|
|
Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst |
Xiuhui Huang1,2( ), Junfeng Li3, Jun Wang1,2, Zeqiu Li1,2, Jiayin Xu1,2( ) |
1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, Shanghai 200093, China 3. Shanghai MCC20 Construction Co. Ltd., Shanghai 201999, China |
|
|
Abstract In the last decades, many reports dealing with technology for the catalytic combustion of methane (CH4) have been published. Recently, attention has increasingly focused on the synthesis and catalytic activity of nickel oxides. In this paper, a NiO/CeO2 catalyst with high catalytic performance in methane combustion was synthesized via a facile impregnation method, and its catalytic activity, stability, and water-resistance during CH4 combustion were investigated. X-ray diffraction, low-temperature N2 adsorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, hydrogen temperature programmed reduction, methane temperature programmed surface reaction, Raman spectroscopy, electron paramagnetic resonance, and transmission electron microscope characterization of the catalyst were conducted to determine the origin of its high catalytic activity and stability in detail. The incorporation of NiO was found to enhance the concentration of oxygen vacancies, as well as the activity and amount of surface oxygen. As a result, the mobility of bulk oxygen in CeO2 was increased. The presence of CeO2 prevented the aggregation of NiO, enhanced reduction by NiO, and provided more oxygen species for the combustion of CH4. The results of a kinetics study indicated that the reaction order was about 1.07 for CH4 and about 0.10 for O2 over the NiO/CeO2 catalyst.
|
Keywords
methane combustion
NiO/CeO2 catalyst
interaction
oxygen vacancy
kinetic study
|
Corresponding Author(s):
Xiuhui Huang,Jiayin Xu
|
Just Accepted Date: 24 July 2019
Online First Date: 27 September 2019
Issue Date: 22 May 2020
|
|
1 |
H Yoshida, T Nakajima, Y Yazawa, T Hattori. Support effect on methane combustion over palladium catalysts. Applied Catalysis B: Environmental, 2007, 71(1): 70–79
https://doi.org/10.1016/j.apcatb.2006.08.010
|
2 |
F Zhou, T Xia, X Wang, Y Zhang, Y Sun, J Liu. Recent developments in coal mine methane extraction and utilization in China: A review. Journal of Natural Gas Science and Engineering, 2016, 31: 437–458
https://doi.org/10.1016/j.jngse.2016.03.027
|
3 |
C Shao, W Li, Q Lin, Q Huang, D Pi. Low temperature complete combustion of lean methane over cobalt-nickel mixed-oxide catalysts. Energy Technology (Weinheim), 2016, 5(4): 604–610
https://doi.org/10.1002/ente.201600402
|
4 |
R Ramírez-López, I Elizalde-Martinez, L Balderas-Tapia. Complete catalytic oxidation of methane over Pd/CeO2-Al2O3: The influence of different ceria loading. Catalysis Today, 2010, 150(3-4): 358–362
https://doi.org/10.1016/j.cattod.2009.10.007
|
5 |
S Fouladvand, S Schernich, J Libuda, H Grönbeck, T Pingel, E Olsson, M Skoglundh, P A Carlsson. Methane oxidation over Pd supported on ceria-alumina under rich/lean cycling conditions. Topics in Catalysis, 2013, 56(1-8): 410–415
|
6 |
Y Lei, W Li, Q Liu, Q Lin, X Zheng, Q Huang, S Guan, X Wang, C Wang, F Li. Typical crystal face effects of different morphology ceria on the activity of Pd/CeO2 catalysts for lean methane combustion. Fuel, 2018, 233: 10–20
https://doi.org/10.1016/j.fuel.2018.06.035
|
7 |
Q Huang, W Li, Q Lin, X Zheng, H Pan, D Pi, C Shao, C Hu, H Zhang. Catalytic performance of Pd-NiCo2O4/SiO2 in lean methane combustion at low temperature. Journal of the Energy Institute, 2018, 91(5): 733–742
https://doi.org/10.1016/j.joei.2017.05.008
|
8 |
E E Svensson, M Boutonnet, S G Järås. Stability of hexaaluminate-based catalysts for high-temperature catalytic combustion of methane. Applied Catalysis B: Environmental, 2008, 84(1): 241–250
https://doi.org/10.1016/j.apcatb.2008.04.002
|
9 |
S Ordóñez, J R Paredes, F V Díez. Sulphur poisoning of transition metal oxides used as catalysts for methane combustion. Applied Catalysis A, General, 2008, 341(1-2): 174–180
https://doi.org/10.1016/j.apcata.2008.02.042
|
10 |
Y Zhang, Z Qin, G Wang, H Zhu, M Dong, S Li, Z Wu, Z Li, Z Wu, J Zhang, et al. Catalytic performance of MnOx-NiO composite oxide in lean methane combustion at low temperature. Applied Catalysis B: Environmental, 2013, 129(2): 172–181
https://doi.org/10.1016/j.apcatb.2012.09.021
|
11 |
M A Pena, J L G Fierro. ChemInform abstract: Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2017
https://doi.org/10.1021/cr980129f
|
12 |
L Hu, Q Peng, Y Li. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion. Journal of the American Chemical Society, 2008, 130(48): 16136–16137
https://doi.org/10.1021/ja806400e
|
13 |
B M Corbella, J M Palacios. Titania-supported iron oxide as oxygen carrier for chemical-looping combustion of methane. Fuel, 2007, 86(1-2): 113–122
https://doi.org/10.1016/j.fuel.2006.05.026
|
14 |
F Teng, M Chen, G Li, Y Teng, T Xu, Y Hang, W Yao, S Santhanagopalan, D D Meng, Y Zhu. High combustion activity of CH4 and catalluminescence properties of CO oxidation over porous Co3O4 nanorods. Applied Catalysis B: Environmental, 2011, 110: 133–140
https://doi.org/10.1016/j.apcatb.2011.08.035
|
15 |
D Qiao, G Lu, D Mao, X Liu, H Li, Y Guo, Y Guo. Effect of Ca doping on the catalytic performance of CuO-CeO2 catalysts for methane combustion. Catalysis Communications, 2010, 11(9): 858–861
https://doi.org/10.1016/j.catcom.2010.03.010
|
16 |
S S Ashour. Structural, textural and catalytic properties of pure and Li-doped NiO/Al2O3 and CuO/Al2O3 catalysts. Journal of Saudi Chemical Society, 2014, 18(1): 69–76
https://doi.org/10.1016/j.jscs.2011.05.016
|
17 |
W Shan, M Luo, P Ying, W Shen, C Li. Reduction property and catalytic activity of Ce1−xNixO2 mixed oxide catalysts for CH4 oxidation. Applied Catalysis A, General, 2003, 246(1): 1–9
https://doi.org/10.1016/S0926-860X(02)00659-2
|
18 |
J Sun, Y Wang, J Li, G Xiao, L Zhang, H Li, Y Cheng, C Sun, Z Cheng, Z Dong, et al. H2 production from stable ethanol steam reforming over catalyst of NiO based on flowerlike CeO2 microspheres. International Journal of Hydrogen Energy, 2010, 35(7): 3087–3091
https://doi.org/10.1016/j.ijhydene.2009.07.020
|
19 |
Y Fan, X Xu, H Peng, H Yu, Y Dai, W Liu, J Ying, S Qi, W Xiang. Porous NiO nano-sheet as an active and stable catalyst for CH4 deep oxidation. Applied Catalysis A, General, 2015, 507: 109–118
https://doi.org/10.1016/j.apcata.2015.09.023
|
20 |
Y Kobayashi, J Horiguchi, S Kobayashi, Y Yamazaki, K Omata, D Nagao, M Konno, M Yamada. Effect of NiO content in mesoporous NiO-Al2O3 catalysts for high pressure partial oxidation of methane to syngas. Applied Catalysis A, General, 2011, 395(1): 129–137
https://doi.org/10.1016/j.apcata.2011.01.034
|
21 |
S Xu, X Yan, X Wang. Catalytic performances of NiO-CeO2 for the reforming of methane with CO2 and O2. Fuel, 2006, 85(14-15): 2243–2247
https://doi.org/10.1016/j.fuel.2006.03.022
|
22 |
C Ding, W Liu, J Wang, P Liu, K Zhang, X Gao, G Ding, S Liu, Y Han, X Ma. One step synthesis of mesoporous NiO-Al2O3 catalyst for partial oxidation of methane to syngas: The role of calcination temperature. Fuel, 2015, 162(9): 148–154
https://doi.org/10.1016/j.fuel.2015.09.002
|
23 |
C Sun, J Sun, G Xiao, H Zhang, X Qiu, H Li, L Chen. Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. Journal of Physical Chemistry B, 2006, 110(27): 13445–13452
https://doi.org/10.1021/jp062179r
|
24 |
E Moretti, M Lenarda, P Riello, L Storaro, A Talon, R Frattini, A Reyes-Carmona, A Jiménez-López, E Rodríguez-Castellón. Influence of synthesis parameters on the performance of CeO2-CuO and CeO2-ZrO2-CuO systems in the catalytic oxidation of CO in excess of hydrogen. Applied Catalysis B: Environmental, 2013, 129(3): 556–565
https://doi.org/10.1016/j.apcatb.2012.10.009
|
25 |
S Thaicharoensutcharittham, V Meeyoo, B Kitiyanan, P Rangsunvigit, T Rirksomboon. Catalytic combustion of methane over NiO/Ce0.252 catalyst. Catalysis Communications, 2009, 10(5): 673–677
https://doi.org/10.1016/j.catcom.2008.11.014
|
26 |
Z Liu, Z Zhou, F He, B Chen, Y Zhao, Q Xu. Catalytic decomposition of N2O over NiO-CeO2 mixed oxide catalyst. Catalysis Today, 2017, 293: 56–60
https://doi.org/10.1016/j.cattod.2017.02.030
|
27 |
E Rombi, M G Cutrufello, L Atzori, R Monaci, A Ardu, D Gazzoli, P Deiana, I Ferino. CO methanation on Ni-Ce mixed oxides prepared by hard template method. Applied Catalysis A, General, 2016, 515: 144–153
https://doi.org/10.1016/j.apcata.2016.02.002
|
28 |
Q Dai, X Wang, G Lu. Low-temperature catalytic combustion of trichloroethylene over cerium oxide and catalyst deactivation. Applied Catalysis B: Environmental, 2008, 81(3): 192–202
https://doi.org/10.1016/j.apcatb.2007.12.013
|
29 |
Y Miao, G Lu, X Liu, Y Guo, Y Wang, Y Guo. Effects of preparation procedure in sol-gel method on performance of MoO3/SiO2 catalyst for liquid phase epoxidation of propylene with cumene hydroperoxide. Journal of Molecular Catalysis A: Chemical, 2009, 306(1-2): 17–22
https://doi.org/10.1016/j.molcata.2009.02.017
|
30 |
F Kleitz, S H Choi, R Ryoo. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications, 2003, 9(17): 2136–2137
https://doi.org/10.1039/b306504a
|
31 |
H S Roh, K W Jun, W S Dong, J S Chang, S E Park, Y I Joe. Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane. Journal of Molecular Catalysis A Chemical, 2002, 181(1-2): 137–142
https://doi.org/10.1016/S1381-1169(01)00358-2
|
32 |
V Gonzalez-Delacruz, J Holgado, R Pereniguez, A Caballero. Morphology changes induced by strong metal-support interaction on a Ni-ceria catalytic system. Journal of Catalysis, 2008, 257(2): 307–314
https://doi.org/10.1016/j.jcat.2008.05.009
|
33 |
S Royer, D Duprez, S Kaliaguine. Oxygen mobility in LaCoO3 perovskites. Catalysis Today, 2006, 112(1): 99–102
https://doi.org/10.1016/j.cattod.2005.11.020
|
34 |
N Laosiripojana, S Assabumrungrat. Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics. Applied Catalysis A, General, 2005, 290(1-2): 200–211
https://doi.org/10.1016/j.apcata.2005.05.026
|
35 |
J C V Giezen, F R V D Berg, J L Kleinen, A J V Dillen, J W Geus. The effect of water on the activity of supported palladium catalysts in the catalytic combustion of methane. Catalysis Today, 1999, 47(1-4): 287–293
https://doi.org/10.1016/S0920-5861(98)00309-5
|
36 |
D Ciuparu, M R Lyubovsky, E Altman, L D Pfefferle, A Datye. Catalytic combustion of methane over palladium-based catalysts. Catalysis Reviews, 2002, 44(4): 593–649
https://doi.org/10.1081/CR-120015482
|
37 |
N Bahlawane. Kinetics of methane combustion over CVD-made cobalt oxide catalysts. Applied Catalysis B: Environmental, 2006, 67(3): 168–176
https://doi.org/10.1016/j.apcatb.2006.03.024
|
38 |
D Vovchok, C J Guild, J Llorca, R M Palomino, I Waluyo, J A Rodriguez, S L Suib, S D Senanayake. Structural and chemical state of doped and impregnated mesoporous Ni/CeO2 catalysts for the water-gas shift. Applied Catalysis A, General, 2018, 567: 1–11
https://doi.org/10.1016/j.apcata.2018.08.026
|
39 |
H Vidal, J Kašpar, M Pijolat, G Colon, S Bernal, A Cordón, V Perrichon, F Fally. Redox behavior of CeO2-Zr2 mixed oxides. Applied Catalysis B: Environmental, 2000, 27(1): 49–63
https://doi.org/10.1016/S0926-3373(00)00138-7
|
40 |
A Bueno-López, I Such-Basáñez, S M D Lecea. Stabilization of active Rh2O3 species for catalytic decomposition of N2O on La-, Pr-doped CeO2. Journal of Catalysis, 2006, 244(1): 102–112
https://doi.org/10.1016/j.jcat.2006.08.021
|
41 |
S S Chan, I E Wachs. In situ laser Raman spectroscopy of nickel oxide supported on g-Al2O3. Journal of Catalysis, 1987, 103(1): 224–227
https://doi.org/10.1016/0021-9517(87)90112-6
|
42 |
Z Y Pu, J Q Lu, M F Luo, Y L Xie. Study of oxygen vacancies in Ce0.9Pr0.1O2−d solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. Journal of Physical Chemistry C, 2007, 111(50): 18695–18702
https://doi.org/10.1021/jp0759776
|
43 |
D Wolf. Microkinetic analysis of the oxidative conversion of methane. Dependence of rate constants on the electrical properties of (CaO)x (CeO2)1−x catalysts. Catalysis Letters, 1994, 27(1-2): 207–220
https://doi.org/10.1007/BF00806994
|
44 |
L Zenboury, B Azambre, J V Weber. Transient TPSR, DRIFTS-MS and TGA studies of a Pd/ceria-zirconia catalyst in CH4 and NO2 atmospheres. Catalysis Today, 2008, 137(2-4): 167–173
https://doi.org/10.1016/j.cattod.2007.12.136
|
45 |
Y Li, B Zhang, X Tang, Y Xu, W Shen. Hydrogen production from methane decomposition over Ni/CeO2 catalysts. Catalysis Communications, 2006, 7(6): 380–386
https://doi.org/10.1016/j.catcom.2005.12.002
|
46 |
J E Readman, A Olafsen, J B S And, R Blom. Chemical looping combustion using NiO/NiAl2O4: Mechanisms and kinetics of reduction-oxidation (red-ox) reactions from in situ powder x-ray diffraction and thermogravimetry experiments. Annals of the New York Academy of Sciences, 2006, 20(4): 1382–1387
|
47 |
M Fernández-García, A MartíNez-Arias, A Guerrero-Ruiz, J C Conesa, J Soria. Ce-Zr-Ca ternary mixed oxides: Structural characteristics and oxygen handling properties. Journal of Catalysis, 2002, 211(2): 326–334
https://doi.org/10.1016/S0021-9517(02)93730-9
|
48 |
P Djinović, J Levec, A Pintar. Effect of structural and acidity/basicity changes of CuO-CeO2 catalysts on their activity for water-gas shift reaction. Catalysis Today, 2008, 138(3-4): 222–227
https://doi.org/10.1016/j.cattod.2008.05.032
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|