman.2018.01.021
|
34 |
A Hiol, M D Jonzo, N Rugani, D Druet, L Sarda, L C Comeau. Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit. Enzyme and Microbial Technology, 2000, 26(5-6): 421–430
https://doi.org/10.1016/S0141-0229(99)00173-8
|
35 |
M Kohno, W Kugimiya, Y Hashimoto, Y Morita. Purification, characterization, and crystallization of two types of lipase from Rhizopus niveus. Bioscience, Biotechnology, and Biochemistry, 1994, 58(6): 1007–1012
https://doi.org/10.1271/bbb.58.1007
|
36 |
T Florczak, M Daroch, M C Wilkinson, A Bialkowska, A D Bates, M Turkiewicz, L A Iwanejko. Purification, characterisation and expression in Saccharomyces cerevisiae of LipG7 an enantioselective, cold-adapted lipase from the Antarctic filamentous fungus Geomyces sp. P7 with unusual thermostability characteristics. Enzyme and Microbial Technology, 2013, 53(1): 18–24
https://doi.org/10.1016/j.enzmictec.2013.03.021
|
37 |
L D Castro-Ochoa, C Rodríguez-Gómez, G Valerio-Alfaro, R Oliart Ros. Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology, 2005, 37(6): 648–654
https://doi.org/10.1016/j.enzmictec.2005.06.003
|
38 |
Q Sun, H Wang, H Zhang, H Luo, P Shi, Y Bai, F Lu, B Yao, H Huang. Heterologous production of an acidic thermostable lipase with broad-range pH activity from thermophilic fungus Neosartorya fischeri P1. Journal of Bioscience and Bioengineering, 2016, 122(5): 539–544
https://doi.org/10.1016/j.jbiosc.2016.05.003
|
39 |
Z B Bakir, K Metin. Purification and characterization of an alkali-thermostable lipase from thermophilic Anoxybacillus flavithermus HBB 134. Journal of Microbiology and Biotechnology, 2016, 26(6): 1087–1097
https://doi.org/10.4014/jmb.1512.12056
|
40 |
M D R Sanchez-Carbente, R A Batista-Garcia, A Sanchez-Reyes, A Escudero-Garcia, C Morales-Herrera, L I Cuervo-Soto, L French-Pacheco, A Fernández-Silva, C Amero, E Castillo, J L Folch-Mallol. The first description of a hormone-sensitive lipase from a basidiomycete: Structural insights and biochemical characterization revealed Bjerkandera adusta BaEstB as a novel esterase. MicrobiologyOpen, 2017, 6(4): e00463
https://doi.org/10.1002/mbo3.463
|
41 |
R Jallouli, G Parsiegla, F Carriere, Y Gargouri, S Bezzine. Efficient heterologous expression of Fusarium solani lipase, FSL2, in Pichia pastoris, functional characterization of the recombinant enzyme and molecular modeling. International Journal of Biological Macromolecules, 2017, 94: 61–71
https://doi.org/10.1016/j.ijbiomac.2016.09.030
|
42 |
X Zheng, X Chu, W Zhang, N Wu, Y Fan. A novel cold-adapted lipase from Acinetobacter sp. XMZ-26: Gene cloning and characterisation. Applied Microbiology and Biotechnology, 2011, 90(3): 971–980
https://doi.org/10.1007/s00253-011-3154-1
|
43 |
A Gricajeva, V Bendikiene, L Kalediene. Lipase of Bacillus stratosphericus L1: Cloning, expression and characterization. International Journal of Biological Macromolecules, 2016, 92(3): 96–104
https://doi.org/10.1016/j.ijbiomac.2016.07.015
|
44 |
W Yang, Y He, L Xu, H Zhang, Y Yan. A new extracellular thermo-solvent-stable lipase from Burkholderia ubonensis SL-4: Identification, characterization and application for biodiesel production. Journal of Molecular Catalysis. B, Enzymatic, 2016, 126: 76–89
https://doi.org/10.1016/j.molcatb.2016.02.005
|
45 |
R Bancerz, G Ginalska. Ginalska G. A novel thermostable lipase from basidiomycete Bjerkandera adusta R59: characterisation and esterification studies. Journal of Industrial Microbiology & Biotechnology, 2007, 34(8): 553–560
https://doi.org/10.1007/s10295-007-0232-6
|
46 |
S Malekabadi, A Badoei-Dalfard, Z Karami. Biochemical characterization of a novel cold-active, halophilic and organic solvent-tolerant lipase from B. licheniformis KM12 with potential application for biodiesel production. International Journal of Biological Macromolecules, 2018, 109: 389–398
https://doi.org/10.1016/j.ijbiomac.2017.11.173
|
47 |
A Glogauer, V P Martini, H Faoro, G H Couto, M Muller-Santos, R A Monteiro, D A Mitchell, E M de Souza, F O Pedrosa, N Krieger. Identification and characterization of a new true lipase isolated through metagenomic approach. Microbial Cell Factories, 2011, 10(1): 54
https://doi.org/10.1186/1475-2859-10-54
|
48 |
K Ramani, E Chockalingam, G Sekaran. Production of a novel extracellular acidic lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. Journal of Industrial Microbiology & Biotechnology, 2010, 37(5): 531–535
https://doi.org/10.1007/s10295-010-0700-2
|
49 |
A Salihu, M Z Alam. Solvent tolerant lipases: A review. Process Biochemistry, 2015, 50(1): 86–96
https://doi.org/10.1016/j.procbio.2014.10.019
|
50 |
S Dutta Banik, M Nordblad, J M Woodley, G H Peters. A correlation between the activity of Candida antarctica lipase B and differences in binding free energies of organic solvent and substrate. ACS Catalysis, 2016, 6(10): 6350–6361
https://doi.org/10.1021/acscatal.6b02073
|
51 |
Z Jin, J Ntwali, S Y Han, S P Zheng, Y Lin. Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor. Journal of Biotechnology, 2012, 159(1-2): 108–114
https://doi.org/10.1016/j.jbiotec.2012.02.013
|
52 |
S Y Han, Z Y Pan, D F Huang, M Ueda, X N Wang, Y Lin. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase. Journal of Molecular Catalysis. B, Enzymatic, 2009, 59(1-3): 168–172
https://doi.org/10.1016/j.molcatb.2009.02.007
|
53 |
J W Shen, J M Qi, X J Zhang, Z Q Liu, Y G Zheng. Efficient resolution of cis-(±)-dimethyl 1-acetylpiperidine-2,3-dicarboxylate by covalently immobilized mutant Candida antarctica lipase B in batch and semi-continuous modes. Organic Process Research & Development, 2019, 23(5): 1017–1025
https://doi.org/10.1021/acs.oprd.9b00066
|
54 |
X J Zhang, P X Shi, H Z Deng, X X Wang, Z Q Liu, Y G Zheng. Biosynthesis of chiral epichlorohydrin using an immobilized halohydrin dehalogenase in aqueous and non-aqueous phase. Bioresource Technology, 2018, 263: 483–490
https://doi.org/10.1016/j.biortech.2018.05.027
|
55 |
E Onoja, S Chandren, F I A Razak, R A Wahab. Enzymatic synthesis of butyl butyrate by Candida rugosa lipase supported on magnetized-nanosilica from oil palm leaves: Process optimization, kinetic and thermodynamic study. Journal of The Taiwan Institute of Chemical Engineers, 2018, 91: 105–118
https://doi.org/10.1016/j.jtice.2018.05.049
|
56 |
X Duan, Y Liu, X You, Z Jiang, S Yang, S Yang. High-level expression and characterization of a novel cutinase from Malbranchea cinnamomea suitable for butyl butyrate production. Biotechnology for Biofuels, 2017, 10(1): 223
https://doi.org/10.1186/s13068-017-0912-z
|
57 |
B Chen, H Liu, Z Guo, J Huang, M Wang, X Xu, L Zheng. Lipase-catalyzed esterification of ferulic acid with oleyl alcohol in ionic liquid/isooctane binary systems. Journal of Agricultural and Food Chemistry, 2011, 59(4): 1256–1263
https://doi.org/10.1021/jf104101z
|
58 |
G V Chowdary, S G Prapulla. Enzymatic synthesis of ethyl hexanoate by transesterification. International Journal of Food Science & Technology, 2003, 38(2): 127–133
https://doi.org/10.1046/j.1365-2621.2003.00653.x
|
59 |
N Musa, W Latip, R Abd Rahman, A Salleh, M Mohamad Ali. Immobilization of an Antarctic Pseudomonas AMS8 lipase for low temperature ethyl hexanoate synthesis. Catalysts, 2018, 8(6): 234
https://doi.org/10.3390/catal8060234
|
[1] |
Electronic Supplementary Material
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|