Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (4) : 484-497    https://doi.org/10.1007/s11705-021-2074-6
RESEARCH ARTICLE
Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites
Jinian Yang1(), Xuesong Feng1, Shibin Nie2(), Yuxuan Xu2, Zhenyu Li1
1. School of Materials Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
2. School of Safety Science and Engineering, State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science and Technology, Huainan 232001, China
 Download: PDF(4428 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nanocomposites of flower-like nickel phyllosilicate particles incorporated into epoxy resin were fabricated via an in-situ mixing process. The flower-like nickel phyllosilicate particles were firstly synthesized using a mild self-sacrificial templating method, and the morphology and lamellar structure were examined carefully. Several properties of mechanical, thermal and tribological responses of epoxy nanocomposites were performed. It was demonstrated that adequate flower-like nickel phyllosilicate particles dispersed well in the matrix, and the nanocomposites displayed enhanced tensile strength and elastic modulus but decreased elongation at break as expected. In addition, friction coefficient and wear rate were increased first and then decreased along with the particle content, and showed the lowest values at a mass fraction of 5%. Nevertheless, the incorporated flower-like nickel phyllosilicate particles resulted in the continuously increasing thermal stability of epoxy resin (EP) nanocomposites. This study revealed the giant potential of flower-like particles in preparing high-quality EP nanocomposites.

Keywords nickel phyllosilicate      flow-like structure      mechanical property      thermal stability      tribological performance     
Corresponding Author(s): Jinian Yang,Shibin Nie   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 03 August 2021    Issue Date: 21 March 2022
 Cite this article:   
Jinian Yang,Xuesong Feng,Shibin Nie, et al. Self-sacrificial templating synthesis of flower-like nickel phyllosilicates and its application as high-performance reinforcements in epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2022, 16(4): 484-497.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2074-6
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I4/484
  Scheme 1 Schematic drawing for the preparation of sample.
Fig.1  (a) XRD patterns of nanosilica and F-NiPS; (b) SEM picture; (c) TEM image; (d) EDS pattern of F-NiPS; (e) FTIR spectra of nanosilica and F-NiPS and (f) TGA of F-NiPS.
Fig.2  SEM pictures with low magnification for EP/F-NiPS nanocomposites: (a) 0%, (b) 1%, (c) 3%, (d) 5% and (e) 7%.
Fig.3  SEM pictures with high magnification for EP/F-NiPS nanocomposites: (a) 0%, (b, b′) 1%, (c) 3%, (d) 5% and (e, e′) 7%.
Fig.4  Mechanical properties of EP/F-NiPS nanocomposites: (a) the representative stress-strain curves; (b) elastic modulus and elongation at break; (c) tensile strength as a function of F-NiPS contents.
Fig.5  Thermograms of EP/F-NiPS nanocomposites: (a) TGA and (b) DTG.
Sample Ti/°C (dW/dT)i/(%·K–1) Tp/°C (dW/dT)p/(%·K–1) Char/%
0%
1%
3%
5%
7%
362.3
361.1
357.9
357.6
355.7
–0.86
–0.59
–0.56
–0.59
–0.57
375.5
382.5
379.1
378.1
377.5
–2.28
–1.51
–1.55
–1.56
–1.54
14.4
18.0
18.7
20.6
21.5
Tab.1  Parameters of thermal stability for EP/F-NiPS nanocomposites
Fig.6  Tribological properties of EP/F-NiPS nanocomposites: (a) friction curves versus sliding time and (b) wear rates as a function of F-NiPS content.
Fig.7  Worn surfaces of EP/F-NiPS nanocomposites: (a, a′) 0%, (b, b′) 1%, (c, c′) 3%, (d, d′) 5% and (e, e′) 7%.
  Scheme 2 Schematic representation showing the effect of F-NiPS particles on the wear resistance of EP nanocomposites.
Fig.8  (a) EDS pattern and elemental mapping for the square A marked in Fig. 7(d′) and (b) Fe 2p XPS core peak of the worn surface of EP/F-NiPS nanocomposites.
1 S Sasidharan, A Anand. Epoxy-based hybrid structural composites with nanofillers: a review. Industrial & Engineering Chemistry Research, 2020, 59(28): 12617–12631
https://doi.org/10.1021/acs.iecr.0c01711
2 H Y Wei, J Xia, W L Zhou, L S Zhou, G Hussain, Q Li, K Ostrikov. Adhesion and cohesion of epoxy-based industrial composite coatings. Composites. Part B, Engineering, 2020, 193: 108035
https://doi.org/10.1016/j.compositesb.2020.108035
3 L Chang, Z Zhang, L Ye, K Friedrich. Tribological properties of epoxy nanocomposites: III. Characteristics of transfer films. Wear, 2007, 262(5): 699–706
https://doi.org/10.1016/j.wear.2006.08.002
4 J Yu, W Zhao, Y Wu, D Wang, R Feng. Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Applied Surface Science, 2018, 434: 1311–1320
https://doi.org/10.1016/j.apsusc.2017.11.204
5 A A Azeez, K Y Rhee, S J Park, D Hui. Epoxy clay nanocomposites-processing, properties and applications: a review. Composites. Part B, Engineering, 2013, 45(1): 308–320
https://doi.org/10.1016/j.compositesb.2012.04.012
6 J N Yang, Z Y Li, Y X Xu, S B Nie, Y Liu. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. Journal of Polymer Research, 2020, 27(9): 274
https://doi.org/10.1007/s10965-020-02250-x
7 D Bazrgari, F Moztarzadeh, A A Sabbagh-Alvani, M Rasoulianboroujeni, M Tahriri, L Tayebi. Mechanical properties and tribological performance of epoxy/Al2O3 nanocomposite. Ceramics International, 2018, 44(1): 1220–1224
https://doi.org/10.1016/j.ceramint.2017.10.068
8 M M Sakka, Z Antar, K Elleuch, J F Feller. Tribological response of an epoxy matrix filled with graphite and/or carbon nanotubes. Friction, 2017, 5(2): 171–182
https://doi.org/10.1007/s40544-017-0144-z
9 A Kumar, D S Bag, R K Tiwari, D N Tripathi, N E Prasad. Copper nanoparticles filled epoxy nanocomposites and their mechanical properties. Journal of Polymer Materials, 2016, 33(3): 419–429
10 S Nie, D Jin, Y Xu, C Han, X Dong, J Yang. Effect of a flower-like nickel phyllosilicate-containing iron on the thermal stability and flame retardancy of epoxy resin. Journal of Materials Research and Technology, 2020, 9(5): 10189–10197
https://doi.org/10.1016/j.jmrt.2020.07.021
11 J Liu, R K K Yuen, N Hong, Y Hu. The influence of mesoporous SiO2-graphene hybrid improved the flame retardancy of epoxy resins. Polymers for Advanced Technologies, 2018, 29(5): 1478–1486
https://doi.org/10.1002/pat.4259
12 S Qiu, Y Hu, Y Shi, Y Hou, Y Kan, F Chu, H Sheng, R K K Yuen, W Xing. In situ growth of polyphosphazene particles on molybdenum disulfide nanosheets for flame retardant and friction application. Composites. Part A, Applied Science and Manufacturing, 2018, 114: 407–417
https://doi.org/10.1016/j.compositesa.2018.08.012
13 Q Yang, L Liu, D Hui, M Chipara. Microstructure, electrical conductivity and microwave absorption properties of γ-FeNi decorated carbon nanotube composites. Composites. Part B, Engineering, 2016, 87: 256–262
https://doi.org/10.1016/j.compositesb.2015.09.056
14 F Wu, W Zhao, H Chen, Z Zeng, X Wu, Q Xue. Interfacial structure and tribological behaviours of epoxy resin coating reinforced with graphene and graphene oxide. Surface and Interface Analysis, 2017, 49(2): 85–92
https://doi.org/10.1002/sia.6062
15 J Chen, J Yang, B Chen, S Liu, J Dong, C Li. Large-scale synthesis of NbSe2 nanosheets and their use as nanofillers for improving the tribological properties of epoxy coatings. Surface and Coatings Technology, 2016, 305(305): 23–28
https://doi.org/10.1016/j.surfcoat.2016.07.062
16 P Burattin, M Che, C Louis. Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. Journal of Physical Chemistry B, 1997, 101(36): 7060–7074
https://doi.org/10.1021/jp970194d
17 T Mizutani, Y Fukushima, A Okada, O Kamigaito. Synthesis of nickel and magnesium phyllosilicates with 1:1 and 2:1 layer structures. Bulletin of the Chemical Society of Japan, 1990, 63(7): 2094–2098
https://doi.org/10.1246/bcsj.63.2094
18 R Nares, J Ramírez, A Gutiérrez-Alejandre, C Louis, T Klimova. Ni/Hβ-zeolite catalysts prepared by deposition-precipitation. Journal of Physical Chemistry B, 2002, 106(51): 13287–13293
https://doi.org/10.1021/jp0207679
19 R Nares, J Ramírez, A Gutiérrez-Alejandre, R Cuevas. Characterization and hydrogenation activity of Ni/Si(Al)-MCM-41 catalysts prepared by deposition-precipitation. Industrial & Engineering Chemistry Research, 2009, 48(3): 1154–1162
https://doi.org/10.1021/ie800569j
20 Q Fang, S Xuan, W Jiang, X Gong. Yolk-like micro/nanoparticles with superparamagnetic iron oxide cores and hierarchical nickel silicate shells. Advanced Functional Materials, 2011, 21(10): 1902–1909
https://doi.org/10.1002/adfm.201002191
21 C Zhang, H Yue, Z Huang, S Li, G Wu, X Ma, J Gong. Hydrogen production via steam reforming of ethanol on phyllosilicate-derived Ni/SiO2: enhanced metal-support interaction and catalytic stability. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 161–173
https://doi.org/10.1021/sc300081q
22 C Gui, S Hao, Y Liu, J Qu, C Yang, Y Yu, Q Wang, Z Yu. Carbon nanotube@layered nickel silicate coaxial nanocables as excellent anode materials for lithium and sodium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16551–16559
https://doi.org/10.1039/C5TA03408F
23 C Qiu, L H Ai, J Jiang. Layered phosphate-incorporated nickel-cobalt hydrosilicates for highly efficient oxygen evolution electrocatalysis. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 4492–4498
https://doi.org/10.1021/acssuschemeng.7b04415
24 G Jian, Q Meng, Y Jiao, F Meng, Y Cao, M Wu. Enhanced performances of triboelectric nanogenerators by filling hierarchical flower-like TiO2 particles into polymethyl methacrylate film. Nanoscale, 2020, 12(26): 14160–14170
https://doi.org/10.1039/D0NR02925D
25 X Y Ma, W D Zhang. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polymer Degradation & Stability, 2009, 94(7): 1103–1109
https://doi.org/10.1016/j.polymdegradstab.2009.03.024
26 N Xu, L Hu, Q Zhang, X Xiao, H Yang, E Yu. Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Applied Materials & Interfaces, 2015, 7(49): 27373–27381
https://doi.org/10.1021/acsami.5b08987
27 Y Fukushima, M Tani. Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bulletin of the Chemical Society of Japan, 1996, 69(12): 3667–3671
https://doi.org/10.1246/bcsj.69.3667
28 K Ohtsuka, J Koga, M Suda, M Ono. Fabrication of metal-layer (nickel) silicate microcomposite particles by a surfacenucleated precipitation route. Journal of the American Ceramic Society, 1989, 72(10): 1924–1930
https://doi.org/10.1111/j.1151-2916.1989.tb06002.x
29 C X Gui, Q Q Wang, S M Hao, J Qu, P P Huang, C Y Cao, W G Song, Z Z Yu. Sandwichlike magnesium silicate/reduced graphene oxide nanocomposite for enhanced Pb2+ and methylene blue adsorption. ACS Applied Materials & Interfaces, 2014, 6(16): 14653–14659
https://doi.org/10.1021/am503997e
30 K Chabrol, M Gressier, N Pebere, M J Menu, F Martin, J P Bonino, C Marichal, J Brendle. Functionalization of synthetic talc-like phyllosilicates by alkoxyorganosilane grafting. Journal of Materials Chemistry, 2010, 20(43): 9695–9706
https://doi.org/10.1039/c0jm01276a
31 S Yamini, R J Young. Crack propagation in and fractography of epoxy resins. Journal of Materials Science, 1979, 14(7): 1609–1618
https://doi.org/10.1007/BF00569280
32 S Yamini, R J Young. Stability of crack propagation in epoxy resins. Polymer, 1977, 18(10): 1075–1080
https://doi.org/10.1016/0032-3861(77)90016-7
33 X Chen, L Wang, J Shi, H Shi, Y Liu. Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE. Polymers & Polymer Composites, 2010, 18(3): 145–152
https://doi.org/10.1177/096739111001800304
34 A Yasmin, J L Abot, I M Daniel. Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia, 2003, 49(1): 81–86
https://doi.org/10.1016/S1359-6462(03)00173-8
35 C L Wu, M Q Zhang, M Z Rong, K Friedrich. Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology, 2002, 62(10): 1327–1340
https://doi.org/10.1016/S0266-3538(02)00079-9
36 X Liu, Q Wu. PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer, 2001, 42(25): 10013–10019
https://doi.org/10.1016/S0032-3861(01)00561-4
37 C X Zhao, W D Zhang. Preparation of waterborne polyurethane nanocomposites: polymerization from functionalized hydroxyapatite. European Polymer Journal, 2008, 44(7): 1988–1995
https://doi.org/10.1016/j.eurpolymj.2008.04.029
38 K Zhou, J Liu, Y Shi, S Jiang, D Wang, Y Hu, Z Gui. MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites. ACS Applied Materials & Interfaces, 2015, 7(11): 6070–6081
https://doi.org/10.1021/acsami.5b00762
39 H Kim, A A Abdala, C W Macosko. Graphene/polymer nanocomposites. Macromolecules, 2010, 43(16): 6515–6530
https://doi.org/10.1021/ma100572e
40 N Myshkin, A Kovalev. Adhesion and surface forces in polymer tribology: a review. Friction, 2018, 6(2): 143–155
https://doi.org/10.1007/s40544-018-0203-0
41 S Gupta, T Hammann, R Johnson, M F Riyad. Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribology Transactions, 2015, 58(3): 560–566
https://doi.org/10.1080/10402004.2014.996308
42 R Baptista, A Mendão, F Rodrigues, C Figueiredo-Pina, M Guedes, R Marat-Mendes. Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites. Theoretical and Applied Fracture Mechanics, 2016, 85: 113–124
https://doi.org/10.1016/j.tafmec.2016.08.013
43 M Nosonovsky, V Mortazavi. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact. 1st ed. Boca Raton, FL: CSC Press, 2018
44 A Dasari, Z Z Yu, Y W Mai. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering: R: Reports, 2009, 63(2): 31–80
https://doi.org/10.1016/j.mser.2008.10.001
45 W X Chen, J P Tu, L Y Wang, H Y Gan, Z D Xu, X B Zhang. Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon, 2003, 41(2): 215–222
https://doi.org/10.1016/S0008-6223(02)00265-8
46 J Fei, D Luo, H Wang, H Li, J Huang, W Luo, X Duan. Effect of nano-SiO2 particles on the carbon fabric/resin friction materials by microwave-hydrothermal treatment. Journal of Composite Materials, 2017, 52(2): 245–252
https://doi.org/10.1177/0021998317705441
47 B J Tan, K J Klabunde, P M A Sherwood. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chemistry of Materials, 1990, 2(2): 186–191
https://doi.org/10.1021/cm00008a021
48 H J Mathieu, D Landolt. An investigation of thin oxide films thermally grown in situ on Fe24Cr and Fe24Cr11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corrosion Science, 1986, 26(7): 547–559
https://doi.org/10.1016/0010-938X(86)90022-3
49 R Dedryvère, M Maccario, L Croguennec, F Le Cras, C Delmas, D Gonbeau. X-ray photoelectron spectroscopy investigations of carbon-coated LixFePO4 materials. Chemistry of Materials, 2008, 20(22): 7164–7170
https://doi.org/10.1021/cm801995p
50 D D Hawn, B M DeKoven. Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surface and Interface Analysis, 1987, 10(2-3): 63–74
https://doi.org/10.1002/sia.740100203
[1] Jinian Yang, Yuxuan Xu, Chang Su, Shibin Nie, Zhenyu Li. Synthesis of hierarchical nanohybrid CNT@Ni-PS and its applications in enhancing the tribological, curing and thermal properties of epoxy nanocomposites[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1281-1295.
[2] Haojie Ding, Liuyun Jiang, Chunyan Tang, Shuo Tang, Bingli Ma, Na Zhang, Yue Wen, Yan Zhang, Liping Sheng, Shengpei Su, Xiang Hu. Study on the surface-modification of nano-hydroxyapatite with lignin and the corresponding nanocomposite with poly (lactide-co-glycolide)[J]. Front. Chem. Sci. Eng., 2021, 15(3): 630-642.
[3] Chao Wang, Jun Chen, Jihua He, Jing Jiang, Qinyong Zhang. Effect of electrolyte concentration on the tribological performance of MAO coatings on aluminum alloys[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1065-1071.
[4] Jiaojiao Shang, Guo Yao, Ronghui Guo, Wei Zheng, Long Gu, Jianwu Lan. Synthesis and characterization of biodegradable thermoplastic elastomers derived from N′,N-bis (2-carboxyethyl)-pyromellitimide, poly(butylene succinate) and polyethylene glycol[J]. Front. Chem. Sci. Eng., 2018, 12(3): 457-466.
[5] Junbo Gong, Dejiang Zhang, Yuanyuan Ran, Keke Zhang, Shichao Du. Solvates and polymorphs of clindamycin phosphate: Structural, thermal stability and moisture stability studies[J]. Front. Chem. Sci. Eng., 2017, 11(2): 220-230.
[6] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
[7] WU Chunrui, ZHANG Shouhai, YANG Fajie, YAN Chun, JIAN Xigao. Preparation and performance of novel thermal stable composite nanofiltration membrane [J]. Front. Chem. Sci. Eng., 2008, 2(4): 402-406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed