Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (5) : 745-754    https://doi.org/10.1007/s11705-021-2038-x
RESEARCH ARTICLE
Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers
Shanshan Zhang1, Jiemei Zhou1, Zhaogen Wang1, Jianzhong Xia2,3(), Yong Wang1()
1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
2. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
3. Beijing OriginWater Membrane Technology Co., Ltd., Beijing 101407, China
 Download: PDF(1333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Selective swelling of block copolymers of polysulfone-b-poly(ethylene glycol) is an emerging strategy to prepare new types of polysulfone ultrafiltration membranes. Herein, we prepared nanoporous polysulfone-b-poly(ethylene glycol) ultrafiltration membranes by selective swelling and further promoted their porosity and ultrafiltration performances by using CaCO3 nanoparticles as the sacrificial nanofillers. Different contents of CaCO3 nanoparticles were doped into the solution of polysulfone-b-poly(ethylene glycol), and thus obtained suspensions were used to prepare both self-supported and bi-layered composite structures. Selective swelling was performed on the obtained block copolymer structures in the solvent pair of ethanol/acetone, producing nanoporous membranes with poly(ethylene glycol) lined along pore walls. The CaCO3 nanoparticles dispersed in polysulfone-b-poly(ethylene glycol) were subsequently etched away by hydrochloric acid and the spaces initially occupied by CaCO3 provided extra pores to the block copolymer layers. The porosity of the membranes was increased with increasing CaCO3 content up to 41%, but further increase in the CaCO3 content led to partial collapse of the membrane. The sacrificial CaCO3 particles provided extra pores and enhanced the connectivity between adjacent pores. Consequently, the membranes prepared under optimized conditions exhibited up to 80% increase in water permeance with slight decrease in rejection compared to neat membranes without the use of sacrificial CaCO3 particles.

Keywords block copolymers      selective swelling      ultrafiltration      CaCO3 nanoparticles      sacrificial nanofillers     
Corresponding Author(s): Jianzhong Xia,Yong Wang   
Just Accepted Date: 11 March 2021   Online First Date: 13 April 2021    Issue Date: 28 March 2022
 Cite this article:   
Shanshan Zhang,Jiemei Zhou,Zhaogen Wang, et al. Preparation of polysulfone-based block copolymer ultrafiltration membranes by selective swelling and sacrificing nanofillers[J]. Front. Chem. Sci. Eng., 2022, 16(5): 745-754.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2038-x
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I5/745
Fig.1  (a) The structure formula of PSF-b-PEG; (b) the scanning electron microscope (SEM) image and particle size distribution of CaCO3 nanoparticles; (c) the scheme for the preparation of PSF-b-PEG composite membranes by selective swelling and nanofillers etching.
Fig.2  SEM surface images of the self-supported PSF-b-PEG membranes prepared with different CaCO3 contents after (a-d) swelling and (e-h) etching. The images are in the same magnification, and the scale bar corresponding to 1 mm is given in (a).
Fig.3  (a) Surface and (d) cross-sectional EDX images of the self-supported PSF-b-PEG membrane prepared with 50% CaCO3 before etching. EDX spectra of the self-supported PSF-b-PEG membrane prepared with 50% CaCO3: (b and e) before and (c and f) after etching. The images are in the same magnification, and the scale bar corresponding to 500 nm is given in (a).
Fig.4  Mass changes of the self-supported PSF-b-PEG membranes with different CaCO3 concentrations after etching with hydrochloric acid.
Fig.5  (a) Thicknesses and (b) porosities of the self-supported PSF-b-PEG membranes prepared with different CaCO3 concentrations.
Fig.6  (a) The photograph and (b) the cross-sectional SEM image of the PSF-b-PEG composite membrane. Permeance and rejection performances of membranes prepared with different CaCO3 concentrations: (c) pure water permeance; (d) rejection to 10-nm gold nanospheres; (e) BSA rejection. (f) UV-vis absorption spectra of the feed, filtrate and retentate solutions of 10-nm gold nanoparticles through the PSF-b-PEG composite membrane prepared with 41% CaCO3.
1 A Amanda, A Kulprathipanja, M Toennesen, S K Mallapragada. Semicrystalline poly(vinyl alcohol) ultrafiltrationmembranes for bioseparations. Journal of Membrane Science, 2000, 176(1): 87–95
https://doi.org/10.1016/S0376-7388(00)00433-6
2 A Lee, J W Elam, S B Darling. Membrane materials for water purification: design, development, and application. Environmental Science. Water Research & Technology, 2016, 2(1): 17–42
https://doi.org/10.1039/C5EW00159E
3 R Castro-Muñoz, G Boczkaj, E Gontarek, A Cassano, V Fíla. Membrane technologies assisting plant-based and agro-food by-products processing: a comprehensive review. Trends in Food Science & Technology, 2020, 95: 219–232
https://doi.org/10.1016/j.tifs.2019.12.003
4 A Boulkrinat, F Bouzerara, A Harabi, K Harrouche, S Stelitano, F Russo, F Galiano, A Figoli. Synthesis and characterization of ultrafiltration ceramic membranes used in the separation of macromolecular proteins. Journal of the European Ceramic Society, 2020, 40(15): 5967–5973
https://doi.org/10.1016/j.jeurceramsoc.2020.06.060
5 S Premnath, G P Agarwal. Single stage ultrafiltration for enhanced reverse selectivity in a binary protein system. Separation Science and Technology, 2017, 52(13): 2161–2172
https://doi.org/10.1080/01496395.2017.1322104
6 J Y Park, M H Acar, A Akthakul, W Kuhlman, A M Mayes. Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27(6): 856–865
https://doi.org/10.1016/j.biomaterials.2005.07.010
7 Y N Yang, H X Zhang, P Wang, Q Z Zheng, J Li. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. Journal of Membrane Science, 2007, 288(1-2): 231–238
https://doi.org/10.1016/j.memsci.2006.11.019
8 K Zodrow, L Brunet, S Mahendra, D Li, A Zhang, Q L Li, P J J Alvarez. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43(3): 715–723
https://doi.org/10.1016/j.watres.2008.11.014
9 D Rana, T Matsuura. Surface modifications for antifouling membranes. Chemical Reviews, 2010, 110(4): 2448–2471
https://doi.org/10.1021/cr800208y
10 J M Sheldon, I M Reed, C R Hawes. The fine-structure of ultrafiltration membranes. 2. Protein fouled membranes. Journal of Membrane Science, 1991, 62(1): 87–102
https://doi.org/10.1016/0376-7388(91)85006-Q
11 M S Mauter, Y Wang, K C Okemgbo, O O Chinedum, E P Giannelis, M Elimelech. Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials. ACS Applied Materials & Interfaces, 2011, 3(8): 2861–2868
https://doi.org/10.1021/am200522v
12 Y Q Chen, M J Wei, Y Wang. Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. Journal of Membrane Science, 2016, 505: 53–60
https://doi.org/10.1016/j.memsci.2016.01.030
13 N Wang, T Wang, Y X Hu. Tailoring membrane surface properties and ultrafiltration performances via the self-assembly of polyethylene glycol-block-polysulfone-block-polyethylene glycol block copolymer upon thermal and solvent annealing. ACS Applied Materials & Interfaces, 2017, 9(36): 31018–31030
https://doi.org/10.1021/acsami.7b06997
14 Z G Wang, X P Yao, Y Wang. Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation. Journal of Materials Chemistry, 2012, 22(38): 20542–20548
https://doi.org/10.1039/c2jm34292h
15 L M Guo, Z G Wang, Y Wang. Selective swelling of block copolymers for porous nanostructures. World Scientific Reference of Hybrid Materials, 2018, 1(15): 45–118
16 W Zhao, Y L Su, C Li, Q Shi, X Ning, Z Y Jiang. Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of Membrane Science, 2008, 318(1-2): 405–412
https://doi.org/10.1016/j.memsci.2008.03.013
17 S F Wang, J Y Feng, Y Xie, Z Z Tian, D D Peng, H Wu, Z Y Jiang. Constructing asymmetric membranes via surface segregation for efficient carbon capture. Journal of Membrane Science, 2016, 500: 25–32
https://doi.org/10.1016/j.memsci.2015.11.028
18 Y F Zhao, P B Zhang, J Sun, C J Liu, L P Zhu, Y Y Xu. Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. Journal of Membrane Science, 2016, 510: 306–313
https://doi.org/10.1016/j.memsci.2016.03.006
19 L F Hancock, S M Fagan, M S Ziolo. Hydrophilic, semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer. Biomaterials, 2000, 21(7): 725–733
https://doi.org/10.1016/S0142-9612(99)00237-9
20 R K Du, B J Gao, Y B Li. Hydrophilic polysulfone film prepared from polyethylene glycol monomethylether via coupling graft. Applied Surface Science, 2013, 274: 288–294
https://doi.org/10.1016/j.apsusc.2013.03.038
21 Y Wang. Nondestructive creation of ordered nanopores by selective swelling of block copolymers: toward homoporous membranes. Accounts of Chemical Research, 2016, 49(7): 1401–1408
https://doi.org/10.1021/acs.accounts.6b00233
22 N N Yan, Y Wang. Selective swelling induced pore generation of amphiphilic block copolymers: the role of swelling agents. Journal of Polymer Science. Part B, Polymer Physics, 2016, 54(9): 926–933
https://doi.org/10.1002/polb.23997
23 Y Wang, F B Li. An emerging pore-making strategy: confined swelling-induced pore generation in block copolymer materials. Advanced Materials, 2011, 23(19): 2134–2148
https://doi.org/10.1002/adma.201004022
24 J A Shar, T M Obey, T Cosgrove. Adsorption studies of polyethers. Part 1. Adsorption onto hydrophobic surfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1998, 136(1-2): 21–33
https://doi.org/10.1016/S0927-7757(97)00182-9
25 J M Zhou, Y Wang. Selective swelling of block copolymers: an upscalable greener process to ultrafiltration membranes? Macromolecules, 2020, 53(1): 5–17
https://doi.org/10.1021/acs.macromol.9b01747
26 H Yang, J M Zhou, Z G Wang, X S Shi, Y Wang. Selective swelling of polysulfone/poly(ethylene glycol) block copolymer towards fouling-resistant ultrafiltration membranes. Chinese Journal of Chemical Engineering, 2020, 28(1): 98–103
https://doi.org/10.1016/j.cjche.2019.03.011
27 G Arthanareeswaran, T K Sriyamuna Devi, M Raajenthiren. Effect of silica particles on cellulose acetate blend ultrafiltration membranes: Part I. Separation and Purification Technology, 2008, 64(1): 38–47
https://doi.org/10.1016/j.seppur.2008.08.010
28 D Emadzadeh, W J Lau, T Matsuura, A F Ismail, M Rahbari-Sisakht. Synthesis and characterization of thin film nanocomposite forward osmosis membrane with hydrophilic nanocomposite support to reduce internal concentration polarization. Journal of Membrane Science, 2014, 449: 74–85
https://doi.org/10.1016/j.memsci.2013.08.014
29 D Emadzadeh, W J Lau, T Matsuura, M Rahbari-Sisakht, A F Ismail. A novel thin film composite forward osmosis membrane prepared from PSf-TiO2 nanocomposite substrate for water desalination. Chemical Engineering Journal, 2014, 237: 70–80
https://doi.org/10.1016/j.cej.2013.09.081
30 N Ma, J Wei, S Qi, Y Zhao, Y B Gao, C Y Y Tang. Nanocomposite substrates for controlling internal concentration polarization in forward osmosis membranes. Journal of Membrane Science, 2013, 441: 54–62
https://doi.org/10.1016/j.memsci.2013.04.004
31 L L Lai, J Shao, Q Q Ge, Z B Wang, Y S Yan. The preparation of zeolite NaA membranes on the inner surface of hollow fiber supports. Journal of Membrane Science, 2012, 409–410: 318–328
https://doi.org/10.1016/j.memsci.2012.03.068
32 G D Vilakati, M C Y Wong, E M V Hoek, B B Mamba. Relating thin film composite membrane performance to support membrane morphology fabricated using lignin additive. Journal of Membrane Science, 2014, 469: 216–224
https://doi.org/10.1016/j.memsci.2014.06.018
33 C Deng, Q G Zhang, G L Han, Y Gong, A M Zhu, Q L Liu. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation. Nanoscale, 2013, 5(22): 11028–11034
https://doi.org/10.1039/c3nr03362g
34 H Y Liu, L L Liu, C L Yang, Z H Li, Q Z Xiao, G T Lei, Y H Ding. A hard-template process to prepare three-dimensionally macroporous polymer electrolyte for lithium-ion batteries. Electrochimica Acta, 2014, 121: 328–336
https://doi.org/10.1016/j.electacta.2014.01.013
35 E Uchida, Y Uyama, Y Ikada. Zeta potential of polycation layers grafted onto a film surface. Langmuir, 1994, 10(4): 1193–1198
https://doi.org/10.1021/la00016a037
36 Z G Wang, R Liu, H Yang, Y Wang. Nanoporous polysulfones with in situ PEGylated surfaces by a simple swelling strategy using paired solvents. Chemical Communications, 2017, 53(65): 9105–9108
https://doi.org/10.1039/C7CC04091A
37 S B Darling. Directing the self-assembly of block copolymers. Progress in Polymer Science, 2007, 32(10): 1152–1204
https://doi.org/10.1016/j.progpolymsci.2007.05.004
38 V Abetz, P F W Simon. Phase behaviour and morphologies of block copolymers. Advances in Polymer Science, 2005, 189: 125–212
https://doi.org/10.1007/12_004
39 P Aimar, M Meireles, V Sanchez. A contribution to the translation of retention curves into pore size distributions for sieving membranes. Journal of Membrane Science, 1990, 54(3): 321–338
https://doi.org/10.1016/S0376-7388(00)80618-3
40 J I Calvo, R I Peinador, P Prádanos, L Palacio, A Bottino, G Capannelli, A Hernández. Liquid–liquid displacement porometry to estimate the molecular weight cut-off of ultrafiltration membranes. Desalination, 2011, 268(1-3): 174–181
https://doi.org/10.1016/j.desal.2010.10.016
[1] FCE-20096-OF-ZS_suppl_1 Download
[1] Jintang Huang, Youju Huang, Si Wu. Laser ablation of block copolymers with hydrogen-bonded azobenzene derivatives[J]. Front. Chem. Sci. Eng., 2018, 12(3): 450-456.
[2] Xue Zou,Jin Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater[J]. Front. Chem. Sci. Eng., 2016, 10(4): 490-498.
[3] Ming TAN,Gaohong HE,Yan DAI,Rujie WANG,Wenhua SHI. Calculation on phase diagrams of polyetherimide/ N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances[J]. Front. Chem. Sci. Eng., 2014, 8(3): 312-319.
[4] Jiquan MA, Junhong ZHAO, Zhongbin REN, Lei LI. Preparation and characterization of PVDF-PFSA flat sheet ultrafiltration membranes[J]. Front Chem Sci Eng, 2012, 6(3): 301-310.
[5] Nora’aini ALI, Fadhilati HASSAN, Sofiah HAMZAH. Preparation and characterization of asymmetric ultrafiltration membrane for effective recovery of proteases from surimi wash water[J]. Front Chem Sci Eng, 2012, 6(2): 184-191.
[6] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
[7] GAO Sujun, SUN Yaqin, XIU Zhilong. Separation of 1,3-propanediol from glycerol-based fermentations of Klebsiella pneumoniae by alcohol precipitation and dilution crystallization[J]. Front. Chem. Sci. Eng., 2007, 1(2): 202-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed