Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (5) : 772-782    https://doi.org/10.1007/s11705-019-1859-3
RESEARCH ARTICLE
Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity
Baoyu Liu1(), Qiaowen Mu1, Jiajin Huang1, Wei Tan1, Jing Xiao2()
1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
2. School of Chemistry and Chemical Technology, South China University of Technology, Guangzhou 510640, China
 Download: PDF(2775 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Titanosilicate pillared MFI zeolite nanosheets were successfully synthesized by infiltrating the mixed tetraethyl orthosilicate (TEOS)/tetrabutyl orthotitanate (TBOT) solvent into the gallery space between adjacent MFI zeolite layers. The obtained zeolite catalysts were characterized using powder X-ray diffraction, N2 adsorption/desorption isotherms, scanning electron microscopy, transmission electron microscopy, ultraviolet–visible spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy techniques. The H2O2 oxidation of dibenzothiophene (DBT) was used to evaluate the catalytic performance of the obtained titanosilicate pillared MFI zeolites. The conversion of DBT and selectivity of dibenzothiophene sulfone (DBTS) were most affected by the textural properties of the zeolites. This was attributed to the DBT and DBTS molecules being larger than micropores of the MFI zeolites. The conversion of DBT and yield of DBTS could be systematically tailored by tuning the molar ratio of the TEOS/TBOT solvent. These results implied that a balance between the meso- and microporosity of zeolites and tetrahedrally coordinated Ti(IV) active sites of titanosilicate pillars can be achieved for the preparation of desired catalysts during the oxidation of bulk S compounds.

Keywords MFI zeolite      catalysis      nanosheets      fabrication     
Corresponding Author(s): Baoyu Liu,Jing Xiao   
Just Accepted Date: 15 November 2019   Online First Date: 03 January 2020    Issue Date: 25 May 2020
 Cite this article:   
Baoyu Liu,Qiaowen Mu,Jiajin Huang, et al. Fabrication of titanosilicate pillared MFI zeolites with tailored catalytic activity[J]. Front. Chem. Sci. Eng., 2020, 14(5): 772-782.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1859-3
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I5/772
Fig.1  Low- and high-angle X-ray diffraction patterns of Si/Ti-∞, Si/Ti-10, Si/Ti-20, and Si/Ti-40.
Fig.2  Energy dispersive X-ray spectroscopy mapping images of Si/Ti-10, Si/Ti-20, and Si/Ti-40 samples.
Fig.3  (a) N2 adsorption-desorption isotherms and (b) corresponding Barrett-Joyner-Halenda pore size distribution of Si/Ti-∞, Si/Ti-10, Si/Ti-20, and Si/Ti-40 samples.
Sample Si/Tia) Si/Tib) SBETc) /(m2·g1) Sextd) /(m2·g1) Smice) /(m2·g1) Vtotf) /(cm3·g1) Vmesog) /(cm3·g1) Vmice) /(cm3·g1) Sext/SBETh)
Si/Ti-∞ ? ? 523 346 178 0.43 0.35 0.08 0.66
Si/Ti-10 10 14 377 243 134 0.34 0.28 0.06 0.65
Si/Ti-20 20 37 427 307 120 0.42 0.37 0.05 0.72
Si/Ti-40 40 40 512 394 118 0.55 0.49 0.05 0.77
Tab.1  Textural properties of titanosilicate pillared MFI zeolites
Fig.4  Scanning electron microscopy images of (a) Si/Ti-∞, (b) Si/Ti-10, (c) Si/Ti-20, (d) Si/Ti-40 samples.
Fig.5  Transmission electron microscopy images of (a) Si/Ti-∞, (b) Si/Ti-10, (c) Si/Ti-20, and (d) Si/Ti-40 samples.
Fig.6  Scheme 1 Schematic representation of pillaring process for synthesis of titanosilicate pillared MFI zeolite nanosheets.
Fig.7  Ultraviolet–visible absorbance spectra of titanosilicate pillared MFI zeolite nanosheets.
Fig.8  Fourier-transform infrared spectra of synthesized titanosilicate zeolites.
Fig.9  XPS profiles of (a) Si/Ti-10, (b) Si/Ti-20, and (c) Si/Ti-40 samples.
Fig.10  Catalytic oxidation of dibenzothiophene over titanosilicate pillared MFI zeolites (a) conversion, (b) selectivity, (c) yield, (d) rate constant of dibenzothiophene oxidation, and (e) rate constant vs. ratio of external surface area to BET surface area (Sext/SBET).
Fig.11  Scheme 2 Proposed reaction network for H2O2 oxidation of dibenzothiophene over titanosilicate zeolites.
1 A W Bhutto, R Abro, S Gao, T Abbas, X Chen, G Yu. Oxidative desulfurization of fuel oils using ionic liquids: A review. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62: 84–97
https://doi.org/10.1016/j.jtice.2016.01.014
2 C Song. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today, 2003, 86(1): 211–263
https://doi.org/10.1016/S0920-5861(03)00412-7
3 I V Babich, J A Moulijn. Science and technology of novel processes for deep desulfurization of oil refinery streams: A review. Fuel, 2003, 82(6): 607–631
https://doi.org/10.1016/S0016-2361(02)00324-1
4 E Kowsari. Ionic Liquids—New Aspects for the Future. Rijeka: InTech, 2013, 11–20
5 J L García-Gutiérrez, G A Fuentes, M E Hernández-Terán, F Murrieta, J Navarrete, F Jiménez-Cruz. Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Applied Catalysis A, General, 2006, 305(1): 15–20
https://doi.org/10.1016/j.apcata.2006.01.027
6 C Song, X Ma. New design approaches to ultra-clean diesel fuels by deep desulfurization and deep dearomatization. Applied Catalysis B: Environmental, 2003, 41(1): 207–238
https://doi.org/10.1016/S0926-3373(02)00212-6
7 Q Du, Y Guo, H Duan, H Li, Y Chen, H Liu. Synthesis of hierarchical TS-1 zeolite via a novel three-step crystallization method and its excellent catalytic performance in oxidative desulfurization. Fuel, 2017, 188: 232–238
https://doi.org/10.1016/j.fuel.2016.10.045
8 P De Filippis, M Scarsella, N Verdone. Oxidative desulfurization I: Peroxyformic acid oxidation of benzothiophene and dibenzothiophene. Industrial & Engineering Chemistry Research, 2010, 49(10): 4594–4600
https://doi.org/10.1021/ie9017622
9 H Song, G Li, X Wang. In situ synthesis of Au/Ti-HMS and its catalytic performance in oxidation of bulky sulfur compounds using in situ generated H2O2 in the presence of H2/O2. Microporous and Mesoporous Materials, 2009, 120(3): 346–350
https://doi.org/10.1016/j.micromeso.2008.11.023
10 B Jiang, Z Sun, L Zhang, Y Sun, H Zhang, H Yang. Synthesis of a hypercrosslinked, ionic, mesoporous polymer monolith and its application in deep oxidative desulfurization. Journal of Applied Polymer Science, 2018, 135(21): 46280
https://doi.org/10.1002/app.46280
11 X Wang, G Li, W Wang, C Jin, Y Chen. Synthesis, characterization and catalytic performance of hierarchical TS-1 with carbon template from sucrose carbonization. Microporous and Mesoporous Materials, 2011, 142(2): 494–502
https://doi.org/10.1016/j.micromeso.2010.12.035
12 A Chica, A Corma, M E Dómine. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor. Journal of Catalysis, 2006, 242(2): 299–308
https://doi.org/10.1016/j.jcat.2006.06.013
13 Q Lv, G Li, H Sun. Synthesis of hierarchical TS-1 with convenient separation and the application for the oxidative desulfurization of bulky and small reactants. Fuel, 2014, 130: 70–75
https://doi.org/10.1016/j.fuel.2014.04.042
14 W Wang, G Li, L Liu, Y Chen. Synthesis and catalytic performance of hierarchical TS-1 directly using agricultural products sucrose as meso/macropores template. Microporous and Mesoporous Materials, 2013, 179: 165–171
https://doi.org/10.1016/j.micromeso.2013.06.012
15 N Jose, S Sengupta, J K Basu. Optimization of oxidative desulfurization of thiophene using Cu/titanium silicate-1 by box-behnken design. Fuel, 2011, 90(2): 626–632
https://doi.org/10.1016/j.fuel.2010.09.026
16 T Napanang, T Sooknoi. Oxidative extraction of thiophene from n-dodecane over TS-1 in continuous process: A model for non-severe sulfur removal from liquid fuels. Catalysis Communications, 2009, 11(1): 1–6
https://doi.org/10.1016/j.catcom.2009.07.022
17 A Sengupta, P D Kamble, J K Basu, S Sengupta. Kinetic study and optimization of oxidative desulfurization of benzothiophene using mesoporous titanium silicate-1 catalyst. Industrial & Engineering Chemistry Research, 2012, 51(1): 147–157
https://doi.org/10.1021/ie2024068
18 J Přech. Catalytic performance of advanced titanosilicate selective oxidation catalysts—a review. Catalysis Reviews, 2018, 60(1): 71–131
https://doi.org/10.1080/01614940.2017.1389111
19 J Přech, D Vitvarová, L Lupínková, M Kubů, J Čejka. Titanium impregnated borosilicate zeolites for epoxidation catalysis. Microporous and Mesoporous Materials, 2015, 212: 28–34
https://doi.org/10.1016/j.micromeso.2015.03.015
20 N Tsunoji, M V Opanasenko, M Kubů, J Čejka, H Nishida, S Hayakawa, Y Ide, M Sadakane, T Sano. Highly active layered titanosilicate catalyst with high surface density of isolated titanium on the accessible interlayer surface. ChemCatChem, 2018, 10(12): 2536–2540
https://doi.org/10.1002/cctc.201800413
21 V Hulea, P Moreau, F Di Renzo. Thioether oxidation by hydrogen peroxide using titanium-containing zeolites as catalysts. Journal of Molecular Catalysis A Chemical, 1996, 111(3): 325–332
https://doi.org/10.1016/1381-1169(96)00203-8
22 A Corma, M Iglesias, F Sánchez. Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides. Catalysis Letters, 1996, 39(3): 153–156
https://doi.org/10.1007/BF00805575
23 M Choi, H S Cho, R Srivastava, C Venkatesan, D H Choi, R Ryoo. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
https://doi.org/10.1038/nmat1705
24 M Choi, K Na, J Kim, Y Sakamoto, O Terasaki, R Ryoo. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
https://doi.org/10.1038/nature08288
25 W Fan, M A Snyder, S Kumar, P S Lee, W C Yoo, A V McCormick, R Lee Penn, A Stein, M Tsapatsis. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991
https://doi.org/10.1038/nmat2302
26 H Wang, T J Pinnavaia. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606
https://doi.org/10.1002/anie.200602595
27 J C Groen, T Bach, U Ziese, A M Paulaime-van Donk, K P de Jong, J A Moulijn, J Pérez-Ramírez. Creation of hollow zeolite architectures by controlled desilication of al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793
https://doi.org/10.1021/ja052592x
28 B Liu, L Zheng, Z Zhu, C Li, H Xi, Y Qian. Hierarchically structured Beta zeolites with intercrystal mesopores and the improved catalytic properties. Applied Catalysis A, General, 2014, 470: 412–419
https://doi.org/10.1016/j.apcata.2013.11.015
29 S Du, X Chen, Q Sun, N Wang, M Jia, V Valtchev, J Yu. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance. Chemical Communications, 2016, 52(17): 3580–3583
https://doi.org/10.1039/C5CC10232D
30 K Leng, Y Sun, X Zhang, M Yu, W Xu. Ti-modified hierarchical mordenite as highly active catalyst for oxidative desulfurization of dibenzothiophene. Fuel, 2016, 174: 9–16
https://doi.org/10.1016/j.fuel.2016.01.070
31 W J Roth, J Cejka. Two-dimensional zeolites: Dream or reality? Catalysis Science & Technology, 2011, 1(1): 43–53
https://doi.org/10.1039/c0cy00027b
32 W J Roth, P Nachtigall, R E Morris, J Čejka. Two-dimensional zeolites: Current status and perspectives. Chemical Reviews, 2014, 114(9): 4807–4837
https://doi.org/10.1021/cr400600f
33 Y Kon, T Yokoi, M Yoshioka, S Tanaka, Y Uesaka, T Mochizuki, K Sato, T Tatsumi. Selective hydrogen peroxide oxidation of sulfides to sulfoxides or sulfones with MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions. Tetrahedron, 2014, 70(41): 7584–7592
https://doi.org/10.1016/j.tet.2014.07.091
34 J Prech, R E Morris, J Cejka. Selective oxidation of bulky organic sulphides over layered titanosilicate catalysts. Catalysis Science & Technology, 2016, 6(8): 2775–2786
https://doi.org/10.1039/C5CY02083B
35 B Liu, Q Duan, C Li, Z Zhu, H Xi, Y Qian. Template synthesis of the hierarchically structured MFI zeolite with nanosheet frameworks and tailored structure. New Journal of Chemistry, 2014, 38(9): 4380–4387
https://doi.org/10.1039/C4NJ00756E
36 D Xu, Y Ma, Z Jing, L Han, B Singh, J Feng, X Shen, F Cao, P Oleynikov, H Sun, O Terasaki, S Che. p–p interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nature Communications, 2014, 5(1): 4262
https://doi.org/10.1038/ncomms5262
37 K Na, M Choi, W Park, Y Sakamoto, O Terasaki, R Ryoo. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177
https://doi.org/10.1021/ja908382n
38 L Emdadi, D T Tran, J Zhang, W Wu, H Song, Q Gan, D Liu. Synthesis of titanosilicate pillared MFI zeolite as an efficient photocatalyst. RSC Advances, 2017, 7(6): 3249–3256
https://doi.org/10.1039/C6RA23959E
39 K S W Sing. Reporting physisorption data for gas solid systems—with special reference to the determination of surface-area and porosity. Pure and Applied Chemistry, 1982, 54(11): 2201–2218
https://doi.org/10.1351/pac198254112201
40 B Liu, C Li, Y Ren, Y Tan, H Xi, Y Qian. Direct synthesis of mesoporous ZSM-5 zeolite by a dual-functional surfactant approach. Chemical Engineering Journal, 2012, 210(0): 96–102
https://doi.org/10.1016/j.cej.2012.08.024
41 F Jin, C Chang, C W Yang, J F Lee, L Y Jang, S Cheng. New mesoporous titanosilicate MCM-36 material synthesized by pillaring layered ERB-1 precursor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8715–8724
https://doi.org/10.1039/C5TA00364D
42 J Přech, P Eliášová, D Aldhayan, M Kubů. Epoxidation of bulky organic molecules over pillared titanosilicates. Catalysis Today, 2015, 243: 134–140
https://doi.org/10.1016/j.cattod.2014.07.002
43 S Zheng, H R Heydenrych, A Jentys, J A Lercher. Influence of surface modification on the acid site distribution of HZSM-5. Journal of Physical Chemistry B, 2002, 106(37): 9552–9558
https://doi.org/10.1021/jp014091d
44 V N Shetti, P Manikandan, D Srinivas, P Ratnasamy. Reactive oxygen species in epoxidation reactions over titanosilicate molecular sieves. Journal of Catalysis, 2003, 216(1): 461–467 doi:10.1016/S0021-9517(02)00119-7
45 M A Camblor, A Corma, J Perez-Pariente. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm‒1 band. Journal of the Chemical Society. Chemical Communications, 1993, (6): 557–559
https://doi.org/10.1039/C39930000557
46 D G Huang, X Zhang, T W Liu, C Huang, B H Chen, C W Luo, E Ruckenstein, Z S Chao. Synthesis of high-performanced titanium silicalite-1 zeolite at very low usage of tetrapropyl ammonium hydroxide. Industrial & Engineering Chemistry Research, 2013, 52(10): 3762–3772
https://doi.org/10.1021/ie302130x
47 H Lu, Y Wang. Influence of seeds on the synthesis of TS-1 with inorganic materials. Reaction Kinetics and Catalysis Letters, 2006, 89(2): 219–227
https://doi.org/10.1007/s11144-006-0131-2
48 Y Tao, H Kanoh, K Kaneko. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045
https://doi.org/10.1021/ja0299405
49 B Liu, Y Ren, Q Duan, F Chen, H Xi, Y Qian. Facile synthesis of mesoporous aluminosilicates constructed with crystalline microporous frameworks. Applied Surface Science, 2013, 279: 55–61
https://doi.org/10.1016/j.apsusc.2013.03.179
50 X Ji, L Xu, X Du, X Lu, W Lu, J Sun, P Wu. Simple CTAB surfactant-assisted hierarchical lamellar MWW titanosilicate: A high-performance catalyst for selective oxidations involving bulky substrates. Catalysis Science & Technology, 2017, 7(13): 2874–2885
https://doi.org/10.1039/C7CY00756F
51 D Chandra, N Kishor Mal, M Mukherjee, A Bhaumik. Titanium-rich highly ordered mesoporous silica synthesized by using a mixed surfactant system. Journal of Solid State Chemistry, 2006, 179(6): 1802–1807
https://doi.org/10.1016/j.jssc.2006.03.020
52 S M Mukhopadhayay, S H Garofalini. Surface studies of TiO2 SiO2 glasses by X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 1990, 126(3): 202–208
https://doi.org/10.1016/0022-3093(90)90820-C
53 B Van de Voorde, M Hezinova, J Lannoeye, A Vandekerkhove, B Marszalek, B Gil, I Beurroies, P Nachtigall, D De Vos. Adsorptive desulfurization with CPO-27/MOF-74: An experimental and computational investigation. Physical Chemistry Chemical Physics, 2015, 17(16): 10759–10766
https://doi.org/10.1039/C5CP01063B
54 P Ratnasamy, D Srinivas, H Knözinger. Active sites and reactive intermediates in titanium silicate molecular sieves. Advances in Catalysis, 2004, 48: 1–169
https://doi.org/10.1016/S0360-0564(04)48001-8
55 D Zheng, W Zhu, S Xun, M Zhou, M Zhang, W Jiang, Y Qin, H Li. Deep oxidative desulfurization of dibenzothiophene using low-temperature-mediated titanium dioxide catalyst in ionic liquids. Fuel, 2015, 159: 446–453
https://doi.org/10.1016/j.fuel.2015.06.090
[1] Ling Tan, Kipkorir Peter, Jing Ren, Baoyang Du, Xiaojie Hao, Yufei Zhao, Yu-Fei Song. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm[J]. Front. Chem. Sci. Eng., 2021, 15(1): 99-108.
[2] Qingzhuo Ni, Hao Cheng, Jianfeng Ma, Yong Kong, Sridhar Komarneni. Efficient degradation of orange II by ZnMn2O4 in a novel photo-chemical catalysis system[J]. Front. Chem. Sci. Eng., 2020, 14(6): 956-966.
[3] Yuedong Yu, Wei Zhu, Xixia Kong, Yaling Wang, Pengcheng Zhu, Yuan Deng. Recent development and application of thin-film thermoelectric cooler[J]. Front. Chem. Sci. Eng., 2020, 14(4): 492-503.
[4] Cyrine Ayed, Wei Huang, Kai A. I. Zhang. Covalent triazine framework with efficient photocatalytic activity in aqueous and solid media[J]. Front. Chem. Sci. Eng., 2020, 14(3): 397-404.
[5] Zhaoqi Ye, Hongbin Zhang, Yahong Zhang, Yi Tang. Seed-induced synthesis of functional MFI zeolite materials: Method development, crystallization mechanisms, and catalytic properties[J]. Front. Chem. Sci. Eng., 2020, 14(2): 143-158.
[6] Bilyaminu Suleiman, Qinghua Yu, Yulong Ding, Yongliang Li. Fabrication of form stable NaCl-Al2O3 composite for thermal energy storage by cold sintering process[J]. Front. Chem. Sci. Eng., 2019, 13(4): 727-735.
[7] Athanasios Smyrnakis, Angelos Zeniou, Kamil Awsiuk, Vassilios Constantoudis, Evangelos Gogolides. A non-lithographic plasma nanoassembly technology for polymeric nanodot and silicon nanopillar fabrication[J]. Front. Chem. Sci. Eng., 2019, 13(3): 475-484.
[8] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[9] Kadriye Özlem Hamaloğlu, Ebru Sağ, Çiğdem Kip, Erhan Şenlik, Berna Saraçoğlu Kaya, Ali Tuncel. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix[J]. Front. Chem. Sci. Eng., 2019, 13(3): 574-585.
[10] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[11] J. Christopher Whitehead. Plasma-catalysis: Is it just a question of scale?[J]. Front. Chem. Sci. Eng., 2019, 13(2): 264-273.
[12] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[13] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[14] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[15] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed