Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (4) : 793-819    https://doi.org/10.1007/s11705-020-2016-8
REVIEW ARTICLE
Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications
Wei Wang, Yanying Wei(), Jiang Fan, Jiahao Cai, Zong Lu, Li Ding, Haihui Wang()
School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
 Download: PDF(4268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) materials have emerged as a class of promising materials to prepare high-performance 2D membranes for various separation applications. The precise control of the interlayer nanochannel/sub-nanochannel between nanosheets or the pore size of nanosheets within 2D membranes enables 2D membranes to achieve promising molecular sieving performance. To date, many 2D membranes with high permeability and high selectivity have been reported, exhibiting high separation performance. This review presents the development, progress, and recent breakthrough of different types of 2D membranes, including membranes based on porous and non-porous 2D nanosheets for various separations. Separation mechanism of 2D membranes and their fabrication methods are also reviewed. Last but not the least, challenges and future directions of 2D membranes for wide utilization are discussed in brief.

Keywords membrane separation      2D membranes      2D materials      nanosheet     
Corresponding Author(s): Yanying Wei,Haihui Wang   
Just Accepted Date: 27 November 2020   Online First Date: 22 January 2021    Issue Date: 04 June 2021
 Cite this article:   
Wei Wang,Yanying Wei,Jiang Fan, et al. Recent progress of two-dimensional nanosheet membranes and composite membranes for separation applications[J]. Front. Chem. Sci. Eng., 2021, 15(4): 793-819.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2016-8
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I4/793
Fig.1  (a) Transport model of porous nanosheets-based membranes; (b) transport model of 2D lamellar membranes; (c) transport model of inter-sheet pathway A.
Fig.2  (a) Illustration of the floating-particle coating method to prepare MFI nanosheet monolayer seed coating; (b) SEM images of MFI nanosheet seed coatings on porous substrate via the LangmuirSchaefer (left) and the floating-particle coating (right). Reprinted with permission from Ref. [20], copyright 2018 Wiley VCH; (c) Microscopic characterizations of the silicalite nanosheets. Reprinted with permission from Ref. [21], copyright 2018 American Association for the Advancement of Science.
Fig.3  (a) SEM images of (I) the top view and (II) cross-section view of an ultrathin Zn2(bim)4 nanosheet on a-Al2O3 support. Reprinted with permission from Ref. [4], copyright 2014 American Association for the Advancement of Science; (b) Comparison of the Al-MOF membrane for ion separation with other representative 2D laminar membranes. Reprinted with permission from Ref. [47], copyright 2020 American Association for the Advancement of Science; (c) Illustration of the fabrication of b-oriented ZIF-L film and c-oriented ZIF-L film. Reprinted with permission from Ref. [53], copyright 2015 The Royal Society of Chemistry.
Fig.4  (a) Illustration of Zn2(bim)4 nanosheet membranes formation via GO guided self-conversion of ZnO nanoparticles. Reprinted with permission from Ref. [55], copyright 2018 The Royal Society of Chemistry. (b) Illustration of Co2(bim)4 nanosheet membranes formation via vapor phase transformation of Co-based gel. Reprinted with permission from Ref. [57], copyright 2018 Elsevier.
Fig.5  (a) Illustration of CNFs/COF membrane formation. Reprinted with permission from Ref. [24], copyright 2019 Nature Publishing Group; (b) Structures of the AB stacking and the AA stacking COF membrane. Reprinted with permission from Ref. [66], copyright 2020 Nature Publishing Group.
Fig.6  Illustration of water transport through the g-C3N4 nanosheets-based membrane. Reprinted with permission from Ref. [26], copyright 2017 Wiley VCH.
Fig.7  (a) Illustration of the partially decoupled defect nucleation and pore expansion to prepare NPG membranes. Reprinted with permission from Ref. [103], copyright 2019 American Association for the Advancement of Science; (b) Schematic illustration of GNM/SWNT membranes fabrication. Reprinted with permission from Ref. [106], copyright 2019 American Association for the Advancement of Science.
Fig.8  External force driven assembly strategy for the fabrication of GO membranes. Reprinted with permission from Ref. [5], copyright 2016 American Chemical Society.
Fig.9  (a) Synergistic effects of molecular sieving and carrier-facilitated transport by imitating biological protein nanochannels. Reprinted with permission from Ref. [145], copyright 2019 John Wiley and Sons; (b) Schematic of the design of surface-charged GO membranes. Reprinted with permission from Ref. [15], copyright 2019 Nature Publishing Group; (c) Scheme illustration of the preparation of the PHGOM. (d) Scheme of the working mechanism of a PHGOM-based device for water desalination. Reprinted with permission from Ref. [146], copyright 2020 Wiley VCH.
Fig.10  (a) The formation of ZIF-8 membranes on vertically aligned MgAl-CO3 LDH layers. Reprimted with permission from Ref. [152], copyright 2014 The Royal Society of Chemistry; (b) The formation of ZIF-8 membranes on ZnAl-CO3 LDH buffer layers. Reprinted with permission from Ref. [153], copyright 2014 American Chemical Society; (c) The formation of ZIF-8 membranes via partial conversion of a ZnO buffer layer from a ZnAl-NO3 LDH layer. Reprinted with permission from Ref. [154], copyright 2015 Wiley VCH; (d) Illustration of the vertically aligned COF membrane formation. Reprinted with permission from Ref. [155], copyright 2020 American Chemical Society.
Fig.11  (a) The preparation of MXene membranes with Fe(OH)3 served as distance holder. Reprimted with permission from Ref. [16], copyright 2017 Wiley VCH. (b) The fabrication of Ti3C2Tx membranes and c-Ti3C2Tx membranes. Reprinted with permission from Ref. [167], copyright 2020 American Chemical Society.
Fig.12  The fabrication of ultrathin 2D MoS2 membranes. Reprinted with permission from Ref. [18], copyright 2019 American Chemical Society.
Feed condition Membrane Fabrication approach Permeability/permeance
(of faster species)
Selectivity Ref.
p-Xylene/o-xylene MFI Secondary growth 4 × 10–7 mol?m–2?s–1?Pa–1 25–45 [32]
p-Xylene/o-xylene Silicalite-1 Gel-free secondary growth 1.3 × 10–7 mol?m–2?s–1?Pa–1 1050 [33]
p-Xylene/o-xylene MFI Gel-free secondary growth 2.4 × 10–7 mol·m–2·s–1·Pa–1 500 [34]
p-Xylene/o-xylene MFI Gel-free secondary growth 5.6 × 10–7 mol·m–2·s–1·Pa–1 2000 [35]
p-Xylene/o-xylene MFI Gel-free secondary growth 2.9 × 10–7 mol·m–2·s–1·Pa–1 >10000 [20]
H2/CO2 AMH-3/PBI Casting 1 Barrer 35 [39]
H2/CO2 Zn2(bim)4 Hot-drop coating 2700 GPU 291 [4]
H2/CO2 Zn2(bim)3 Hot-drop coating 8 × 10–7 mol·m–2·s–1·Pa–1 166 [22]
H2/CO2 CuBDC-GO Vacuum filtration 9.6 × 10–7 mol·m–2·s–1·Pa–1 95.1 [52]
H2/CO2 Zn2(bim)4/GO Direct growth 1.4 × 10–7 mol·m–2·s–1·Pa–1 106 [55]
H2/CO2 MAMS-1 Hot-drop coating 553±228 GPU 235±14 [23]
H2/CO2 [Cu2(ndc)2(dabco)]n/PBI Casting 6.13±0.03 Barrer 26.7 [49]
H2/CO2
H2/N2
H2/CH4
Zn2(bim)4 Direct growth 2.04 × 10–7 mol·m–2·s–1·Pa–1 53
67
90
[56]
H2/CO2 Co2(bim)4 Vapor phase transformation 1.72 × 10–7 mol·m–2·s–1·Pa–1 58.7 [57]
H2/CO2 c-Oriented ZIF-L Secondary growth 1.95 × 10–7 mol·m–2·s–1·Pa–1 24.3 [53]
H2/CO2 MXene Vacuum filtration 2226.6 Barrer 167 [17]
H2/CO2 Polyimide-PGM Vapor-liquid interfacial polymerization 6.85 × 10–6 mol·m–2·s–1·Pa–1 6.41 [105]
H2/CO2 TpEBr@TpPa-SO3Na Layer-by-layer assembly 2566 GPU 22.6 [25]
H2/CO2 COF-LZU1 In situ growth 3654.8 GPU 31.6 [155]
H2/CO2
H2/N2
H2/CH4
COF-LZU1-ACOF-1 Temperature-swing solvothermal approach 2.24 × 10–7 mol·m–2·s–1·Pa–1
2.38 × 10–7 mol·m–2·s–1·Pa–1
1.82 × 10–7 mol·m–2·s–1·Pa–1
24.2
83.9
100.2
[65]
H2/CO2
H2/N2
GO Vacuum filtration 10–7 mol·m–2·s–1·Pa–1 3400
900
[14]
H2/CO2
H2/C3H8
EFDA-GO External force driven assembly 840–1200 Barrer
3.9 × 10−7 mol·m–2·s–1·Pa–1
29–33
260
[5]
H2/N2 MCM-22/Silica Layer-by-layer deposition 2.09 × 10–8 mol·m–2·s–1·Pa–1 7.5 [37]
H2/N2 MCM-22/Silica Deposition cycles 10–8 mol·m–2·s–1·Pa–1 >100 [38]
H2/CH4 JDF-L1/6FDA-4MPD+ 6FDA-DABA Casting 137±14 Barrer 35.6±1.4 [41]
H2/CH4 JDF-L1/polysulfone Casting 12.5 Barrer 128±13 [42]
H2/CH4 MCM-41+ JDF-L1/ 6FDA-4MPD+ 6FDA-DABA Casting 440 Barrer 32 [43]
H2/CH4 NiAl-CO3 LDH In situ growth 4.5 × 10–8 mol·m–2·s–1·Pa–1 78 [150]
H2/CH4 ZIF-8@MgAl-CO3 LDH In situ growth
Secondary growth
1.4 × 10–7 mol·m–2·s–1·Pa–1 12.9 [152]
H2/CH4 ZIF-8@ZnAl-CO3 LDH In situ growth 1.4 × 10–7 molm–2·s–1·Pa–1 12.5 [153]
H2/CH4 ZIF-8@ZnAl-CO3 LDH In situ growth 1.9× 10–8 mol·m–2·s–1·Pa–1 83.1 [154]
H2/CH4 Porous graphene LPCVD 6045 GPU 15.6 [103]
CO2/CH4 AMH-3/cellulose acetate Casting 10.36±0.25 Barrer 30.03±0.34 [40]
CO2/CH4 CuBDC/PI Casting 2.78±0.02 Barrer 88.2±1.3 [48]
CO2/CH4 CuBDC/PIM-1 Casting 407.3 GPU 15.6 [50]
CO2/CH4 CuBDC/6FDA-DAM Casting 430±10 Barrer 43±3 [51]
CO2/CH4 LDH () Spin-casting 150 GPU 33 [151]
CO2/N2 MgAl-CO3 LDH Vacuum-suction 2.07 × 10–7 mol·m–2·s–1·Pa–1 35 [149]
CO2/N2 MoS2-Pebax/PDMS/PSf Drop-coating 64 Barrer 93 [185]
CO2/N2
CO2/CH4
MoS2 SILM Vacuum filtration 47.88 GPU 131.42
43.52
[186]
CO2/N2
CO2/CH4
WS2 SILM Vacuum filtration 47.3 GPU 153.21
68.81
[19]
C2H4/C2H6 Ag/IL-GO Vacuum filtration
Spin-coating
72.5 GPU 215 [145]
n-Butane/i-butane MFI Vacuum filtration 1923 GPU 58 [36]
Tab.1  Summary of gas separation for 2D-material membranes
Feed system Membrane Fabrication approach Water flux Rejection/% Ref.
Evans blue g-C3N4 Vacuum filtration 29 L·m–2·h–1·bar–1 87 [26]
Evans blue g-C3N4-PAA Vacuum filtration 117 L·m–2·h–1·bar–1 83 [69]
Evans blue MXene Vacuum filtration 1084 L·m–2·h–1·bar–1 90 [16]
Evans blue MoS2 Vacuum filtration 245 L·m–2·h–1·bar–1 89 [177]
Evans blue WS2 Vacuum filtration 1850 L·m–2·h–1·bar–1 82 [178]
Evans blue NSC-GO Vacuum filtration 695 L·m–2·h–1·bar–1 83.5 [126]
Evans blue NbN/GO Vacuum filtration 20 L·m–2·h–1·bar–1 98 [142]
Rhodamine B CDs–GO Vacuum filtration 439 L·m–2·h–1 96.9 [130]
Rhodamine B Fe3O4@rGO Filtration-disposition 296 L·m–2·h–1·bar–1 98.14 [128]
Rhodamine B rGO-TH Vacuum filtration 8526 · 30 L·m–2·h–1·bar–1 99±1 [121]
Rhodamine B Tp-AD Vacuum filtration 596 L·m–2·h–1·bar–1 98 [61]
Rhodamine B SWCNT/GO Vacuum filtration 710 ·50 L·m–2·h–1·bar–1 97.4±0.3 [132]
Rhodamine B g-C3N4 NT/rGO Vacuum filtration 4.87 L·m–2·h–1·bar–1 98 [134]
Rhodamine B CA/GO-TiO2 Vacuum filtration 33.2 L·m–2·h–1 99.4 [131]
Rhodamine B GO/TiO2 Vacuum filtration 89.6 L·m–2·h–1·bar–1 99.3 [135]
Rhodamine B rGO-TiO2 Secondary growth 9.82 L·m–2·h–1·bar–1 98.5 [136]
Methylene blue TAMoS2 Vacuum filtration 10000 L·m–2·h–1·bar–1 98.26 [182]
Methylene blue BPEI/GO Vacuum filtration 2.09 L·m–2·h–1·bar–1 96.4 [117]
Methylene blue WS2/GO Vacuum filtration 159.6 L·m–2·h–1·bar–1 96.3 [139]
Methylene blue GO/MXene Vacuum filtration 71.9 L·m–2·h–1·bar–1 99.5 [141]
Methyl blue rGO Vacuum filtration 21.8 L·m–2·h–1·bar–1 99.2 [137]
Methyl blue SPPO/g-C3N4 Vacuum filtration 8867 L·m–2·h–1·bar–1 100 [27]
Methyl red Zn-TCP(Fe)/PEI Vacuum filtration 4243 L·m–2·h–1·bar–1 98.2 [54]
Methyl orange MgAlLDH Vacuum filtration 298 L·m–2·h–1·bar–1 99.5 [161]
Methyl orange MWNTs/GO Vacuum filtration 8.69 L·m–2·h–1·bar–1 96.1 [133]
Congo red GO/NH2-Fe3O4 Vacuum filtration 15.6 L·m–2·h–1·bar–1 94 [129]
Congo red GO/MoS2 Pressure-assisted filtration ~10.2 L·m–2·h–1·bar–1 99.6 [138]
Eriochrome black T MgAl-LDH In situ growth 566 L·m–2·h–1·MPa–1 98.5 [160]
Chrome black T COF-LZU1 In situ growth 760 L·m–2·h–1·MPa–1 98 [64]
Acid yellow 14 c-Ti3C2Tx Vacuum filtration 344 L·m–2·h–1·bar–1 76.4 [167]
NaCl PHGOM Dual-flow filtration 1529 L·m–2·h–1·bar–1 97 [146]
NaCl GNM/SWNT O2 plasma drilling 22 L·m–2·h–1·bar–1 98.1 [106]
NaCl MXene Vacuum filtration 2.8 L·m–2·h–1 96.5 [168]
NaCl MoS2 Chemical vapor deposition >322 L·m–2·h–1·bar–1 >99 [18]
NaCl MoS2 Vacuum filtration 33.7 L·m–2·h–1·bar–1 82 [181]
NaCl GO-PVAm-Silica Pressure-assisted filtration 80.2 · 0.8 kg·m–2·h–1 99.99 [123]
NaCl g-C3N4-PA Interfacial polymerization 45 g·m–2·h–1 98 [76]
MgCl2 GO Pressure-assisted filtration
Dip-coating
51.2 L·m–2·h–1·bar–1 93.2 [15]
CoCl2 Al-MOF Vacuum filtration 2.22 mol·m–2·h–1·bar–1 100 [47]
Na2SO4 COFs@CNFs Vacuum filtration 42.8 L·m–2·h–1·bar–1 96.8 [24]
Tab.2  Summary of nanofiltration for 2D-material membranes
1 L M Robeson. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
2 K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva, A A Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
3 D D Duong. Adsorption Analysis: Equilibria and Kinetics. London: London Imperial College Press, 1998, 239–240
4 Y Peng, Y Li, Y Ban, H Jin, W Jiao, X Liu, W Yang. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science, 2014, 346(6215): 1356–1359
5 J Shen, G Liu, K Huang, Z Chu, W Jin, N Xu. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano, 2016, 10(3): 3398–3409
6 J Shen, G Liu, Y Ji, Q Liu, L Cheng, K Guan, M Zhang, G Liu, J Xiong, J Yang, et al.. 2D MXene nanofilms with tunable gas transport channels. Advanced Functional Materials, 2018, 28(31): 1801511
7 J Wang, P Chen, B Shi, W Guo, M Jaroniec, S Qiao. A regularly channeled lamellar membrane for unparalleled water and organics permeation. Angewandte Chemie International Edition, 2018, 130(23): 6930–6934
8 A Ibrahim, Y S Lin. Gas permeation and separation properties of large-sheet stacked graphene oxide membranes. Journal of Membrane Science, 2017, 550: 238–245
9 L E Nielsen. Models for the permeability of filled polymer systems. Journal of Macromolecular Science: Part A—Chemistry, 1967, 1(5): 929–942
10 C Tan, X Cao, X J Wu, Q He, J Yang, X Zhang, J Chen, W Zhao, S Han, G H Nam, et al.. Recent advances in ultrathin two-dimensional nanomaterials. Chemical Reviews, 2017, 117(9): 6225–6331
11 P Samori, V Palermo, X Feng. Chemical approaches to 2D materials. Advanced Materials, 2016, 28(29): 6027–6029
12 H Zhang. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
13 L Nie, K Goh, Y Wang, J Lee, Y Huang, H E Karahan, K Zhou, M D Guiver, T H Bae. Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration. Science Advances, 2020, 6(17): eaaz9184
14 H Li, Z Song, X Zhang, Y Huang, S Li, Y Mao, H J Ploehn, Y Bao, M Yu. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013, 342(6154): 95–98
15 M Zhang, K Guan, Y Ji, G Liu, W Jin, N Xu. Controllable ion transport by surface-charged graphene oxide membrane. Nature Communications, 2019, 10: 1253
16 L Ding, Y Wei, Y Wang, H Chen, J Caro, H Wang. A two-dimensional lamellar membrane: MXene nanosheet stacks. Angewandte Chemie International Edition, 2017, 129(7): 1851–1855
17 L Ding, Y Wei, L Li, T Zhang, H Wang, J Xue, L X Ding, S Wang, J Caro, Y Gogotsi. MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9: 155
18 H Li, T J Ko, M Lee, H S Chung, S S Han, K H Oh, A Sadmani, H Kang, Y Jung. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination. Nano Letters, 2019, 19(8): 5194–5204
19 D Chen, W Wang, W Ying, Y Guo, D Meng, Y Yan, R Yan, X Peng. CO2-philic WS2 laminated membranes with a nanoconfined ionic liquid. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(34): 16566–16573
20 D Kim, M Jeon, B L Stottrup, M Tsapatsis. Paraxylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 130(2): 489–494
21 Z Cao, S, Zeng Z Xu, A Arvanitis, S Yang, X Gu, J Dong. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Science Advances, 2018, 4(11): eaau8634
22 Y Peng, Y Li, Y Ban, W Yang. Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angewandte Chemie International Edition, 2017, 56(33): 9757–9761
23 X Wang, C Chi, K Zhang, Y Qian, K M Gupta, Z Kang, J Jiang, D Zhao. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nature Communications, 2017, 8: 14460
24 H Yang, L Yang, H Wang, Z Xu, Y Zhao, Y Luo, N Nasir, Y Song, H Wu, F Pan, et al.. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nature Communications, 2019, 10: 2101
25 Y Ying, M Tong, S Ning, S K Ravi, S B Peh, S C Tan, S J Pennycook, D Zhao. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. Journal of the American Chemical Society, 2020, 142(9): 4472–4480
26 Y Wang, L Li, Y Wei, J Xue, H Chen, L Ding, J Caro, H Wang. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers. Angewandte Chemie International Edition, 2017, 56(31): 8974–8980
27 J Ran, T Pan, Y Wu, C Chu, P Cui, P Zhang, X Ai, C F Fu, Z Yang, T Xu. Endowing g-C3N4 membranes with superior permeability and stability by using acid spacers. Angewandte Chemie International Edition, 2019, 58(46): 16463–16468
28 M Tsapatsis. 2-Dimensional zeolites. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(7): 2374–2381
29 M Choi, K Na, J Kim, Y Sakamoto, R Ryoo. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
30 K Na, M Choi, W Park, Y Sakamoto, O Terasaki, R Ryoo. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
31 K Varoon, X Zhang, B Elyassi, D D Brewer, M Gettel, S Kumar, J A Lee, S Maheshwari, A Mittal, C Y Sung, et al.. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science, 2011, 334(6052): 72–75
32 K V Agrawal, B Topuz, Z Jiang, K Nguenkam, B Elyassi, L F Francis, M Tsapatsis. Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(9): 3458–3467
33 T C Pham, T H Nguyen, K B Yoon. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angewandte Chemie, 2013, 125(33): 8855–8860
34 K V Agrawal, B Topuz, T Pham, T Thanh, N Sauer, N Rangnekar, H Zhang, K Narasimharao, S N Basahel, L F Francis, et al.. Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Advanced Materials, 2015, 27(21): 3243–3249
35 M Y Jeon, D Kim, P Kumar, P S Lee, N Rangnekar, P Bai, M Shete, B Elyassi, H S Lee, K Narasimharao, et al.. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543(7647): 690–694
36 B Min, S Yang, A Korde, Y H Kwon, C W Jones, S Nair. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers. Angewandte Chemie, 2019, 131(24): 8285–8289
37 J Choi, Z Lai, S Ghosh, D E Beving, Y Yan, M Tsapatsis. Layer-by-layer deposition of barrier and permselective c-oriented-MCM-22 silica composite films. Industrial & Engineering Chemistry Research, 2007, 46(22): 7096–7106
38 J Choi, M Tsapatsis. MCM-22 silica selective flake nanocomposite membranes for hydrogen separations. Journal of the American Chemical Society, 2010, 132(2): 448–449
39 S Choi, J Coronas, E Jordan, W Oh, S Nair, F Onorato, D F Shantz, M Tsapatsis. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angewandte Chemie International Edition, 2008, 47(3): 552–555
40 W Kim, J S Lee, D G Bucknall, W J Koros, S Nair. Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations. Journal of Membrane Science, 2013, 441: 129–136
41 A Galve, D Sieffert, E Vispe, C Téllez, J Coronas, C Staudt. Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. Journal of Membrane Science, 2011, 370(1-2): 131–140
42 S Castarlenas, P Gorgojo, C Casado, S Masheshwari, M Tsapatsis, C Téllez, J Coronas. Melt compounding of swollen titanosilicate JDF-L1 with polysulfone to obtain mixed matrix membranes for H2/CH4 separation. Industrial & Engineering Chemistry Research, 2013, 52(5): 1901–1907
43 A Galve, D Sieffert, C Staudt, M Ferrando, C Güell, C Téllez, J Coronas. Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. Journal of Membrane Science, 2013, 431: 163–170
44 X L Wei, W Y Pan, X Li, M Pan, C F Huo, R Yang, Z S Chao. MCM-22 zeolite-induced synthesis of thin sodalite zeolite membranes. Chemistry of Materials, 2020, 32(1): 333–340
45 N Ma, J Wei, R Liao, C Y Tang. Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. Journal of Membrane Science, 2012, 405-406: 149–157
46 Y Peng, W Yang. 2D metal-organic framework materials for membrane-based separation. Advanced Materials Interfaces, 2020, 7(1): 1901514
47 M Jian, R Qiu, Y Xia, J Lu, Y Chen, Q Gu, R Liu, C Hu, J Qu, H Wang, et al.. Ultrathin water-stable metal-organic framework membranes for ion separation. Science Advances, 2020, 6(23): eaay3998
48 T Rodenas, I Luz, G Prieto, B Seoane, H Miro, A Corma, F Kapteijn, I X F X Llabres, J Gascon. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 2015, 14(1): 48–55
49 Z Kang, Y Peng, Z Hu, Y Qian, C Chi, L Y Yeo, L Tee, D Zhao. Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(41): 20801–20810
50 Y Cheng, X Wang, C Jia, Y Wang, L Zhai, Q Wang, D Zhao. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. Journal of Membrane Science, 2017, 539: 213–223
51 Y Yang, K Goh, R Wang, T H Bae. High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chemical Communications, 2017, 53(30): 4254–4257
52 F Yang, M Wu, Y Wang, S Ashtiani, H Jiang. A GO-induced assembly strategy to repair MOF nanosheet-based membrane for efficient H2/CO2 separation. ACS Applied Materials & Interfaces, 2019, 11(1): 990–997
53 Z Zhong, J Yao, R Chen, Z Low, M He, J Z Liu, H Wang. Oriented two-dimensional zeolitic imidazolate framework-L membranes and their gas permeation properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(30): 15715–15722
54 H Ang, L Hong. Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Applied Materials & Interfaces, 2017, 9(33): 28079–28088
55 Y Li, H Liu, H Wang, J Qiu, X Zhang. GO-guided direct growth of highly oriented metal-organic framework nanosheet membranes for H2/CO2 separation. Chemical Science (Cambridge), 2018, 9(17): 4132–4141
56 Y Li, L Lin, M Tu, P Nian, A J Howarth, O K Farha, J Qiu, X Zhang. Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11(4): 1850–1860
57 P Nian, H Liu, X Zhang. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. Journal of Membrane Science, 2019, 573: 200–209
58 L C Lin, J Choi, J C Grossman. Two-dimensional covalent triazine framework as an ultrathin-film nanoporous membrane for desalination. Chemical Communications, 2015, 51(80): 14921–14924
59 M Tong, Q Yang, Q Ma, D Liu, C Zhong. Few-layered ultrathin covalent organic framework membranes for gas separation: a computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(1): 124–131
60 Y Wang, J Li, Q Yang, C Zhong. Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Applied Materials & Interfaces, 2016, 8(13): 8694–8701
61 J Yao, C Liu, X Liu, J Guo, S Zhang, J Zheng, S Li. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. Journal of Membrane Science, 2020, 601: 117864
62 K Dey, M Pal, K C Rout, H S Kunjattu, A Das, R Mukherjee, U K Kharul, R Banerjee. Selective molecular separation by interfacially crystallized covalent organic framework thin films. Journal of the American Chemical Society, 2017, 139(37): 13083–13091
63 M Matsumoto, L Valentino, G M Stiehl, H B Balch, A R Corcos, F Wang, D C Ralph, B J Mariñas, W R Dichtel. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem, 2018, 4(2): 308–317
64 H Fan, J Gu, H Meng, A Knebel, J Caro. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angewandte Chemie International Edition, 2018, 57(15): 4083–4087
65 H Fan, A Mundstock, A Feldhoff, A Knebel, J Gu, H Meng, J Caro. Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation. Journal of the American Chemical Society, 2018, 140(32): 10094–10098
66 Y Li, Q Wu, X Guo, M Zhang, B Chen, G Wei, X Li, X Li, S Li, L Ma. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nature Communications, 2020, 11: 599
67 F Li, Y Qu, M Zhao. Efficient helium separation of graphitic carbon nitride membrane. Carbon, 2015, 95: 51–57
68 Y Liu, D Xie, M Song, L Jiang, G Fu, L Liu, J Li. Water desalination across multilayer graphitic carbon nitride membrane: insights from non-equilibrium molecular dynamics simulations. Carbon, 2018, 140: 131–138
69 Y Wang, L Liu, J Xue, J Hou, L Ding, H Wang. Enhanced water flux through graphitic carbon nitride nanosheets membrane by incorporating polyacrylic acid. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2181–2188
70 Y Wang, N Wu, Y Wang, H Ma, J Zhang, L Xu, M K Albolkany, B Liu. Graphite phase carbon nitride based membrane for selective permeation. Nature Communications, 2019, 10: 2500
71 K Cao, Z Jiang, X Zhang, Y Zhang, J Zhao, R Xing, S Yang, C Gao, F Pan. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83
72 Y Wang, R Ou, H Wang, T Xu. Graphene oxide modified graphitic carbon nitride as a modifier for thin film composite forward osmosis membrane. Journal of Membrane Science, 2015, 475: 281–289
73 J Chen, Z Li, C Wang, H Wu, G Liu. Synthesis and characterization of g-C3N4 nanosheet modified polyamide nanofiltration membranes with good permeation and antifouling properties. RSC Advances, 2016, 6(113): 112148–112157
74 Z Tian, S Wang, Y Wang, X Ma, K Cao, D Peng, X Wu, H Wu, Z Jiang. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity. Journal of Membrane Science, 2016, 514: 15–24
75 H Zhao, S Chen, X Quan, H Yu, H Zhao. Integration of microfiltration and visible-light-driven photocatalysis on g-C3N4 nanosheet/reduced graphene oxide membrane for enhanced water treatment. Applied Catalysis B: Environmental, 2016, 194: 134–140
76 X Gao, Y Li, X Yang, Y Shang, Y Wang, B Gao, Z Wang. Highly permeable and antifouling reverse osmosis membranes with acidified graphitic carbon nitride nanosheets as nanofillers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19875–19883
77 J Wang, M Li, S Zhou, A Xue, Y Zhang, Y Zhao, J Zhong, Q Zhang. Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation. Separation and Purification Technology, 2017, 188: 24–37
78 J S Bunch, S S Verbridge, J S Alden, A M Zande, J M Parpia, H G Craighead, P L McEuen. Impermeable atomic membranes from graphene sheets. Nano Letters, 2008, 8: 2458–2462
79 D Cohen Tanugi, J C Grossman. Water desalination across nanoporous graphene. Nano Letters, 2012, 12(7): 3602–3608
80 K Sint, B Wang, P Král. Selective ion passage through functionalized graphene nanopores. Journal of the American Chemical Society, 2008, 130(49): 16448–16449
81 D Jiang, V R Cooper, S Dai. Porous graphene as the ultimate membrane for gas separation. Nano Letters, 2009, 9: 4019–4024
82 A W Hauser, P Schwerdtfeger. Methane-selective nanoporous graphene membranes for gas purification. Physical Chemistry Chemical Physics, 2012, 14(38): 13292–13298
83 C Sun, M S Boutilier, H Au, P Poesio, B Bai, R Karnik, N G Hadjiconstantinou. Mechanisms of molecular permeation through nanoporous graphene membranes. Langmuir, 2014, 30(2): 675–682
84 M Shan, Q Xue, N Jing, C Ling, T Zhang, Z Yan, J Zheng. Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes. Nanoscale, 2012, 4(17): 5477–5482
85 H Liu, Z Chen, S Dai, D Jiang. Selectivity trend of gas separation through nanoporous graphene. Journal of Solid State Chemistry, 2015, 224: 2–6
86 M Nouri, K Ghasemzadeh, A Iulianelli. Theoretical evaluation of graphene membrane performance for hydrogen separation using molecular dynamic simulation. Membranes, 2019, 9(9): 110
87 Z Yuan, R P Misra, A G Rajan, M S Strano, D Blankschtein. Analytical prediction of gas permeation through graphene nanopores of varying sizes: understanding transitions across multiple transport regimes. ACS Nano, 2019, 13(10): 11809–11824
88 Y Xu, J Xu, C Yang. Separation of diverse alkenes from C2–C4 alkanes through nanoporous graphene membranes via local size sieving. Journal of Membrane Science, 2019, 584: 227–235
89 S Garaj, W Hubbard, A Reina, J Kong, D Branton, J A Golovchenko. Graphene as a subnanometre trans-electrode membrane. Nature, 2010, 467(7312): 190–193
90 M D Fischbein, M Drndić. Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008, 93(11): 113107
91 K Celebi, J Buchheim, R M Wyss, A Droudian, P Gasser, I Shorubalko, J Kye, C Lee, H G Park. Ultimate permeation across atomically thin porous graphene. Science, 2014, 344(6181): 289–292
92 Z Fan, Q Zhao, T Li, J Yan, Y Ren, J Feng, T Wei. Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon, 2012, 50(4): 1699–1703
93 S C O’Hern, M S Boutilier, J C Idrobo, Y Song, J Kong, T Laoui, M Atieh, R Karnik. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 2014, 14(3): 1234–1241
94 S P Koenig, L Wang, J Pellegrino, J S Bunch. Selective molecular sieving through porous graphene. Nature Nanotechnology, 2012, 7(11): 728–732
95 S P Surwade, S N Smirnov, I V Vlassiouk, R R Unocic, G M Veith, S Dai, S M Mahurin. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 2015, 10(5): 459–464
96 C Sun, B Wen, B Bai. Recent advances in nanoporous graphene membrane for gas separation and water purification. Science Bulletin, 2015, 60(21): 1807–1823
97 G Liu, W Jin, N Xu. Two-dimensional-material membranes: a new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397
98 G Li, Y Li, H Liu, Y Guo, Y Li, D Zhu. Architecture of graphdiyne nanoscale films. Chemical Communications, 2010, 46(19): 3256–3258
99 S Blankenburg, M Bieri, R Fasel, K Mullen, C A Pignedoli, D Passerone. Porous graphene as an atmospheric nanofilter. Small, 2010, 6(20): 2266–2271
100 P R Kidambi, G D Nguyen, S Zhang, Q Chen, J Kong, J Warner, A P Li, R Karnik. Facile fabrication of large-area atomically thin membranes by direct synthesis of graphene with nanoscale porosity. Advanced Materials, 2018, 30(49): 1804977
101 S Huang, M Dakhchoune, W Luo, E Oveisi, G He, M Rezaei, J Zhao, D T L Alexander, A Zuttel, M S Strano, et al.. Single-layer graphene membranes by crack-free transfer for gas mixture separation. Nature Communications, 2018, 9: 2632
102 S Wang, S Dai, D Jiang. Continuously tunable pore size for gas separation via a bilayer nanoporous graphene membrane. ACS Applied Nano Materials, 2018, 2(1): 379–384
103 J Zhao, G He, S Huang, L F Villalobos, M Dakhchoune, H Bassas, K V Agrawal. Etching gas-sieving nanopores in single-layer graphene with an angstrom precision for high-performance gas mixture separation. Science Advances, 2019, 5(1): eaav1851
104 C Sun, S Zhu, M Liu, S Shen, B Bai. Selective molecular sieving through a large graphene nanopore with surface charges. Journal of Physical Chemistry Letters, 2019, 10(22): 7188–7194
105 K Choi, A Droudian, R M Wyss, K P Schlichting, H G Park. Multifunctional wafer-scale graphene membranes for fast ultrafiltration and high permeation gas separation. Science Advances, 2018, 4(11): eaau0476
106 Y Yang, X Yang, L Liang, Y Gao, H Cheng, X Li, M Zou, R Ma, Q Yuan, X Duan. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science, 2019, 364(6445): 1057–1062
107 L C Lin, J C Grossman. Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations. Nature Communications, 2015, 6: 8335
108 P Wang, W Li, C Du, X Zheng, X Sun, Y Yan, J Zhang. CO2/N2 separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289
109 H Zheng, L Zhu, D He, T Guo, X Li, X Chang, Q Xue. Two-dimensional graphene oxide membrane for H2/CH4 separation: insights from molecular dynamics simulations. International Journal of Hydrogen Energy, 2017, 42(52): 30653–30660
110 W Li, L Zhang, X Zhang, M Zhang, T Liu, S Chen. Atomic insight into water and ion transport in 2D interlayer nanochannels of graphene oxide membranes: implication for desalination. Journal of Membrane Science, 2020, 596: 117744
111 R R Nair, H A Wu, P N Jayaram, I V Grigorieva, A K Geim. Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 2012, 335(6067): 442–444
112 L Chen, G Shi, J Shen, B Peng, B Zhang, Y Wang, F Bian, J Wang, D Li, Z Qian, et al.. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383
113 C N Yeh, K Raidongia, J Shao, Q H Yang, J Huang. On the origin of the stability of graphene oxide membranes in water. Nature Chemistry, 2014, 7(2): 166–170
114 Y Long, K Wang, G Xiang, K Song, G Zhou, X Wang. Molecule channels directed by cation-decorated graphene oxide nanosheets and their application as membrane reactors. Advanced Materials, 2017, 29(16): 1606093
115 L Chen, L Huang, J Zhu. Stitching graphene oxide sheets into a membrane at a liquid/liquid interface. Chemical Communications, 2014, 50(100): 15944–15947
116 J Liu, N Wang, L J Yu, A Karton, W Li, W Zhang, F Guo, L Hou, Q Cheng, L Jiang, et al.. Bioinspired graphene membrane with temperature tunable channels for water gating and molecular separation. Nature Communications, 2017, 8: 2011
117 Y T Nam, J Choi, K M Kang, D W Kim, H T Jung. Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding. ACS Applied Materials & Interfaces, 2016, 8(40): 27376–27382
118 M Hu, B Mi. Enabling graphene oxide nanosheets as water separation membranes. Environmental Science & Technology, 2013, 47(8): 3715–3723
119 W S Hung, C H Tsou, M De Guzman, Q F An, Y L Liu, Y M Zhang, C C Hu, K R Lee, J Y Lai. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990
120 Z Jia, Y Wang. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(8): 4405–4412
121 K H Thebo, X Qian, Q Zhang, L Chen, H M Cheng, W Ren. Highly stable graphene-oxide-based membranes with superior permeability. Nature Communications, 2018, 9: 1486
122 F Liang, Q Liu, J Zhao, K Guan, Y Mao, G Liu, X Gu, W Jin. Ultrafast water-selective permeation through graphene oxide membrane with water transport promoters. AIChE Journal. American Institute of Chemical Engineers, 2020, 66(2): e16812
123 F Pan, Y Li, Y Song, M Wang, Y Zhang, H Yang, H Wang, Z Jiang. Graphene oxide membranes with fixed interlayer distance via dual crosslinkers for efficient liquid molecular separations. Journal of Membrane Science, 2020, 595: 117486
124 L Huang, Y Li, Q Zhou, W Yuan, G Shi. Graphene oxide membranes with tunable semipermeability in organic solvents. Advanced Materials, 2015, 27(25): 3797–3802
125 L Huang, J Chen, T Gao, M Zhang, Y Li, L Dai, L Qu, G Shi. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Advanced Materials, 2016, 28(39): 8669–8674
126 H Huang, Z Song, N Wei, L Shi, Y Mao, Y Ying, L Sun, Z Xu, X Peng. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nature Communications, 2013, 4: 2979
127 S Wang, D Mahalingam, B Sutisna, S P Nunes. 2D-dual-spacing channel membranes for high performance organic solvent nanofiltration. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(19): 11673–11682
128 M Zhang, K Guan, J Shen, G Liu, Y Fan, W Jin. Nanoparticles@rGO membrane enabling highly enhanced water permeability and structural stability with preserved selectivity. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(11): 5054–5063
129 L Dong, M Li, S Zhang, X Si, Y Bai, C Zhang. NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination, 2020, 476: 114227
130 W Wang, E Eftekhari, G Zhu, X Zhang, Z Yan, Q Li. Graphene oxide membranes with tunable permeability due to embedded carbon dots. Chemical Communications, 2014, 50(86): 13089–13092
131 Y Liu, Z Yu, Y Peng, L Shao, X Li, H Zeng. A novel photocatalytic self-cleaning TiO2 nanorods inserted graphene oxide-based nanofiltration membrane. Chemical Physics Letters, 2020, 749: 137424
132 S J Gao, H Qin, P Liu, J Jin. SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6649–6654
133 Y Han, Y Jiang, C Gao. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 2015, 7(15): 8147–8155
134 Y Wei, Y Zhu, Y Jiang. Photocatalytic self-cleaning carbon nitride nanotube intercalated reduced graphene oxide membranes for enhanced water purification. Chemical Engineering Journal, 2019, 356: 915–925
135 R Han, P Wu. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6475–6481
136 J Yu, Y Zhang, J Chen, L Cui, W Jing. Solvothermal-induced assembly of 2D-2D rGO-TiO2 nanocomposite for the construction of nanochannel membrane. Journal of Membrane Science, 2020, 600: 117870
137 Y Han, Z Xu, C Gao. Ultrathin graphene nanofiltration membrane for water purification. Advanced Functional Materials, 2013, 23(29): 3693–3700
138 P Zhang, J L Gong, G M Zeng, B Song, W Cao, H Y Liu, S Y Huan, P Peng. Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure. Journal of Membrane Science, 2019, 574: 112–123
139 P Cheng, Y Chen, Y H Gu, X Yan, W Z Lang. Hybrid 2D WS2/GO nanofiltration membranes for finely molecular sieving. Journal of Membrane Science, 2019, 591: 117308
140 S Wei, Y Xie, Y Xing, L Wang, H Ye, X Xiong, S Wang, K Han. Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 2019, 582: 414–422
141 T Liu, X Liu, N Graham, W Yu, K Sun. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science, 2020, 593: 117431
142 M Kunimatsu, K Nakagawa, T Yoshioka, T Shintani, T Yasui, E Kamio, S C E Tsang, J Li, H Matsuyama. Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. Journal of Membrane Science, 2020, 595: 117598
143 A Morelos Gomez, R Cruz Silva, H Muramatsu, J Ortiz Medina, T Araki, T Fukuyo, S Tejima, K Takeuchi, T Hayashi, M Terrones, et al.. Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes. Nature Nanotechnology, 2017, 12(11): 1083–1088
144 H W Kim, H W Yoon, S M Yoon, B M Yoo, B K Ahn, Y H Cho, H J Shin, H Yang, U Paik, S Kwon, et al.. Selective gas transport through few-layered graphene and graphene oxide membranes. Science, 2013, 342(6154): 91–95
145 H Dou, M Xu, B Jiang, G Wen, L Zhao, B Wang, A Yu, Z Bai, Y Sun, L Zhang, et al.. Bioinspired graphene oxide membranes with dual transport mechanisms for precise molecular separation. Advanced Functional Materials, 2019, 29(50): 1905229
146 Q Wen, P Jia, L Cao, J Li, D Quan, L Wang, Y Zhang, D Lu, L Jiang, W Guo. Electric-field-induced ionic sieving at planar graphene oxide heterojunctions for miniaturized water desalination. Advanced Materials, 2020, 32(16 ): 1903954
147 Q Wang, D O’Hare. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
148 T W Kim, M Sahimi, T T Tsotsis. Preparation of hydrotalcite thin films using an electrophoretic technique. Industrial & Engineering Chemistry Research, 2008, 47: 9127–9132
149 T W Kim, M Sahimi, T T Tsotsis. The preparation and characterization of hydrotalcite thin films. Industrial & Engineering Chemistry Research, 2009, 48: 5794–5801
150 Y Liu, N Wang, Z Cao, J Caro. Molecular sieving through interlayer galleries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1235–1238
151 Y Liu, H Wu, L Min, S Song, L Yang, Y Ren, Y Wu, R Zhao, H Wang, Z Jiang. 2D layered double hydroxide membranes with intrinsic breathing effect toward CO2 for efficient carbon capture. Journal of Membrane Science, 2020, 598: 117663
152 Y Liu, N Wang, L Diestel, F Steinbach, J Caro. MOF membrane synthesis in the confined space of a vertically aligned LDH network. Chemical Communications, 2014, 50(32): 4225–4227
153 Y Liu, N Wang, J H Pan, F Steinbach, J Caro. In situ synthesis of MOF membranes on ZnAl-CO3 LDH buffer layer-modified substrates. Journal of the American Chemical Society, 2014, 136(41): 14353–14356
154 Y Liu, Y Peng, N Wang, Y Li, J H Pan, W Yang, J Caro. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem, 2015, 8(21): 3582–3586
155 H Fan, M Peng, I Strauss, A Mundstock, H Meng, J Caro. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. Journal of the American Chemical Society, 2020, 142(15): 6872–6877
156 P Lu, S Liang, L Qiu, Y Gao, Q Wang. Thin film nanocomposite forward osmosis membranes based on layered double hydroxide nanoparticles blended substrates. Journal of Membrane Science, 2016, 504: 196–205
157 P Lu, S Liang, T Zhou, X Mei, Y Zhang, C Zhang, A Umar, Q Wang. Layered double hydroxide/graphene oxide hybrid incorporated polysulfone substrate for thin-film nanocomposite forward osmosis membranes. RSC Advances, 2016, 6(61): 56599–56609
158 Y Zhao, N Li, F Yuan, H Zhang, S Xia. Preparation and characterization of hydrophilic and antifouling poly(ether sulfone) ultrafiltration membranes modified with Zn-Al layered double hydroxides. Journal of Applied Polymer Science, 2016, 133(39): 43988–43998
159 S Arefi Oskoui, A Khataee, V Vatanpour. Effect of solvent type on the physicochemical properties and performance of NLDH/PVDF nanocomposite ultrafiltration membranes. Separation and Purification Technology, 2017, 184: 97–118
160 N Wang, Z Huang, X Li, J Li, S Ji, Q F An. Tuning molecular sieving channels of layered double hydroxides membrane with direct intercalation of amino acids. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(35): 17148–17155
161 E H Ang, S Velioğlu, J W Chew. Tunable affinity separation enables ultrafast solvent permeation through layered double hydroxide membranes. Journal of Membrane Science, 2019, 591: 117318
162 M Naguib, M Kurtoglu, V Presser, J Lu, J Niu, M Heon, L Hultman, Y Gogotsi, M W Barsoum. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248–4253
163 M Naguib, V N Mochalin, M W Barsoum, Y Gogotsi. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992–1005
164 C E Ren, K B Hatzell, M Alhabeb, Z Ling, K A Mahmoud, Y Gogotsi. Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. Journal of Physical Chemistry Letters, 2015, 6(20): 4026–4031
165 L Li, T Zhang, Y Duan, Y Wei, C Dong, L Ding, Z Qiao, H Wang. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
166 X Wu, X Cui, W Wu, J Wang, Y Li, Z Jiang. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes. Angewandte Chemie International Edition, 2019, 58(51): 18524–18529
167 Y Xing, G Akonkwa, Z Liu, H Ye, K Han. Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Applied Nano Materials, 2020, 3(2): 1526–1534
168 L Ding, L Li, Y Liu, Y Wu, Z Lu, J Deng, Y Wei, J Caro, H Wang. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nature Sustainability, 2020, 3: 296–302
169 Z Lu, Y Wei, J Deng, L Ding, Z K Li, H Wang. Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano, 2019, 13(9): 10535–10544
170 X Wu, L Hao, J Zhang, X Zhang, J Wang, J Liu. Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system. Journal of Membrane Science, 2016, 515: 175–188
171 L Hao, H Zhang, X Wu, J Zhang, J Wang, Y Li. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2Tx nanosheets for task-specific solvent transport. Composites. Part A, Applied Science and Manufacturing, 2017, 100: 139–149
172 A A Shamsabadi, A P Isfahani, S K Salestan, A Rahimpour, B Ghalei, E Sivaniah, M Soroush. Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2TxMXene Nanosheets. ACS Applied Materials & Interfaces, 2020, 12(3): 3984–3992
173 L Gao, C Li, W Huang, S Mei, H Lin, Q Ou, Y Zhang, J Guo, F Zhang, S Xu, et al.. MXene/polymer membranes: synthesis, properties, and emerging applications. Chemistry of Materials, 2020, 32(5): 1703–1747
174 M Heiranian, A B Farimani, N R Aluru. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6: 8616
175 J Kou, J Yao, L Wu, X Zhou, H Lu, F Wu, J Fan. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification. Physical Chemistry Chemical Physics, 2016, 18(32): 22210–22216
176 W Li, Y Yang, J K Weber, G Zhang, R Zhou. Tunable, strain-controlled nanoporous MoS2 filter for water desalination. ACS Nano, 2016, 10(2): 1829–1835
177 L Sun, H Huang, X Peng. Laminar MoS2 membranes for molecule separation. Chemical Communications, 2013, 49(91): 10718–10720
178 L Sun, Y Ying, H Huang, Z Song, Y Mao, Z Xu, X Peng. Ultrafast molecule separation through layered WS2 nanosheet membranes. ACS Nano, 2014, 8(6): 6304–6311
179 W Hirunpinyopas, E Prestat, S D Worrall, S J Haigh, R A W Dryfe, M A Bissett. Desalination and nanofiltration through functionalized laminar MoS2 Membranes. ACS Nano, 2017, 11(11): 11082–11090
180 E H Ang, J W Chew. Two-dimensional transition-metal dichalcogenide-based membrane for ultrafast solvent permeation. Chemistry of Materials, 2019, 31(24): 10002–10007
181 L Ries, E Petit, T Michel, C C Diogo, C Gervais, C Salameh, M Bechelany, S Balme, P Miele, N Onofrio, et al.. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nature Materials, 2019, 18(10): 1112–1117
182 W Hu, X Cui, L Xiang, L Gong, L Zhang, M Gao, W Wang, J Zhang, F Liu, B Yan, et al.. Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection. Journal of Colloid and Interface Science, 2020, 560: 177–185
183 D Wang, Z Wang, L Wang, L Hu, J Jin. Ultrathin membranes of single-layered MoS2 nanosheets for high-permeance hydrogen separation. Nanoscale, 2015, 7(42): 17649–17652
184 A, Achari S Sahana, M Eswaramoorthy. High performance MoS2 membranes: effects of thermally driven phase transition on CO2 separation efficiency. Energy & Environmental Science, 2016, 9(4): 1224–1228
185 Y Shen, H Wang, X Zhang, Y Zhang. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378
186 D Chen, W Ying, Y Guo, Y Ying, X Peng. Enhanced gas separation through nanoconfined ionic liquid in laminated MoS2 membrane. ACS Applied Materials & Interfaces, 2017, 9(50): 44251–44257
[1] Laura Donato, Enrico Drioli. Imprinted membranes for sustainable separation processes[J]. Front. Chem. Sci. Eng., 2021, 15(4): 775-792.
[2] Jie Lan, Daizong Qi, Jie Song, Peng Liu, Yi Liu, Yun-Xiang Pan. Noble-metal-free cobalt hydroxide nanosheets for efficient electrocatalytic oxidation[J]. Front. Chem. Sci. Eng., 2020, 14(6): 948-955.
[3] Baoyu Liu, Qiaowen Mu, Jiajin Huang, Wei Tan, Jing Xiao. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
[4] Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 425-432.
[5] Weibin Kong, Qi Miao, Peiyong Qin, Jan Baeyens, Tianwei Tan. Environmental and economic assessment of vegetable oil production using membrane separation and vapor recompression[J]. Front. Chem. Sci. Eng., 2017, 11(2): 166-176.
[6] Baojun Li,Gaohong He,Xiaobin Jiang,Yan Dai,Xuehua Ruan. Pressure swing adsorption/membrane hybrid processes for hydrogen purification with a high recovery[J]. Front. Chem. Sci. Eng., 2016, 10(2): 255-264.
[7] H. Watamura, H. Marukawa, I. Hirasawa. Filtration ability of hollow fiber membrane for production of magnesium ammonium phosphate crystals by reaction crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed