Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 18-34    https://doi.org/10.1007/s11705-020-1939-4
REVIEW ARTICLE
Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications
Wenjie Sun1, Jiale Mao1, Shuang Wang1, Lei Zhang1,2(), Yonghong Cheng1()
1. State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
2. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
 Download: PDF(1710 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polymer-based dielectric capacitors are widely-used energy storage devices. However, although the functions of dielectrics in applications like high-voltage direct current transmission projects, distributed energy systems, high-power pulse systems and new energy electric vehicles are similar, their requirements can be quite different. Low electric loss is a critical prerequisite for capacitors for electric grids, while high-temperature stability is an essential pre-requirement for those in electric vehicles. This paper reviews recent advances in this area, and categorizes dielectrics in terms of their foremost properties related to their target applications. Requirements for polymer-based dielectrics in various power electronic equipment are emphasized, including high energy storage density, low dissipation, high working temperature and fast-response time. This paper considers innovations including chemical structure modification, composite fabrication and structure re-design, and the enhancements to material performances achieved. The advantages and limitations of these methods are also discussed.

Keywords dielectric capacitors      polymer-based dielectrics      energy density      dielectric loss      working temperature      frequency response     
Corresponding Author(s): Lei Zhang,Yonghong Cheng   
Just Accepted Date: 11 May 2020   Online First Date: 30 June 2020    Issue Date: 12 January 2021
 Cite this article:   
Wenjie Sun,Jiale Mao,Shuang Wang, et al. Review of recent advances of polymer based dielectrics for high-energy storage in electronic power devices from the perspective of target applications[J]. Front. Chem. Sci. Eng., 2021, 15(1): 18-34.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1939-4
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/18
Fig.1  Application of dielectric capacitors in various fields, including HVDC projects, distributed energy networks, new energy vehicles, laser weapons and pulse power systems.
Fig.2  Different types of polarization of frequency in polymers, adapted from [21]. NB ε' denotes dielectric constant and ε?? denotes dielectric loss.
Fig.3  Schematic illustrations of the three typical D-E curves. The black line and the red line show the charge and discharge pathway, respectively. The blue area and grey area represent charging energy density and loss energy density, respectively. Eb is the breakdown field strength of dielectrics materials.
Material ?[X]m?[Y]n?[Z]p?
?X? ?Y? ?Z?
PVDF ?CH2?CF2? ? ?
P(VDF-TrFE) ?CH2?CF2? ?CH2?CHF? ?
P(VDF-HFP) ?CH2?CF2? ?CH2?C(CH3)F? ?
P(VDF-BTFE) ?CH2?CF2? ?CH2?CFBr? ?
P(VDF-CTFE) ?CH2?CF2? ?CH2?CFCl? ?
P(VDF-TrFE-CTFE) ?CH2?CF2? ?CH2?CHF? ?CF2?CFCl?
P(VDF-TrFE-CFE) ?CH2?CF2? ?CH2?CHF? ?CH2?CFCl?
Tab.1  Structural formula of PVDF-based polymers, binary copolymers and ternary copolymers
Fig.4  Chemical structures of the pristine polymers before and after modification.
Ceramic fillers Polymer εa) Filler/vol-% εb) Energy storage density/(J?cm−3) Ref.
BT P(VDF-HFP) ~5 30 ~20 9.7 [47]
BaSrTiO3 P(VDF-CTFE) ~13 40 ~38 7.5 [50]
SrTiO3 PVDF ~10 10 ~18 9.1 [51]
Pb(Mg1/3Nb2/3)O3-PbTiO3 P(VDF-TrFE) ~18 40 ~100 ? [55]
NNBT PVDF ~10 10 ~100 ? [56]
Tab.2  Volume fractions of some typical ceramic fillers for improving the dielectric constant of composites, and the dielectric constants of the composites
Fig.5  Schematics of (a) Tanaka’s model and (b) Lewis’s model.
Fig.6  Schematic representation of the process of synthesizing polyaniline-coated coupling agent functionalized iron powder PANI-CIP core-shell composite (A); TEM images of PANI-CIP (B). Reprinted with permission from Ref. [71]. Copyright 2018, Elsevier.
Fig.7  Schematic diagram of the HVDC transmission project, including AC-DC converter station, DC transmission line and DC-AC converter station.
Fig.8  Breakdown strength and energy storage density of polymer-based dielectrics prepared via different methods. The grey icons indicate methods of improving breakdown field strength by adding filler without modification; the blue icons represent methods involving addition of modified filler; and, red icons indicate methods of constructing multi-layered structures.
Fig.9  Weibull distribution of breakdown strength for (a) c-PVDF/BTs, and (b) PVDF/PDA@BTs with different particle compositions at room temperature. Reprinted with permission from Ref. [82]. Copyright 2017, American Chemical Society.
Number of layers Scheme Materials Eb/(MV?m−1) We/(J?cm−3) Ref.
Sandwich structure 1:20 vol-% BT-PVDF
2:1 vol-% BT-PVDF
470 18.8 [84]
1:PVDF
2:PTCF
408 8.7 [40]
1:1 vol-% NBT-PVDF
2:PVDF
410 12.5 [86]
Multiple layers 16-Layers P(VDF-HFP)
P(VDF-TrFE-CFE)
637.5 22.6 [89]
32-Layers PET
P(VDF-TFE)
~1000 16 [87]
Tab.3  Previous research results on improving breakdown strength through by layer-structure design
Fig.10  Schematic diagram of new energy electric vehicles’ energy conversion.
Fig.11  Common polymer dielectrics and their thermal endurance indices.
Polymer ε tand The highest working temperature/°C Discharge efficiency
PC 3.2 0.0013 125 ~90%
PI 3.1 ~0.017 200 94%
PEI 3.2 0.01 200 96%
FPE 3.5 0.0025 200 ?
PEEK 3.2 0.004 150 ~90%
Tab.4  Physical properties of polymers with high temperature stability
Fig.12  Methods for improving the energy storage density of PI.
Fig.13  Schematic diagram of Marx pulse bank and nanosecond pulse waveform.
Performance Physical parameters Methods Application
High energy density ε High polar group
High permittivity filler
Conductive/semi-conductive filler
Surface modified filler
Multi-layer structure
HVDC project
Distributed energy
New energy vehicles
High power pulse system
Eb
Low dielectric loss tan d Multi-layered structure
Blending/hybridization.
HVDC project
Distributed energy (photovoltaic power/wind power)
High working temperature Working T Polymer chain design
Inter-chain design (hydrogen bonding/crosslinking)
New energy vehicles
Fast frequency response Working frequency Filler design and doping
Introduction of high polar atoms and bonds
High power pulse system (inertial restraint, laser weapons, etc.)
Tab.5  Methods and future application areas of polymer-based energy storage materials (with particular emphasis on different performances and properties)
1 F Amri. Renewable and non-renewable categories of energy consumption and trade: Do the development degree and the industrialization degree matter? Energy, 2019, 173: 374–383
https://doi.org/10.1016/j.energy.2019.02.114
2 D P Tabor, L M Roch, S K Saikin, C Kreistoph, D Sheberla, J H Montoya, S Dwaraknath, M Aykol, C Ortiz, H Tribukait, et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nature Reviews. Materials, 2018, 3(5): 5–20
https://doi.org/10.1038/s41578-018-0005-z
3 K Beltrop, S Beuker, A Heckmann, M Winter, T Placke. Alternative electrochemical energy storage: Potassium-based dual-graphite batteries. Energy & Environmental Science, 2017, 10(10): 2090–2094
https://doi.org/10.1039/C7EE01535F
4 J Wu, Z Pan, Y Zhang, B Wang, H Peng. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 12932–12944
https://doi.org/10.1039/C8TA03968B
5 K Fic, A Platek, J Piwek, E Frackowiak. Sustainable materials for electrochemical capacitors. Materials Today, 2018, 21(4): 437–454
https://doi.org/10.1016/j.mattod.2018.03.005
6 A González, E Goikolea, J A Barrena, R Mysyk. Review on supercapacitors: Technologies and materials. Renewable & Sustainable Energy Reviews, 2016, 58: 1189–1206
https://doi.org/10.1016/j.rser.2015.12.249
7 A Eftekhari. The mechanism of ultrafast supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(7): 2866–2876
https://doi.org/10.1039/C7TA10013B
8 S Niaz, T Manzoor, A H Pandith. Hydrogen storage: Materials, methods and perspectives. Renewable & Sustainable Energy Reviews, 2015, 50: 457–469
https://doi.org/10.1016/j.rser.2015.05.011
9 H Barthelemy, M Weber, F Barbier. Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 2017, 42(11): 7254–7262
https://doi.org/10.1016/j.ijhydene.2016.03.178
10 A Ahmed, S Seth, J Purewal, A G Wong-Foy, M Veenstra, A J Matzger, D J Siegel. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nature Communications, 2019, 10(1): 1568
https://doi.org/10.1038/s41467-019-09365-w
11 Y Xue, X P Zhang, C Yang. Series capacitor compensated AC filterless flexible LCC HVDC with enhanced power transfer under unbalanced faults. IEEE Transactions on Power Systems, 2019, 34(4): 3069–3080
https://doi.org/10.1109/TPWRS.2019.2899065
12 X Yuan, X Liu, J Zuo. The development of new energy vehicles for a sustainable future: A review. Renewable & Sustainable Energy Reviews, 2015, 42: 298–305
https://doi.org/10.1016/j.rser.2014.10.016
13 N Satyanarayana, R K Rajawat, S Basu, A Durga Prasad Rao, K C Mittal. High power microwaves generation from intense relativistic electron beam using Kali-1000 pulse power system. Instruments and Experimental Techniques, 2016, 59(3): 368–373
https://doi.org/10.1134/S002044121603009X
14 M Winter, R J Brodd. What are batteries, fuel cells, and supercapacitors? Chemical Reviews, 2005, 105(3): 1021–1021
https://doi.org/10.1021/cr040110e
15 A Tomago, T Shimizu, Y Iijima, I Yamauchi. Development of oil-impregnated, all-polypropylene-film power capacitor. IEEE Transactions on Electrical Insulation, 1977, EI-12(4): 293–301
https://doi.org/10.1109/TEI.1977.297981
16 Y Zhu, P Jiang, Z Zhang, X Huang. Dielectric phenomena and electrical energy storage of poly (vinylidene fluoride) based high-k polymers. Chinese Chemical Letters, 2017, 28(11): 2027–2035
https://doi.org/10.1016/j.cclet.2017.08.053
17 V K Prateek, Thakur, R K Gupta. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chemical Reviews, 2016, 116(7): 4260–4317
https://doi.org/10.1021/acs.chemrev.5b00495
18 Q Chen, Y Shen, S Zhang, Q M Zhang. Polymer-based dielectrics with high energy storage density. Annual Review of Materials Research, 2015, 45(1): 433–458
https://doi.org/10.1146/annurev-matsci-070214-021017
19 Q Li, F Z Yao, Y Liu, G Zhang, H Wang, Q Wang. High-temperature dielectric materials for electrical energy storage. Annual Review of Materials Research, 2018, 48(1): 219–243
https://doi.org/10.1146/annurev-matsci-070317-124435
20 L Zhu, Q Wang. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules, 2012, 45(7): 2937–2954
https://doi.org/10.1021/ma2024057
21 L Zhu. Exploring strategies for high dielectric constant and low loss polymer dielectrics. Journal of Physical Chemistry Letters, 2014, 5(21): 3677–3687
https://doi.org/10.1021/jz501831q
22 D D L Chung. Composite Materials: Functional Materials for Modern Technologies. London: Springer-Verlag, 2004, 125–166
23 C Kittel. Introduction to Solid State Physics. New York: Wiley, 1976, 53–485
24 Z Yao, Z Song, H Hao, Z Yu, M Cao, S Zhang, M Lanagan, H Liu. Homogeneous/inhomogeneous—structured dielectrics and their energy—storage performances. Advanced Materials, 2017, 29(20): 1601727
https://doi.org/10.1002/adma.201601727
25 H Palneedi, M Peddigari, G T Hwang, D Y Jeong, J Ryu. High-performance dielectric ceramic films for energy storage capacitors: Progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665
https://doi.org/10.1002/adfm.201803665
26 Z Kutnjak, J Petzelt, R Blinc. The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature, 2006, 441(7096): 956–959
https://doi.org/10.1038/nature04854
27 Z K Liu, X Li, Q M Zhang. Maximizing the number of coexisting phases near invariant critical points for giant electrocaloric and electromechanical responses in ferroelectrics. Applied Physics Letters, 2012, 101(8): 082904
https://doi.org/10.1063/1.4747275
28 K Yao, S Chen, M Rahimabady, M S Mirshekarloo, S Yu, F E H Tay, T Sritharan, L Lu. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(9): 1968–1974
https://doi.org/10.1109/TUFFC.2011.2039
29 N Guo, S A DiBenedetto, P Tewari, M T Lanagan, M A Ratner, T J Marks. Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide- polyolefin nanocomposites: Experiment and theory. Chemistry of Materials, 2010, 22(4): 1567–1578
https://doi.org/10.1021/cm902852h
30 W Li, Q Meng, Y Zheng, Z Zhang, W Xia, Z Xu. Electric energy storage properties of poly (vinylidene fluoride). Applied Physics Letters, 2010, 96(19): 192905
https://doi.org/10.1063/1.3428656
31 W Xia, Z Zhang. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics, 2018, 1(1): 17–31
https://doi.org/10.1049/iet-nde.2018.0001
32 B L Farmer, A J Hopfinger, J B Lando. Polymorphism of poly (vinylidene fluoride): Potential energy calculations of the effects of head-to-head units on the chain conformation and packing of poly (vinylidene fluoride). Journal of Applied Physics, 1972, 43(11): 4293–4303
https://doi.org/10.1063/1.1660919
33 R Han, J Jin, P Khanchaitit, J Wang, Q Wang. Effect of crystal structure on polarization reversal and energy storage of ferroelectric poly (vinylidene fluoride-co-chlorotrifluoroethylene) thin films. Polymer, 2012, 53(6): 1277–1281
https://doi.org/10.1016/j.polymer.2012.02.004
34 V Bharti, X Z Zhao, Q M Zhang, T Romotowski, F Tito, R Ting. Ultrahigh field induced strain and polarization response in electron irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer. Materials Research Innovations, 1998, 2(2): 57–63
https://doi.org/10.1007/s100190050063
35 H Xu, G Shanthi, V Bharti, Q M Zhang, T Ramotowski. Structural, conformational, and polarization changes of poly (vinylidene fluoride-trifluoroethylene) copolymer induced by high-energy electron irradiation. Macromolecules, 2000, 33(11): 4125–4131
https://doi.org/10.1021/ma9919561
36 F Guan, J Wang, J Pan, Q Wang, L Zhu. Effects of polymorphism and crystallite size on dipole reorientation in poly (vinylidene fluoride) and its random copolymers. Macromolecules, 2010, 43(16): 6739–6748
https://doi.org/10.1021/ma101062j
37 M R Gadinski, C Chanthad, K Han, L Dong, Q Wang. Synthesis of poly (vinylidene fluoride-co-bromotrifluoroethylene) and effects of molecular defects on microstructure and dielectric properties. Polymer Chemistry, 2014, 5(20): 5957–5966
https://doi.org/10.1039/C4PY00690A
38 B Daudin, M Dubus, J F Legrand. Effects of electron irradiation and annealing on ferroelectric vinylidene fluoride-trifluoroethylene copolymers. Journal of Applied Physics, 1987, 62(3): 994–997
https://doi.org/10.1063/1.339685
39 Y Zhang, C Zhang, Y Feng, T Zhang, Q Chen, Q Chi, L Liu, X Wang, Q Lei. Energy storage enhancement of P (VDF-TrFE-CFE)-based composites with double-shell structured BZCT nanofibers of parallel and orthogonal configurations. Nano Energy, 2019, 66: 104195
https://doi.org/10.1016/j.nanoen.2019.104195
40 Y Zhang, Q Chi, L Liu, C Zhang, C Chen, X Wang, Q Lei. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly (vinylidene fluoride)-based dielectric film for high energy density capacitor. APL Materials, 2017, 5(7): 076109
https://doi.org/10.1063/1.4995653
41 M R Gadinski, Q Li, G Zhang, X Zhang, Q Wang. Understanding of relaxor ferroelectric behavior of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers. Macromolecules, 2015, 48(8): 2731–2739
https://doi.org/10.1021/acs.macromol.5b00185
42 D Zhang, W Liu, R Guo, K Zhou, H Luo. High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Advancement of Science, 2018, 5(2): 1700512
https://doi.org/10.1002/advs.201700512
43 J Wei, Z Zhang, J K Tseng, I Treufeld, X Liu, M H Litt, L Zhu. Achieving high dielectric constant and low loss property in a dipolar glass polymer containing strongly dipolar and small-sized sulfone groups. ACS Applied Materials & Interfaces, 2015, 7(9): 5248–5257
https://doi.org/10.1021/am508488w
44 V K Thakur, E J Tan, M F Lin, P S Lee. Poly (vinylidene fluoride)-graft-poly (2-hydroxyethyl methacrylate): A novel material for high energy density capacitors. Journal of Materials Chemistry, 2011, 21(11): 3751–3759
https://doi.org/10.1039/c0jm02408b
45 J Li, S Tan, S Ding, H Li, L Yang, Z Zhang. High-field antiferroelectric behaviour and minimized energy loss in poly (vinylidene-co-trifluoroethylene)-graft-poly (ethyl methacrylate) for energy storage application. Journal of Materials Chemistry, 2012, 22(44): 23468–23476
https://doi.org/10.1039/c2jm35532a
46 J T Bendler, D A Boyles, C A Edmondson, T Filipova, J J Fontanella, M A Westgate, M C Wintersgill. Dielectric properties of bisphenol A polycarbonate and its tethered nitrile analogue. Macromolecules, 2013, 46(10): 4024–4033
https://doi.org/10.1021/ma4002269
47 Y Hao, X Wang, K Bi, J Zhang, Y Huang, L Wu, P Zhao, K Xu, M Lei, L Li. Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy, 2017, 31: 49–56
https://doi.org/10.1016/j.nanoen.2016.11.008
48 K Bi, M Bi, Y Hao, W Luo, Z Cai, X Wang, Y Huang. Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy, 2018, 51: 513–523
https://doi.org/10.1016/j.nanoen.2018.07.006
49 P Wu, L Zhang, X Shan. Microstructure and dielectric response of BaSrTiO3/P (VDF-CTFE) nanocomposites. Materials Letters, 2015, 159: 72–75
https://doi.org/10.1016/j.matlet.2015.06.074
50 X Lu, L Zhang, Y Tong, Z Cheng. BST-P (VDF-CTFE) nanocomposite films with high dielectric constant, low dielectric loss, and high energy-storage density. Composites. Part B, Engineering, 2019, 168: 34–43
https://doi.org/10.1016/j.compositesb.2018.12.059
51 L Yao, Z Pan, J Zhai, G Zhang, Z Liu, Y Liu. High-energy-density with polymer nanocomposites containing of SrTiO3 nanofibers for capacitor application. Composites. Part A, Applied Science and Manufacturing, 2018, 109: 48–54
https://doi.org/10.1016/j.compositesa.2018.02.040
52 L Yao, Z Pan, S Liu, J Zhai, H Chen. Significantly enhanced energy density in nanocomposite capacitors combining the TiO2 nanorod array with poly(vinylidene fluoride). ACS Applied Materials & Interfaces, 2016, 8(39): 26343–26351
https://doi.org/10.1021/acsami.6b09265
53 L Gu, T Li, Y Xu, C Sun, Z Yang, D Zhu, D Chen. Effects of the particle size of BaTiO3 fillers on fabrication and dielectric properties of BaTiO3/polymer/Al films for capacitor energy-storage application. Materials (Basel), 2019, 12(3): 439
https://doi.org/10.3390/ma12030439
54 B Xie, H Zhang, Q Zhang, J Zang, C Yang, Q Wang, M Y Li, S Jiang. Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(13): 6070–6078
https://doi.org/10.1039/C7TA00513J
55 Y Bai, Z Y Cheng, V Bharti, H Xu, M Zhang. High-dielectric-constant ceramic-powder polymer composites. Applied Physics Letters, 2000, 76(25): 3804–3806
https://doi.org/10.1063/1.126787
56 S Wang, J Sun, L Tong, Y Guo, H Wang, C Wang. Superior dielectric properties in Na0.35%Ba99.65%Ti99.65%Nb0.35%O3/PVDF composites. Materials Letters, 2018, 211: 114–117
https://doi.org/10.1016/j.matlet.2017.09.099
57 W Bauhofer, J Z Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology, 2009, 69(10): 1486–1498
https://doi.org/10.1016/j.compscitech.2008.06.018
58 D Nuzhnyy, M Savinov, V Bovtun, M Kempa, J Petzelt, B Mayoral, T McNally. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold. Nanotechnology, 2013, 24(5): 055707
https://doi.org/10.1088/0957-4484/24/5/055707
59 L Zhang, W Wang, X Wang, P Bass, Z Cheng. Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Applied Physics Letters, 2013, 103(23): 232903
https://doi.org/10.1063/1.4838237
60 L Zhang, R Gao, P Hu, Z Dang. Preparation and dielectric properties of polymer composites incorporated with polydopamine@AgNPs core-satellite particles. RSC Advances, 2016, 6(41): 34529–34533
https://doi.org/10.1039/C6RA00827E
61 R Wen, J Guo, C Zhao, Y Liu. Nanocomposite capacitors with significantly enhanced energy density and breakdown strength utilizing a small loading of monolayer titania. Advanced Materials Interfaces, 2018, 5(3): 1701088
https://doi.org/10.1002/admi.201701088
62 Y Sheng, X Zhang, H Ye, L Liang, L Xu, H Wu. Improved energy density in core-shell poly (dopamine) coated barium titanate/poly(fluorovinylidene-co-trifluoroethylene) nanocomposite with interfacial polarization. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2020, 585: 124091
https://doi.org/10.1016/j.colsurfa.2019.124091
63 H Sun, H Zhang, S Liu, N Ning, L Zhang, M Tian, Y Wang. Interfacial polarization and dielectric properties of aligned carbon nanotubes/polymer composites: The role of molecular polarity. Composites Science and Technology, 2018, 154: 145–153
https://doi.org/10.1016/j.compscitech.2017.11.008
64 Q Wang, L Zhu. Polymer nanocomposites for electrical energy storage. Journal of Polymer Science. Part B, Polymer Physics, 2011, 49(20): 1421–1429
https://doi.org/10.1002/polb.22337
65 T Tanaka, M Kozako, N Fuse, Y Ohki. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(4): 669–681
https://doi.org/10.1109/TDEI.2005.1511092
66 T J Lewis. Interfaces: Nanometric dielectrics. Journal of Physics. D, Applied Physics, 2005, 38(2): 202–212
https://doi.org/10.1088/0022-3727/38/2/004
67 R Krishnamoorti. Strategies for dispersing nanoparticles in polymers. MRS Bulletin, 2007, 32(4): 341–347
https://doi.org/10.1557/mrs2007.233
68 X Zhang, W Chen, J Wang, Y Shen, L Gu, Y Lin, C W Nan. Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO2@BaTiO3 nanofibers. Nanoscale, 2014, 6(12): 6701–6709
https://doi.org/10.1039/C4NR00703D
69 T Zhou, J W Zha, R Cui, B Fan, J Yuan, Z Dang. Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Applied Materials & Interfaces, 2011, 3(7): 2184–2188
https://doi.org/10.1021/am200492q
70 M F Lin, V K Thakur, E J Tan, P Lee. Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Advances, 2011, 1(4): 576–578
https://doi.org/10.1039/c1ra00210d
71 T Chen, B Liu. Enhanced dielectric properties of poly (vinylidene fluoride) composite filled with polyaniline-iron core-shell nanocomposites. Materials Letters, 2018, 210: 165–168
https://doi.org/10.1016/j.matlet.2017.09.007
72 M N Haleem, A D Rajapakse. Fault type discrimination in HVDC transmission lines using rate of change of local currents. IEEE Transactions on Power Delivery, 2019, 885: 8977
73 W Li, L Jiang, X Zhang, Y Shen, C Nan. High-energy-density dielectric films based on polyvinylidene fluoride and aromatic polythiourea for capacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(38): 15803–15807
https://doi.org/10.1039/C4TA03374D
74 M S Zheng, J W Zha, Y Yang, P Han, C Hu, Y Wen, Z Dang. Polyurethane induced high breakdown strength and high energy storage density in polyurethane/poly (vinylidene fluoride) composite films. Applied Physics Letters, 2017, 110(25): 252902
https://doi.org/10.1063/1.4989579
75 M S Zheng, J W Zha, Y Yang, P Han, C Hu, Z Dang. Enhanced breakdown strength of poly (vinylidene fluoride) utilizing rubber nanoparticles for energy storage application. Applied Physics Letters, 2016, 109(7): 072902
https://doi.org/10.1063/1.4961252
76 P Hu, Y Song, H Liu, Y Shen, Y Lin, C Nan. Largely enhanced energy density in flexible P (VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(5): 1688–1693
https://doi.org/10.1039/C2TA00948J
77 Y Zhang, C Zhang, Y Feng, T Zhang, Q Chen, Q Chi, L Liu, Y Cui, X Wang, Z Dang, Q Lei. Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy, 2019, 56: 138–150
https://doi.org/10.1016/j.nanoen.2018.11.044
78 X Zhang, Y Shen, B Xu, Q Zhang, L Gu, J Jiang, J Ma, Y Lin, C Nan. Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Advanced Materials, 2016, 28(10): 2055–2061
https://doi.org/10.1002/adma.201503881
79 X Zhang, Y Shen, Q Zhang, L Gu, Y Hu, J Du, Y Lin, W Nan. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Advanced Materials, 2015, 27(5): 819–824
https://doi.org/10.1002/adma.201404101
80 Z Pan, L Yao, J Zhai, H Wang, B Shen. Ultrafast discharge and enhanced energy density of polymer nanocomposites loaded with 0.5(Ba0.7Ca0.3)TiO3-0.5Ba(Zr0.2Ti0.8)O3 one-dimensional nanofibers. ACS Applied Materials & Interfaces, 2017, 9(16): 14337–14346
https://doi.org/10.1021/acsami.7b01381
81 Q Li, G Zhang, F Liu, K Han, M R Gadinski, C X Xiong, Q Wang. Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energy & Environmental Science, 2015, 8(3): 922–931
https://doi.org/10.1039/C4EE02962C
82 Y Xie, Y Yu, Y Feng, W Jiang, Z Zhang. Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly (dopamine) encapsulated BaTiO3. ACS Applied Materials & Interfaces, 2017, 9(3): 2995–3005
https://doi.org/10.1021/acsami.6b14166
83 S Luo, J Yu, S Yu, R Sun, L Cao, W Liao, C Wong. Significantly enhanced electrostatic energy storage performance of flexible polymer composites by introducing highly insulating-ferroelectric microhybrids as fillers. Advanced Energy Materials, 2019, 9(5): 1803204
https://doi.org/10.1002/aenm.201803204
84 Y Wang, J Cui, Q Yuan, Y Niu, Y Bai, H Wang. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly (vinylidene fluoride) nanocomposites. Advanced Materials, 2015, 27(42): 6658–6663
https://doi.org/10.1002/adma.201503186
85 E Baer, L Zhu. 50th anniversary perspective: Dielectric phenomena in polymers and multilayered dielectric films. Macromolecules, 2017, 50(6): 2239–2256
https://doi.org/10.1021/acs.macromol.6b02669
86 W Nian, Z Wang, T Wang, Y Xiao, H Chen. Significantly enhanced breakdown strength and energy density in sandwich-structured NBT/PVDF composites with strong interface barrier effect. Ceramics International, 2018, 44: S50–S53
https://doi.org/10.1016/j.ceramint.2018.08.260
87 J M Carr, M Mackey, L Flandin, D Schuele, L Zhu, E Baer. Effect of biaxial orientation on dielectric and breakdown properties of poly (ethylene terephthalate)/poly (vinylidene fluoride-co-tetrafluoroethylene) multilayer films. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(11): 882–896
https://doi.org/10.1002/polb.23277
88 Y Wang, Y Hou, Y Deng. Effects of interfaces between adjacent layers on breakdown strength and energy density in sandwich-structured polymer composites. Composites Science and Technology, 2017, 145: 71–77
https://doi.org/10.1016/j.compscitech.2017.04.003
89 J Jiang, Z Shen, J Qian, Z Dan, M Guo, Y Lin, C Nan, L Chen, Y Shen. Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy Storage Materials, 2019, 18: 213–221
https://doi.org/10.1016/j.ensm.2018.09.013
90 Y Zhu, Y Zhu, X Huang, J Chen, Q Li, J He, P Jiang. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets. Advanced Energy Materials, 2019, 9(36): 1901826
https://doi.org/10.1002/aenm.201901826
91 K Yin, J Zhang, Z Li, J Feng, C Zhang, X Chen, A Olah, D E Schuele, L Zhu, E Baer. Polymer multilayer films for high temperature capacitor application. Journal of Applied Polymer Science, 2019, 136(20): 47535
https://doi.org/10.1002/app.47535
92 J Y Pei, J W Zha, W Y Zhou, S Wang, S Zhong, L Yin, M Zheng, H Cai, Z Dang. Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification. Applied Physics Letters, 2019, 114(10): 103702
https://doi.org/10.1063/1.5088085
93 N Zebouchi, M Bendaoud, R Essolbi, D Malec, B Ai, H Giam. Electrical breakdown theories applied to polyethylene terephthalate films under the combined effects of pressure and temperature. Journal of Applied Physics, 1996, 79(5): 2497–2501
https://doi.org/10.1063/1.361178
94 J Ho, T R Jow. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19(3): 990–995
https://doi.org/10.1109/TDEI.2012.6215104
95 S Chen, G Meng, B Kong, B Xiao, Z Wang, Z Jing, Y Gao, G Wu, H Wang, Y Cheng. Asymmetric alicyclic amine-polyether amine molecular chain structure for improved energy storage density of high-temperature crosslinked polymer capacitor. Chemical Engineering Journal, 2020, 387: 123662
https://doi.org/10.1016/j.cej.2019.123662
96 F Guan, L Yang, J Wang, B Guan, K Han, Q Wang, L Zhu. Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications. Advanced Functional Materials, 2011, 21(16): 3176–3188
https://doi.org/10.1002/adfm.201002015
97 F Guan, J Wang, L Yang, J Tseng, K Han, Q Wang, L Zhu. Confinement-induced high-field antiferroelectric-like behavior in poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules, 2011, 44(7): 2190–2199
https://doi.org/10.1021/ma102910v
98 F Guan, Z Yuan, E W Shu, L Zhu. Fast discharge speed in poly (vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity. Applied Physics Letters, 2009, 94(5): 052907
https://doi.org/10.1063/1.3079332
99 K M Tan, V K Ramachandaramurthy, J Y Yong. Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques. Renewable & Sustainable Energy Reviews, 2016, 53: 720–732
https://doi.org/10.1016/j.rser.2015.09.012
100 N Y Zhang, J Ho, J Runt, S H Zhang. Light weight high temperature polymer film capacitors with dielectric loss lower than polypropylene. Journal of Materials Science Materials in Electronics, 2015, 26(12): 9396–9401
https://doi.org/10.1007/s10854-015-3152-7
101 M Joshi, S Jauhari, K R Desai. Polyureas: Synthesis and characterization. International Journal of Chem-Tech Research CODEN (USA), 2011, 3(1): 29–32
102 Z Cheng, M Lin, S Wu, Y Thakur, Y Zhou, D Jeong, Q Shen, Q Zhang. Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Applied Physics Letters, 2015, 106(20): 202902
https://doi.org/10.1063/1.4921485
103 Q Li, L Chen, M R Gadinski, S Zhang, G Zhang, H Li, E Lagodkine, A Haque, L Chen, T Jackson, Q Wang. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature, 2015, 523(7562): 576–579
https://doi.org/10.1038/nature14647
104 Z M Dang, Y Q Lin, H P Xu, C Y Shi, S T Li, J Bai. Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Advanced Functional Materials, 2008, 18(10): 1509–1517
https://doi.org/10.1002/adfm.200701077
105 Z M Dang, T Zhou, S H Yao, J K Yuan, J W Zha, H T Song, J Y Li, Q Chen, W T Yang, J Bai. Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Advanced Materials, 2009, 21(20): 2077–2082
https://doi.org/10.1002/adma.200803427
106 L Wang, J Li, D Wang, D Wang, H Li. Preparation and properties of core-shell silver/polyimide nanocomposites. Polymer Bulletin, 2014, 71(10): 2661–2670
https://doi.org/10.1007/s00289-014-1214-2
107 C W Beier, J M Sanders, R L Brutchey. Improved breakdown strength and energy density in thin-film polyimide nanocomposites with small barium strontium titanate nanocrystal fillers. Journal of Physical Chemistry C, 2013, 117(14): 6958–6965
https://doi.org/10.1021/jp312519r
108 M Wang, W L Li, Y Feng, Y Hou, T D Zhang, W D Fei, J H Yin. Effect of BaTiO3 nanowires on dielectric properties and energy storage density of polyimide composite films. Ceramics International, 2015, 41(10): 13582–13588
https://doi.org/10.1016/j.ceramint.2015.07.153
109 A Azizi, M R Gadinski, Q Li, M Alsaud, J Wang, Y Wang, B Wang, F Liu, L Chen, N Alem, Q Wang. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Advanced Materials, 2017, 29(35): 1701864
https://doi.org/10.1002/adma.201701864
110 G Zhao, W Deng, H Xia, M Zhang. Research on common aperture optical device for high energy laser system. In: 14th National Conference on Laser Technology and Optoelectronics (LTO 2019). Bellingham: International Society for Optics and Photonics, 2019, 11170: 111701O
111 T R Jow, F W MacDougall, J B Ennis, X H Yang, M A Schneider, C J Scozzie, J D White, J R MacDonald, M C Schalnat, R A Cooper, et al. Pulsed power capacitor development and outlook. In: IEEE Pulsed Power Conference (PPC). New York: IEEE, 2015, 1–7
112 C Lynn, A Neuber, E Matthews, J Walter, M Kristiansen. A low impedance 500 kV 2.7 kJ Marx generator as testbed for vacuum diodes. In: IEEE International Power Modulator and High Voltage Conference. New York: IEEE, 2010, 417–420
113 B Chu, X Zhou, K Ren, B Neese, M Lin, Q Wang, F Bauer, M Zhang. A dielectric polymer with high electric energy density and fast discharge speed. Science, 2006, 313(5785): 334–336
https://doi.org/10.1126/science.1127798
114 J Mao, S Wang, Y Cheng, J Wu. Influence of pulse front steepness on vacuum flashover characteristics. Applied Surface Science, 2018, 448: 261–269
https://doi.org/10.1016/j.apsusc.2018.03.214
115 V A Stephanovich, I A Luk’yanchuk, M G Karkut. Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices. Physical Review Letters, 2005, 94(4): 047601
https://doi.org/10.1103/PhysRevLett.94.047601
[1] Xiu-Tian-Feng E, Lei Zhang, Fang Wang, Xiangwen Zhang, Ji-Jun Zou. Synthesis of aluminum nanoparticles as additive to enhance ignition and combustion of high energy density fuels[J]. Front. Chem. Sci. Eng., 2018, 12(3): 358-366.
[2] Wenjuan XU, Hong GAO, LiLan GAO, Xu CHEN, Yong WANG. Tensile ratcheting behaviors of bronze powder filled polytetrafluoroethylene[J]. Front Chem Sci Eng, 2013, 7(1): 103-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed