Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2020, Vol. 14 Issue (4) : 534-545    https://doi.org/10.1007/s11705-019-1821-4
RESEARCH ARTICLE
Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst
Xiuhui Huang1,2(), Junfeng Li3, Jun Wang1,2, Zeqiu Li1,2, Jiayin Xu1,2()
1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China
3. Shanghai MCC20 Construction Co. Ltd., Shanghai 201999, China
 Download: PDF(1663 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the last decades, many reports dealing with technology for the catalytic combustion of methane (CH4) have been published. Recently, attention has increasingly focused on the synthesis and catalytic activity of nickel oxides. In this paper, a NiO/CeO2 catalyst with high catalytic performance in methane combustion was synthesized via a facile impregnation method, and its catalytic activity, stability, and water-resistance during CH4 combustion were investigated. X-ray diffraction, low-temperature N2 adsorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, hydrogen temperature programmed reduction, methane temperature programmed surface reaction, Raman spectroscopy, electron paramagnetic resonance, and transmission electron microscope characterization of the catalyst were conducted to determine the origin of its high catalytic activity and stability in detail. The incorporation of NiO was found to enhance the concentration of oxygen vacancies, as well as the activity and amount of surface oxygen. As a result, the mobility of bulk oxygen in CeO2 was increased. The presence of CeO2 prevented the aggregation of NiO, enhanced reduction by NiO, and provided more oxygen species for the combustion of CH4. The results of a kinetics study indicated that the reaction order was about 1.07 for CH4 and about 0.10 for O2 over the NiO/CeO2 catalyst.

Keywords methane combustion      NiO/CeO2 catalyst      interaction      oxygen vacancy      kinetic study     
Corresponding Author(s): Xiuhui Huang,Jiayin Xu   
Just Accepted Date: 24 July 2019   Online First Date: 27 September 2019    Issue Date: 22 May 2020
 Cite this article:   
Xiuhui Huang,Junfeng Li,Jun Wang, et al. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-019-1821-4
https://academic.hep.com.cn/fcse/EN/Y2020/V14/I4/534
Fig.1  Effect of the supports on the activity of the supported NiO catalysts (gas space velocity= 60000 mL·g?1·h?1).
Fig.2  (a) XRD patterns and (b) H2-TPR profiles of the different NiO catalysts.
Fig.3  Light-off curves of the catalytic combustion of methane over the NiO/CeO2 catalysts (gas space velocity= 60000 mL·g?1·h?1).
Samples Cat./mg Flow rate/(mL·min?1) Concentration of CH4 /vol-% Conversion of
CH4 /%
CH4 reaction rate
/(×10?4 mmol·g?1·s?1)
1 wt-% NiO/CeO2 200 50 1 6.4 1.09
3 wt-% NiO/CeO2 200 50 1 10.4 1.77
5 wt-% NiO/CeO2 200 50 1 14.6 2.49
7 wt-% NiO/CeO2 200 100 1 9.0 3.07
10 wt-% NiO/CeO2 200 100 1 10.7 3.63
15 wt-% NiO/CeO2 200 100 1 10.3 3.51
20 wt-% NiO/CeO2 200 100 1 10.9 3.70
Tab.1  CH4 reaction rate over NiO/CeO2 catalysts at 360°C
Fig.4  Effect of the addition of water vapor in CH4 combustion over 10 wt-% NiO/CeO2: (a) without H2O and (b) with 3.1% water vapor (25°C; gas space velocity= 60000 mL·g?1·h?1).
Fig.5  Dependence of the reaction rates on the CH4 and O2 concentration over the 10 wt-% NiO/CeO2 catalyst at 320°C: (a) 0.5?4 vol-% CH4, 4 vol-% O2, in Ar; (b) 2?10 vol-% O2, 1 vol-% CH4, in Ar. (P CH4and PO2, partial pressures; gas space velocity= 30000 mL·g?1·h?1).
Fig.6  Arrhenius plots of the reaction rate of CH4 combustion (activation energy, Ea) over (a) pure CeO2 and 10 wt-% (b) NiO/CeO2 (gas space velocity= 30000 mL·g?1·h?1).
Fig.7  XRD patterns of the NiO/CeO2 samples with various NiO loadings.
Samples Crystallite
size /(na·ma)
Surface area
/(m2·g?1)
Pore volume
/(cm3·g?1)
Catalytic activity /°C
T10 T50 T90
CeO2 8 76.4 0.206 456 540 615
1 wt-% NiO/CeO2 8.1 70.4 0.197 381 471 575
3 wt-% NiO/CeO2 8.3 68.8 0.195 362 442 516
5 wt-% NiO/CeO2 8.5 65.3 0.185 352 430 493
7 wt-% NiO/CeO2 8.8 61.1 0.183 349 424 487
10 wt-% NiO/CeO2 8.9 58.1 0.173 333 415 467
15 wt-% NiO/CeO2 8.9 57.2 0.171 350 416 472
20 wt-% NiO/CeO2 9 55.5 0.169 355 410 467
10 wt-% NiO/CeO2
(used)b
10.6 45.5 0.154
Tab.2  Textural properties and catalytic activities of CeO2 and NiO/CeO2 samples for CH4 combustion
Fig.8  H2-TPR profiles of the CeO2, NiO, and NiO/CeO2 samples.
Fig.9  Raman spectra of NiO/CeO2 with NiO loadings of (a) 0, (b) 1 wt-%, (c) 3 wt-%, (d) 5 wt-%, (e) 7 wt-%, (f) 10 wt-%, (g) 15 wt-%, and (h) 20 wt-%. Inset: Raman spectrum of 10 wt-% NiO/CeO2.
Fig.10  Special conversion of CH4 per unit surface area at 460°C vs. (A575+A620)/A462 in the Raman spectra of CeO2-supported NiO with NiO loadings of 0, 1, 3, 5, 7, and 10 wt-% (gas space velocity= 60000 mL·g?1·h?1).
Fig.11  MS signals of CO2 (m/z = 44) from CH4-TPSR on NiO/CeO2 with various NiO loadings.
Fig.12  MS signals from CH4-TPSR on CeO2 and 10 wt-% NiO/CeO2 (H2 (m/z = 2), CH4 (m/z = 16), CO (m/z = 28), and CO2 (m/z = 44)).
Fig.13  EPR signals of (a) CeO2 and (b) 10 wt-% NiO/CeO2 (inset: magnification of the EPR spectrum).
Fig.14  TEM images of (a) CeO2 and (b) 10 wt-% NiO/C.
Fig.15  Methane conversion over 10 wt-% NiO/CeO2 vs. reaction time at 600°C (gas space velocity= 15000 mL·g?1·h?1).
Fig.16  (a) XRD patterns of CeO2, fresh 10 wt-% NiO/CeO2, and used 10 wt-% NiO/CeO2; (b) H2-TPR profiles of fresh and used 10 wt-% NiO/CeO2 catalyst.
Fig.17  (a) FT-IR spectra of fresh and used 10 wt-% NiO/CeO2; (b) TG-DTA curves of used NiO/CeO2 catalyst.
1 H Yoshida, T Nakajima, Y Yazawa, T Hattori. Support effect on methane combustion over palladium catalysts. Applied Catalysis B: Environmental, 2007, 71(1): 70–79
https://doi.org/10.1016/j.apcatb.2006.08.010
2 F Zhou, T Xia, X Wang, Y Zhang, Y Sun, J Liu. Recent developments in coal mine methane extraction and utilization in China: A review. Journal of Natural Gas Science and Engineering, 2016, 31: 437–458
https://doi.org/10.1016/j.jngse.2016.03.027
3 C Shao, W Li, Q Lin, Q Huang, D Pi. Low temperature complete combustion of lean methane over cobalt-nickel mixed-oxide catalysts. Energy Technology (Weinheim), 2016, 5(4): 604–610
https://doi.org/10.1002/ente.201600402
4 R Ramírez-López, I Elizalde-Martinez, L Balderas-Tapia. Complete catalytic oxidation of methane over Pd/CeO2-Al2O3: The influence of different ceria loading. Catalysis Today, 2010, 150(3-4): 358–362
https://doi.org/10.1016/j.cattod.2009.10.007
5 S Fouladvand, S Schernich, J Libuda, H Grönbeck, T Pingel, E Olsson, M Skoglundh, P A Carlsson. Methane oxidation over Pd supported on ceria-alumina under rich/lean cycling conditions. Topics in Catalysis, 2013, 56(1-8): 410–415
6 Y Lei, W Li, Q Liu, Q Lin, X Zheng, Q Huang, S Guan, X Wang, C Wang, F Li. Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion. Fuel, 2018, 233: 10–20
https://doi.org/10.1016/j.fuel.2018.06.035
7 Q Huang, W Li, Q Lin, X Zheng, H Pan, D Pi, C Shao, C Hu, H Zhang. Catalytic performance of Pd-NiCo2O4/SiO2 in lean methane combustion at low temperature. Journal of the Energy Institute, 2018, 91(5): 733–742
https://doi.org/10.1016/j.joei.2017.05.008
8 E E Svensson, M Boutonnet, S G Järås. Stability of hexaaluminate-based catalysts for high-temperature catalytic combustion of methane. Applied Catalysis B: Environmental, 2008, 84(1): 241–250
https://doi.org/10.1016/j.apcatb.2008.04.002
9 S Ordóñez, J R Paredes, F V Díez. Sulphur poisoning of transition metal oxides used as catalysts for methane combustion. Applied Catalysis A, General, 2008, 341(1-2): 174–180
https://doi.org/10.1016/j.apcata.2008.02.042
10 Y Zhang, Z Qin, G Wang, H Zhu, M Dong, S Li, Z Wu, Z Li, Z Wu, J Zhang, et al. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature. Applied Catalysis B: Environmental, 2013, 129(2): 172–181
https://doi.org/10.1016/j.apcatb.2012.09.021
11 M A Pena, J L G Fierro. ChemInform abstract: Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2017
https://doi.org/10.1021/cr980129f
12 L Hu, Q Peng, Y Li. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. Journal of the American Chemical Society, 2008, 130(48): 16136–16137
https://doi.org/10.1021/ja806400e
13 B M Corbella, J M Palacios. Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane. Fuel, 2007, 86(1-2): 113–122
https://doi.org/10.1016/j.fuel.2006.05.026
14 F Teng, M Chen, G Li, Y Teng, T Xu, Y Hang, W Yao, S Santhanagopalan, D D Meng, Y Zhu. High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Applied Catalysis B: Environmental, 2011, 110: 133–140
https://doi.org/10.1016/j.apcatb.2011.08.035
15 D Qiao, G Lu, D Mao, X Liu, H Li, Y Guo, Y Guo. Effect of Ca doping on the catalytic performance of CuO-CeO2 catalysts for methane combustion. Catalysis Communications, 2010, 11(9): 858–861
https://doi.org/10.1016/j.catcom.2010.03.010
16 S S Ashour. Structural, textural and catalytic properties of pure and Li-doped NiO/Al2O3 and CuO/Al2O3 catalysts. Journal of Saudi Chemical Society, 2014, 18(1): 69–76
https://doi.org/10.1016/j.jscs.2011.05.016
17 W Shan, M Luo, P Ying, W Shen, C Li. Reduction property and catalytic activity of Ce1−xNixO2 mixed oxide catalysts for CH4 oxidation. Applied Catalysis A, General, 2003, 246(1): 1–9
https://doi.org/10.1016/S0926-860X(02)00659-2
18 J Sun, Y Wang, J Li, G Xiao, L Zhang, H Li, Y Cheng, C Sun, Z Cheng, Z Dong, et al. H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. International Journal of Hydrogen Energy, 2010, 35(7): 3087–3091
https://doi.org/10.1016/j.ijhydene.2009.07.020
19 Y Fan, X Xu, H Peng, H Yu, Y Dai, W Liu, J Ying, S Qi, W Xiang. Porous NiO nano-sheet as an active and stable catalyst for CH4 deep oxidation. Applied Catalysis A, General, 2015, 507: 109–118
https://doi.org/10.1016/j.apcata.2015.09.023
20 Y Kobayashi, J Horiguchi, S Kobayashi, Y Yamazaki, K Omata, D Nagao, M Konno, M Yamada. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas. Applied Catalysis A, General, 2011, 395(1): 129–137
https://doi.org/10.1016/j.apcata.2011.01.034
21 S Xu, X Yan, X Wang. Catalytic performances of NiO-CeO2 for the reforming of methane with CO2 and O2. Fuel, 2006, 85(14-15): 2243–2247
https://doi.org/10.1016/j.fuel.2006.03.022
22 C Ding, W Liu, J Wang, P Liu, K Zhang, X Gao, G Ding, S Liu, Y Han, X Ma. One step synthesis of mesoporous NiO-Al2O3 catalyst for partial oxidation of methane to syngas: The role of calcination temperature. Fuel, 2015, 162(9): 148–154
https://doi.org/10.1016/j.fuel.2015.09.002
23 C Sun, J Sun, G Xiao, H Zhang, X Qiu, H Li, L Chen. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. Journal of Physical Chemistry B, 2006, 110(27): 13445–13452
https://doi.org/10.1021/jp062179r
24 E Moretti, M Lenarda, P Riello, L Storaro, A Talon, R Frattini, A Reyes-Carmona, A Jiménez-López, E Rodríguez-Castellón. Influence of synthesis parameters on the performance of CeO2-CuO and CeO2-ZrO2-CuO systems in the catalytic oxidation of CO in excess of hydrogen. Applied Catalysis B: Environmental, 2013, 129(3): 556–565
https://doi.org/10.1016/j.apcatb.2012.10.009
25 S Thaicharoensutcharittham, V Meeyoo, B Kitiyanan, P Rangsunvigit, T Rirksomboon. Catalytic combustion of methane over NiO/Ce0.252 catalyst. Catalysis Communications, 2009, 10(5): 673–677
https://doi.org/10.1016/j.catcom.2008.11.014
26 Z Liu, Z Zhou, F He, B Chen, Y Zhao, Q Xu. Catalytic decomposition of N2O over NiO-CeO2 mixed oxide catalyst. Catalysis Today, 2017, 293: 56–60
https://doi.org/10.1016/j.cattod.2017.02.030
27 E Rombi, M G Cutrufello, L Atzori, R Monaci, A Ardu, D Gazzoli, P Deiana, I Ferino. CO methanation on Ni-Ce mixed oxides prepared by hard template method. Applied Catalysis A, General, 2016, 515: 144–153
https://doi.org/10.1016/j.apcata.2016.02.002
28 Q Dai, X Wang, G Lu. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 2008, 81(3): 192–202
https://doi.org/10.1016/j.apcatb.2007.12.013
29 Y Miao, G Lu, X Liu, Y Guo, Y Wang, Y Guo. Effects of preparation procedure in sol-gel method on performance of MoO3/SiO2 catalyst for liquid phase epoxidation of propylene with cumene hydroperoxide. Journal of Molecular Catalysis A: Chemical, 2009, 306(1-2): 17–22
https://doi.org/10.1016/j.molcata.2009.02.017
30 F Kleitz, S H Choi, R Ryoo. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003, 9(17): 2136–2137
https://doi.org/10.1039/b306504a
31 H S Roh, K W Jun, W S Dong, J S Chang, S E Park, Y I Joe. Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane. Journal of Molecular Catalysis A Chemical, 2002, 181(1-2): 137–142
https://doi.org/10.1016/S1381-1169(01)00358-2
32 V Gonzalez-Delacruz, J Holgado, R Pereniguez, A Caballero. Morphology changes induced by strong metal-support interaction on a Ni-ceria catalytic system. Journal of Catalysis, 2008, 257(2): 307–314
https://doi.org/10.1016/j.jcat.2008.05.009
33 S Royer, D Duprez, S Kaliaguine. Oxygen mobility in LaCoO3 perovskites. Catalysis Today, 2006, 112(1): 99–102
https://doi.org/10.1016/j.cattod.2005.11.020
34 N Laosiripojana, S Assabumrungrat. Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Applied Catalysis A, General, 2005, 290(1-2): 200–211
https://doi.org/10.1016/j.apcata.2005.05.026
35 J C V Giezen, F R V D Berg, J L Kleinen, A J V Dillen, J W Geus. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. Catalysis Today, 1999, 47(1-4): 287–293
https://doi.org/10.1016/S0920-5861(98)00309-5
36 D Ciuparu, M R Lyubovsky, E Altman, L D Pfefferle, A Datye. Catalytic combustion of methane over palladium-based catalysts. Catalysis Reviews, 2002, 44(4): 593–649
https://doi.org/10.1081/CR-120015482
37 N Bahlawane. Kinetics of methane combustion over CVD-made cobalt oxide catalysts. Applied Catalysis B: Environmental, 2006, 67(3): 168–176
https://doi.org/10.1016/j.apcatb.2006.03.024
38 D Vovchok, C J Guild, J Llorca, R M Palomino, I Waluyo, J A Rodriguez, S L Suib, S D Senanayake. Structural and chemical state of doped and impregnated mesoporous Ni/CeO2 catalysts for the water-gas shift. Applied Catalysis A, General, 2018, 567: 1–11
https://doi.org/10.1016/j.apcata.2018.08.026
39 H Vidal, J Kašpar, M Pijolat, G Colon, S Bernal, A Cordón, V Perrichon, F Fally. Redox behavior of CeO2-Zr2 mixed oxides. Applied Catalysis B: Environmental, 2000, 27(1): 49–63
https://doi.org/10.1016/S0926-3373(00)00138-7
40 A Bueno-López, I Such-Basáñez, S M D Lecea. Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2. Journal of Catalysis, 2006, 244(1): 102–112
https://doi.org/10.1016/j.jcat.2006.08.021
41 S S Chan, I E Wachs. In situ laser Raman spectroscopy of nickel oxide supported on g-Al2O3. Journal of Catalysis, 1987, 103(1): 224–227
https://doi.org/10.1016/0021-9517(87)90112-6
42 Z Y Pu, J Q Lu, M F Luo, Y L Xie. Study of oxygen vacancies in Ce0.9Pr0.1O2−d solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. Journal of Physical Chemistry C, 2007, 111(50): 18695–18702
https://doi.org/10.1021/jp0759776
43 D Wolf. Microkinetic analysis of the oxidative conversion of methane. Dependence of rate constants on the electrical properties of (CaO)x (CeO2)1−x catalysts. Catalysis Letters, 1994, 27(1-2): 207–220
https://doi.org/10.1007/BF00806994
44 L Zenboury, B Azambre, J V Weber. Transient TPSR, DRIFTS-MS and TGA studies of a Pd/ceria-zirconia catalyst in CH4 and NO2 atmospheres. Catalysis Today, 2008, 137(2-4): 167–173
https://doi.org/10.1016/j.cattod.2007.12.136
45 Y Li, B Zhang, X Tang, Y Xu, W Shen. Hydrogen production from methane decomposition over Ni/CeO2 catalysts. Catalysis Communications, 2006, 7(6): 380–386
https://doi.org/10.1016/j.catcom.2005.12.002
46 J E Readman, A Olafsen, J B S And, R Blom. Chemical looping combustion using NiO/NiAl2O4: Mechanisms and kinetics of reduction-oxidation (red-ox) reactions from in situ powder x-ray diffraction and thermogravimetry experiments. Annals of the New York Academy of Sciences, 2006, 20(4): 1382–1387
47 M Fernández-García, A MartíNez-Arias, A Guerrero-Ruiz, J C Conesa, J Soria. Ce-Zr-Ca ternary mixed oxides: Structural characteristics and oxygen handling properties. Journal of Catalysis, 2002, 211(2): 326–334
https://doi.org/10.1016/S0021-9517(02)93730-9
48 P Djinović, J Levec, A Pintar. Effect of structural and acidity/basicity changes of CuO-CeO2 catalysts on their activity for water-gas shift reaction. Catalysis Today, 2008, 138(3-4): 222–227
https://doi.org/10.1016/j.cattod.2008.05.032
[1] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[2] Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism[J]. Front. Chem. Sci. Eng., 2020, 14(2): 159-187.
[3] Daniil Marinov. Kinetic Monte Carlo simulations of plasma-surface reactions on heterogeneous surfaces[J]. Front. Chem. Sci. Eng., 2019, 13(4): 815-822.
[4] Rui Li,Xuefei Lv,Xingjian Zhang,Omer Saeed,Yulin Deng. Microfluidics for cell-cell interactions: A review[J]. Front. Chem. Sci. Eng., 2016, 10(1): 90-98.
[5] You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
[6] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[7] Ming TAN,Gaohong HE,Yan DAI,Rujie WANG,Wenhua SHI. Calculation on phase diagrams of polyetherimide/ N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances[J]. Front. Chem. Sci. Eng., 2014, 8(3): 312-319.
[8] Asghar Azizi, Seid Ziaoddin Shafaei, Mohammad Noaparast, Mohammad Karamoozian. The effect of pH, solid content, water chemistry and ore mineralogy on the galvanic interactions between chalcopyrite and pyrite and steel balls[J]. Front Chem Sci Eng, 2013, 7(4): 464-471.
[9] Zhikai LI, Zhangfeng QIN, Yagang ZHANG, Zhiwei WU, Hui WANG, Shuna LI, Mei DONG, Weibin FAN, Jianguo WANG. A logic-based controller for the mitigation of ventilation air methane in a catalytic flow reversal reactor[J]. Front Chem Sci Eng, 2013, 7(3): 347-356.
[10] Xianyun LIU, Jianzhou LIU, Feifei GENG, Zhanku LI, Ping LI, Wanli GONG. Synthesis and properties of PdO/CeO2-Al2O3 catalysts for methane combustion[J]. Front Chem Sci Eng, 2012, 6(1): 34-37.
[11] Guoqiao LAI, Yibo LIU, Meijiang LI, Yongjia SHEN. Synthesis, spectroscopic, and electrochemical properties of two dyads consisted of tetrathiafulvalene and carbazole[J]. Front Chem Eng Chin, 2009, 3(2): 192-195.
[12] ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation[J]. Front. Chem. Sci. Eng., 2008, 2(3): 253-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed