Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (6) : 1524-1536    https://doi.org/10.1007/s11705-021-2106-2
RESEARCH ARTICLE
Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation
Shan Wang1,2, Xuelian Xu2, Ping Xiao2, Junjiang Zhu2(), Xinying Liu1()
1. Institute for the Development of Energy for African Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1710, South Africa
2. Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
 Download: PDF(4794 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of Zr doping on the existence of Cu and the catalytic performance of Ce0.7−xZrxCu0.3O2 for CO oxidation were investigated. The characterization results showed that all samples have a cubic structure, and a small amount of Zr doping facilitates Cu2+ ions entering the CeO2 lattice, but excessive Zr doping leads to the formation of surface CuO crystals again. Thus, the number of oxygen vacancies caused by the Cu2+ entering the lattice (e.g., Cu2+–□–Ce4+; □: oxygen vacancy), and the amount of reducible copper species caused by CuO crystals, varies with the Zr doping. Catalytic CO oxidation tests indicated that the oxygen vacancy and the reducible copper species were the adsorption and activation sites of O2 and CO, respectively, and the cooperative effects between them accounted for the high CO oxidation activity. Thus, the samples x = 0.1 and 0.3, which possessed the most oxygen vacancy or reducible copper species, showed the best activity for CO oxidation, with full CO conversion obtained at 110 °C. The catalyst is also stable and has good resistance to water during the reaction.

Keywords Ce–Zr–Cu–O      CO oxidation      reducible copper species      oxygen vacancy      cooperative effect     
Corresponding Author(s): Junjiang Zhu,Xinying Liu   
Online First Date: 22 October 2021    Issue Date: 09 November 2021
 Cite this article:   
Shan Wang,Xuelian Xu,Ping Xiao, et al. Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1524-1536.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2106-2
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I6/1524
Fig.1  XRD patterns for: (a) individual CuO, CeO2 and Ce0.7Cu0.3O2 composites and (b) the Zr doped Ce0.7−xZrxCu0.3O2 composites, together with a standard diffraction diagram of the cubic ZrO2.
Fig.2  N2 physisorption isotherms of the Ce0.7−xZrxCu0.3O2, with BET surface area and pore size data inserted.
Fig.3  SEM images of the Ce0.7−xZrxCu0.3O2 series samples.
Fig.4  Normal-(a–c) and high-(d–f) resolutionTEM images of: Ce0.7Cu0.3O2 (a, d), Ce0.4Zr0.3Cu0.3O2 (b, e), and Ce0.2Zr0.5Cu0.3O2 (c, f).
Fig.5  H2-TPR profiles of the Ce0.7−xZrxCu0.3O2 series composites.
Sample H2-TPR (area/counts) O2-TPD (area/counts)
Shoulder peak Main peak α peak β peak γ peak
T/°C mmol·gcat–1a) T/°C mmol·gcat–1 a)
x = 0 175.5 0.16 211.9 1.99 462.1 56.1 1363.7
x = 0.1 186.2 0.49 214.9 1.60 122.4 287.6 1209.4
x = 0.3 193.8 0.82 225.8 2.10 199.1 261.8 1810.1
x = 0.5 172.9 0.30 213.5 1.56 308.7 130.0 2015.8
Tab.1  H2-TPR and O2-TPD data of the Ce0.7−xZrxCu0.3O2 composite oxides
Fig.6  O2-TPD profiles of the Ce0.7−xZrxCu0.3O2 composite oxides.
Fig.7  Ce 3d, Zr 3d, Cu 2p and O 1s fine XPS spectra of the Ce0.7−xZrxCu0.3O2 composites.
Catalysts Cu2+/Cu+ + Cu2+ Oads/Olatta)
Ce0.6Zr0.1Cu0.3O2 0.82 2.6
Ce0.4Zr0.3Cu0.3O2 0.85 2.9
Ce0.2Zr0.5Cu0.3O2 0.87 3.2
Tab.2  Surface atomic copper and oxygen molar ratios obtained from the XPS spectra
Fig.8  CO conversion obtained from the catalysts: (a) Ce1–xCuxO2 composites; (b) Ce0.7–xZrxCu0.3O2 composites; (c) La substituted Ce0.4Zr0.3Cu0.3–yLayO2; (d) CuO, CeO2 and Ce0.4Zr0.3Cu0.3O2.
Fig.9  Comparison of the activity of Ce0.4Zr0.3Cu0.3O2 before and after etching, and of the impregnated CuO/CeO2.
Fig.10  Scheme 1 Sketch of CO and O2 activation and their reaction to form CO2 over the Ce0.7−xZrxCu0.3O2 composites.
Fig.11  (a) Long-term stability of Ce0.4Zr0.3Cu0.3O2 for CO oxidation at 95 °C, and (b) the water resistance of Ce0.4Zr0.3Cu0.3O2 for CO oxidation at 95 °C (Reaction conditions: using the 0.15 g Ce0.4Zr0.3Cu0.3O2 reacted as the catalyst. The reactant (0.8 vol-% CO+ 6.0 vol-% O2 or 5% H2O, balanced with Ar) was passed at 60 mL·min–1 flow rate, during which the WHSV is equivalent to 31000 h–1).
1 R Zhang, J Wang, X Zhu, X Liu, H Liu, Y Zhou, S Dong, P La, J Yao, B Liu. Phase-separated Ce–Co–O catalysts for CO oxidation. International Journal of Hydrogen Energy, 2020, 45(23): 12777–12786
https://doi.org/10.1016/j.ijhydene.2020.02.210
2 S Wang, Y Zhang, J Zhu, D Tang, Z Zhao, X Yang. Sol-Gel preparation of perovskite oxides using ethylene glycol and alcohol mixture as complexant and its catalytic performances for CO oxidation. ChemistrySelect, 2018, 3(43): 12250–12257
https://doi.org/10.1002/slct.201802848
3 S Wang, X Xu, J Zhu, D Tang, Z Zhao. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation. Journal of Rare Earths, 2019, 37(9): 970–977
https://doi.org/10.1016/j.jre.2018.11.011
4 Y Inomata, K Albrecht, K Yamamoto. Size-dependent oxidation state and CO oxidation activity of tin oxide clusters. ACS Catalysis, 2018, 8(1): 451–456
https://doi.org/10.1021/acscatal.7b02981
5 S Wang, P Xiao, X Xuelian, H Bi, X Liu, J Zhu. Catalytic CO oxidation and CO+NO reduction conducted on La–Co–O composites: the synergistic effects between Co3O4 and LaCoO3. Catalysis Today, 2020, 376(15): 255–261
6 N Almana, S P Phivilay, P Laveille, M N Hedhili, P Fornasiero, K Takanabe, J M Basset. Design of a core-shell Pt–SiO2 catalyst in a reverse microemulsion system: distinctive kinetics on CO oxidation at low temperature. Journal of Catalysis, 2016, 340: 368–375
https://doi.org/10.1016/j.jcat.2016.06.002
7 S Chen, H Zou, Z Liu, W Lin. DRIFTS study of different gas adsorption for CO selective oxidation on Cu–Zr–Ce–O catalysts. Applied Surface Science, 2009, 255(15): 6963–6967
https://doi.org/10.1016/j.apsusc.2009.03.021
8 Q Ye, J Wang, J Zhao, L Yan, S Cheng, T Kang, H Dai. Pt or Pd-doped Au/SnO2 catalysts: high activity for low-temperature CO oxidation. Catalysis Letters, 2010, 138(1): 56–61
https://doi.org/10.1007/s10562-010-0360-x
9 S F Chen, J P Li, K Qian, W P Xu, Y Lu, W X Huang, S H Yu. Large scale photochemical synthesis of M@TiO2 nanocomposites (M= Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect. Nano Research, 2010, 3(4): 244–255
https://doi.org/10.1007/s12274-010-1027-z
10 N Li, Q Y Chen, L F Luo, W X Huang, M F Luo, G S Hu, J Q Lu. Kinetic study and the effect of particle size on low temperature CO oxidation over Pt/TiO2 catalysts. Applied Catalysis B: Environmental, 2013, 142–143: 523–532
https://doi.org/10.1016/j.apcatb.2013.05.068
11 N K Renuka, K Anas, C U Aniz. Synthesis, characterisation and activity of SBA-16 supported oxidation catalysts for CO conversion. Chinese Journal of Catalysis, 2015, 36(8): 1237–1241
https://doi.org/10.1016/S1872-2067(15)60894-4
12 R Kang, X Wei, F Bin, Z Wang, H Qinglan, B Dou. Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0.75Zr0.25O2−δ catalyst. Applied Catalysis A, General, 2018, 565(5): 46–58
https://doi.org/10.1016/j.apcata.2018.07.026
13 L Atzori, M G Cutrufello, D Meloni, B Onida, D Gazzoli, A Ardu, R Monaci, M F Sini, E Rombi. Characterization and catalytic activity of soft-templated NiO–CeO2 mixed oxides for CO and CO2 co-methanation. Frontiers of Chemical Science and Engineering, 2021, 15(2): 251–268
https://doi.org/10.1007/s11705-020-1951-8
14 R Li, Y Yang, N Sun, L Kuai. Mesoporous Cu–Ce–Ox solid solutions from spray pyrolysis for superior low-temperature CO oxidation. Chemistry (Weinheim an der Bergstrasse, Germany), 2019, 25(68): 15586–15593
https://doi.org/10.1002/chem.201903680
15 I V Desyatykh, A A Vedyagin, I V Mishakov, Y V Shubin. CO oxidation over fiberglasses with doped Cu–Ce–O catalytic layer prepared by surface combustion synthesis. Applied Surface Science, 2015, 349: 21–26
https://doi.org/10.1016/j.apsusc.2015.04.185
16 M AlKetbi, K Polychronopoulou, M Abi Jaoude, M A Vasiliades, V Sebastian, S J Hinder, M A Baker, A F Zedan, A M Efstathiou. Cu–Ce–La–Ox as efficient CO oxidation catalysts: effect of Cu content. Applied Surface Science, 2020, 505: 144474
https://doi.org/10.1016/j.apsusc.2019.144474
17 X Zhang, H Wang, Z Wang, Z Qu. Adsorption and surface reaction pathway of NH3 selective catalytic oxidation over different Cu–Ce–Zr catalysts. Applied Surface Science, 2018, 447: 40–48
https://doi.org/10.1016/j.apsusc.2018.03.220
18 J Baneshi, M Haghighi, N Jodeiri, M Abdollahifar, H Ajamein. Urea-nitrate combustion synthesis of ZrO2 and CeO2 doped CuO/Al2O3 nanocatalyst used in steam reforming of biomethanol for hydrogen production. Ceramics International, 2014, 40(9, Part A): 14177–14184
https://doi.org/10.1016/j.ceramint.2014.06.005
19 Y Han, Y Wang, T Ma, W Li, J Zhang, M Zhang. Mechanistic understanding of Cu-based bimetallic catalysts. Frontiers of Chemical Science and Engineering, 2020, 14(5): 689–748
https://doi.org/10.1007/s11705-019-1902-4
20 W Yu, Q Zhou, H Wang, Y Liu, W Chu, R Cai, W Yang. Selective removal of CO from hydrocarbon-rich industrial off-gases over CeO2-supported metal oxides. Journal of Materials Science, 2020, 55(6): 2321–2332
https://doi.org/10.1007/s10853-019-04114-2
21 X Liu, S Jia, M Yang, Y Tang, Y Wen, S Chu, J Wang, B Shan, R Chen. Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation. Nature Communications, 2020, 11(1): 4240
https://doi.org/10.1038/s41467-020-18076-6
22 A P Cabello, M A Ulla, J M Zamaro. CeO2/CuOx nanostructured films for CO oxidation and CO oxidation in hydrogen-rich streams using a micro-structured reactor. Topics in Catalysis, 2019, 62(12): 931–940
https://doi.org/10.1007/s11244-019-01178-x
23 R K Pati, I C Lee, S Hou, O Akhuemonkhan, K J Gaskell, Q Wang, A I Frenkel, D Chu, L G Salamanca-Riba, S H Ehrman. Flame synthesis of nanosized Cu–Ce–O, Ni–Ce–O, and Fe–Ce–O catalysts for the water-gas shift (WGS) reaction. ACS Applied Materials & Interfaces, 2009, 1(11): 2624–2635
https://doi.org/10.1021/am900533p
24 S Li, Q Hao, R Zhao, D Liu, H Duan, B Dou. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chemical Engineering Journal, 2016, 285: 536–543
https://doi.org/10.1016/j.cej.2015.09.097
25 K Li, T Lyu, J He, B W L Jang. Selective hydrogenation of acetylene over Pd/CeO2. Frontiers of Chemical Science and Engineering, 2020, 14(6): 929–936
https://doi.org/10.1007/s11705-019-1912-2
26 H Vidal, J Kašpar, M Pijolat, G Colón, S Bernal, A Cordón, V Perrichon, F Fally. Redox behavior of CeO2–ZrO2 mixed oxides. Applied Catalysis B: Environmental, 2000, 27(1): 49–63
https://doi.org/10.1016/S0926-3373(00)00138-7
27 A Martínez-Arias, M Fernández-García, O Gálvez, J M Coronado, J A Anderson, J C Conesa, J Soria, G Munuera. Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts. Journal of Catalysis, 2000, 195(1): 207–216
https://doi.org/10.1006/jcat.2000.2981
28 K Vikanova, E Redina, G Kapustin, V Nissenbaum, I Mishin, E Kostyukhin, L Kustov. Template-free one-step synthesis of micro-mesoporous CeO2–ZrO2 mixed oxides with a high surface area for selective hydrogenation. Ceramics International, 2020, 46(9): 13980–13988
https://doi.org/10.1016/j.ceramint.2020.02.197
29 H Shang, X Zhang, J Xu, Y Han. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation. Frontiers of Chemical Science and Engineering, 2017, 11(4): 603–612
https://doi.org/10.1007/s11705-017-1661-z
30 L Qi, Q Yu, Y Dai, C Tang, L Liu, H Zhang, F Gao, L Dong, Y Chen. Influence of cerium precursors on the structure and reducibility of mesoporous CuO–CeO2 catalysts for CO oxidation. Applied Catalysis B: Environmental, 2012, 119–120: 308–320
https://doi.org/10.1016/j.apcatb.2012.02.029
31 J A Cecilia, A Arango-Díaz, V Rico-Pérez, A Bueno-López, E Rodríguez-Castellón. The influence of promoters (Zr, La, Tb, Pr) on the catalytic performance of CuO–CeO2 systems for the preferential oxidation of CO in the presence of CO2 and H2O. Catalysis Today, 2015, 253: 115–125
https://doi.org/10.1016/j.cattod.2015.02.012
32 Á Reyes-Carmona, A Arango-Díaz, E Moretti, A Talon, L Storaro, M Lenarda, A Jiménez-López, E Rodríguez-Castellón. CuO/CeO2 supported on Zr doped SBA-15 as catalysts for preferential CO oxidation (CO-PROX). Journal of Power Sources, 2011, 196(9): 4382–4387
https://doi.org/10.1016/j.jpowsour.2010.10.019
33 M Manzoli, R D Monte, F Boccuzzi, S Coluccia, J Kašpar. CO oxidation over CuOx–CeO2–ZrO2 catalysts: transient behaviour and role of copper clusters in contact with ceria. Applied Catalysis B: Environmental, 2005, 61(3): 192–205
https://doi.org/10.1016/j.apcatb.2005.05.005
34 J Y Z Chiou, C L Lai, S W Yu, H H Huang, C L Chuang, C B Wang. Effect of Co, Fe and Rh addition on coke deposition over Ni/Ce0.5Zr0.5O2 catalysts for steam reforming of ethanol. International Journal of Hydrogen Energy, 2014, 39(35): 20689–20699
https://doi.org/10.1016/j.ijhydene.2014.07.141
35 Y Wang, Y Zheng, Y Wang, K Li, Y Wang, L Jiang, X Zhu, Y Wei, H Wang. Syngas production modified by oxygen vacancies over CeO2–ZrO2–CuO oxygen carrier via chemical looping reforming of methane. Applied Surface Science, 2019, 481: 151–160
https://doi.org/10.1016/j.apsusc.2019.03.050
36 Y Zhao, K Chen, Q Zou, J Fang, S Zhu, S He, J Lu, Y Luo. Insights into the essential roles of tin and chloride species within Cu–CeO2 based catalysts for CO preferential oxidation in H2-rich stream. Journal of Power Sources, 2021, 484: 229181
https://doi.org/10.1016/j.jpowsour.2020.229181
37 L Bo, S Sun. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu–Mn–Ce/cordierite honeycomb catalyst. Frontiers of Chemical Science and Engineering, 2019, 13(2): 385–392
https://doi.org/10.1007/s11705-018-1738-3
38 J L Ayastuy, A Gurbani, M P González-Marcos, M A Gutiérrez-Ortiz. Selective CO oxidation in H2 streams on CuO/CexZr1−xO2 catalysts: correlation between activity and low temperature reducibility. International Journal of Hydrogen Energy, 2012, 37(2): 1993–2006
https://doi.org/10.1016/j.ijhydene.2011.04.178
39 P Bera, A Hornés, A L Cámara, A Martínez Arias. DRIFTS-MS studies of preferential oxidation of CO in H2 rich stream over (CuO)0.7(CeO2)0.3 and (Cu0.9M0.1O)0.7(CeO2)0.3 (M= Co, Zn and Sn) catalysts. Catalysis Today, 2010, 155(3): 184–191
https://doi.org/10.1016/j.cattod.2009.08.010
40 H C Yao, Y F Y Yao. Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265
https://doi.org/10.1016/0021-9517(84)90371-3
41 R Kang, X Wei, F Bin, Z Wang, Q Hao, B Dou. Reaction mechanism and kinetics of CO oxidation over a CuO/Ce0.75Zr0.25O2−δ catalyst. Applied Catalysis A, General, 2018, 565: 46–58
https://doi.org/10.1016/j.apcata.2018.07.026
42 P Burroughs, A Hamnett, A F Orchard, G Thornton. Satellite structure in the X-ray photoelectron spectra of some binary and mixed oxides of lanthanum and cerium. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 1976, 17: 1686–1698
https://doi.org/10.1039/dt9760001686
43 M F Luo, X M Zheng, R Laitinen, M Ugalde, P Román, L Lezama, T Rojo. Redox behaviour of CeO2 and Ce0.5Zr0.5O2 supported CuO catalysts for CO oxidation. Acta Chemica Scandinavica. Series A: Physical and Inorganic Chemistry, 1998, 52: 1183–1187
https://doi.org/10.3891/acta.chem.scand.52-1183
44 C Liu, H Xian, Z Jiang, L Wang, J Zhang, L Zheng, Y Tan, X Li. Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane. Applied Catalysis B: Environmental, 2015, 176–177: 542–552
https://doi.org/10.1016/j.apcatb.2015.04.042
45 L Liu, Z Yao, B Liu, L Dong. Correlation of structural characteristics with catalytic performance of CuO/CexZr1−xO2 catalysts for NO reduction by CO. Journal of Catalysis, 2010, 275(1): 45–60
https://doi.org/10.1016/j.jcat.2010.07.024
46 A Chen, X Yu, Y Zhou, S Miao, Y Li, S Kuld, J Sehested, J Liu, T Aoki, S Hong, et al.. Structure of the catalytically active copper-ceria interfacial perimeter. Nature Catalysis, 2019, 2(4): 334–341
https://doi.org/10.1038/s41929-019-0226-6
47 X Tang, B Zhang, Y Li, Y Xu, Q Xin, W Shen. CuO/CeO2 catalysts: redox features and catalytic behaviors. Applied Catalysis A, General, 2005, 288(1): 116–125
https://doi.org/10.1016/j.apcata.2005.04.024
48 X Liu, K Wang, Y Zhou, X Tang, X Zhu, R Zhang, X Zhang, X Jiang, B Liu. In-situ fabrication of noble metal modified (Ce, Zr)O2−δ monolithic catalysts for CO oxidation. Applied Surface Science, 2019, 483(31): 721–729
https://doi.org/10.1016/j.apsusc.2019.03.315
49 X Liu, K Wang, Y Zhou, X Zhang, X Tang, P Ren, X Jiang, B Liu. In-situ fabrication of Ce-rich CeO2 nanocatalyst for efficient CO oxidation. Journal of Alloys and Compounds, 2019, 792(5): 644–651
https://doi.org/10.1016/j.jallcom.2019.04.057
[1] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[2] Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation[J]. Front. Chem. Sci. Eng., 2017, 11(4): 603-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed