|
|
Development, applications and challenges of ReaxFF reactive force field in molecular simulations |
You Han1, Dandan Jiang1, Jinli Zhang1( ), Wei Li1, Zhongxue Gan2, Junjie Gu3 |
1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China 2. ENN Group, State Key Laboratory of Low Carbon Energy of Coal, Langfang 065001, China 3. Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S5B6, Canada |
|
|
Abstract As an advanced and new technology in molecular simulation fields, ReaxFF reactive force field has been developed and widely applied during the last two decades. ReaxFF bridges the gap between quantum chemistry (QC) and non-reactive empirical force field based molecular simulation methods, and aims to provide a transferable potential which can describe many chemical reactions with bond formation and breaking. This review presents an overview of the development and applications of ReaxFF reactive force field in the fields of reaction processes, biology and materials, including (1) the mechanism studies of organic reactions under extreme conditions (like high temperatures and pressures) related with high-energy materials, hydrocarbons and coals, (2) the structural properties of nanomaterials such as graphene oxides, carbon nanotubes, silicon nanowires and metal nanoparticles, (3) interfacial interactions of solid-solid, solid-liquid and biological/inorganic surfaces, (4) the catalytic mechanisms of many types of metals and metal oxides, and (5) electrochemical mechanisms of fuel cells and lithium batteries. The limitations and challenges of ReaxFF reactive force field are also mentioned in this review, which will shed light on its future applications to a wider range of chemical environments.
|
Keywords
ReaxFF
reaction mechanism
nanomaterials
interfacial interaction
catalyst
fuel cell
|
Corresponding Author(s):
Jinli Zhang
|
Online First Date: 18 November 2015
Issue Date: 29 February 2016
|
|
1 |
N L Allinger, Y H Yuh, J H Lii. Molecular mechanics. The MM3 force field for hydrocarbons.1. Journal of the American Chemical Society, 1989, 111(23): 8551–8566
https://doi.org/10.1021/ja00205a001
|
2 |
N L Allinger, F Li, L Yan, J C Tai. Molecular mechanics (MM3) calculations on conjugated hydrocarbons. Journal of Computational Chemistry, 1990, 11(7): 868–895
https://doi.org/10.1002/jcc.540110709
|
3 |
S L Mayo, B D Olafson, W A Goddard. Dreiding: A generic force-field for molecular simulations. Journal of Physical Chemistry, 1990, 94(26): 8897–8909
https://doi.org/10.1021/j100389a010
|
4 |
A K Rappé, C J Casewit, K S Colwell, W A Goddard, W M Skiff. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 1992, 114(25): 10024–10035
https://doi.org/10.1021/ja00051a040
|
5 |
A C T van Duin, S Dasgupta, F Lorant, W A Goddard, F F Reax. A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409
https://doi.org/10.1021/jp004368u
|
6 |
A C T van Duin, A Strachan, S Stewman, Q S Zhang, X Xu, W A Goddard. ReaxFFSiO reactive force field for silicon and silicon oxide systems. Journal of Physical Chemistry A, 2003, 107(19): 3803–3811
https://doi.org/10.1021/jp0276303
|
7 |
S S Han, J K Kang, H M Lee, A C T van Duin, W A Goddard. The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development. Journal of Chemical Physics, 2005, 123(11): 114703-1–114703-8
|
8 |
Q Zhang. T Ҫağin, A van Duin, W A Goddard, Y Qi, L G Hector. Adhesion and nonwetting-wetting transition in the Al/α-Al2O3 interface. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(4): 045423-1–045423-11
|
9 |
S Cheung, W Q Deng, A C T van Duin, W A Goddard. ReaxFFMgH reactive force field for magnesium hydride systems. Journal of Physical Chemistry A, 2005, 109(5): 851–859
https://doi.org/10.1021/jp0460184
|
10 |
K D Nielson, A C T van Duin, J Oxgaard, W Q Deng, W A Goddard. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Journal of Physical Chemistry A, 2005, 109(3): 493–499
https://doi.org/10.1021/jp046244d
|
11 |
M J S Dewer, W Thiel. Ground states of molecules. 38. The MNDO method approximations and parameters. Journal of the American Chemical Society, 1977, 99(15): 4899–4907
https://doi.org/10.1021/ja00457a004
|
12 |
E Anders, R Koch, P Freunscht. Optimization and application of lithium parameters for PM3. Journal of Computational Chemistry, 1993, 14(11): 1301–1312
https://doi.org/10.1002/jcc.540141106
|
13 |
S S Han, A C T van Duin, W A Goddard, H M Lee. Optimization and application of lithium parameters for the reactive force field, ReaxFF. Journal of Physical Chemistry A, 2005, 109(20): 4575–4582
https://doi.org/10.1021/jp051450m
|
14 |
W A Goddard, A van Duin, K Chenoweth, M J Cheng, S Pudar, J Oxgaard, B Merinov, Y H Jang, P Persson. Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoO x. Topics in Catalysis, 2006, 38(1-3): 93–103
https://doi.org/10.1007/s11244-006-0074-x
|
15 |
D Raymand, A C T van Duin, M Baudin, K Hermansson. A reactive force field (ReaxFF) for zinc oxide. Surface Science, 2008, 602(5): 1020–1031
https://doi.org/10.1016/j.susc.2007.12.023
|
16 |
J G O Ojwang, R van Santen, G J Kramer, A C T van Duin, W A Goddard. Modeling the sorption dynamics of NaH using a reactive force field. Journal of Chemical Physics, 2008, 128(16): 164714-1–164714-9
https://doi.org/10.1063/1.2908737
|
17 |
K Chenoweth, A C T van Duin, P Persson, M J Cheng, J Oxgaard, W A Goddard. Development and application of a ReaxFF reactive force field for oxidative dehydrogenation on vanadium oxide catalysts. Journal of Physical Chemistry C, 2008, 112(37): 14645–14654
https://doi.org/10.1021/jp802134x
|
18 |
T T Järvi, A Kuronen, M Hakala, K Nordlund, A C T van Duin, W A Goddard III, T Jacob. Development of a ReaxFF description for gold. European Physical Journal B, 2008, 66(1): 75–79
https://doi.org/10.1140/epjb/e2008-00378-3
|
19 |
A C T van Duin, B V Merinov, S S Han, C O Dorso, W A Goddard. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. Journal of Physical Chemistry A, 2008, 112(45): 11414–11422
https://doi.org/10.1021/jp801082q
|
20 |
J E Mueller, A C T van Duin, W A Goddard III. Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. Journal of Physical Chemistry C, 2010, 114(11): 4939–4949
https://doi.org/10.1021/jp9035056
|
21 |
O Rahaman, A C T van Duin, V S Bryantsev, J E Mueller, S D Solares, W A Goddard III, D J Doren. Development of a ReaxFF reactive force field for aqueous chloride and copper chloride. Journal of Physical Chemistry A, 2010, 114(10): 3556–3568
https://doi.org/10.1021/jp9090415
|
22 |
A C T van Duin, V S Bryantsev, M S Diallo, W A Goddard, O Rahaman, D J Doren, D Raymand, K Hermansson. Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. Journal of Physical Chemistry A, 2010, 114(35): 9507–9514
https://doi.org/10.1021/jp102272z
|
23 |
M R Weismiller, A C T van Duin, J Lee, R A Yetter. ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. Journal of Physical Chemistry A, 2010, 114(17): 5485–5492
https://doi.org/10.1021/jp100136c
|
24 |
M Aryanpour, A C T van Duin, J D Kubicki. Development of a reactive force field for iron-oxyhydroxide systems. Journal of Physical Chemistry A, 2010, 114(21): 6298–6307
https://doi.org/10.1021/jp101332k
|
25 |
K Joshi, A C T van Duin, T Jacob. Development of a ReaxFF description of gold oxides and initial application to cold welding of partially oxidized gold surfaces. Journal of Materials Chemistry, 2010, 20(46): 10431–10437
https://doi.org/10.1039/c0jm01556c
|
26 |
O Rahaman, A C T van Duin, W A Goddard III, D J Doren. Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization. Journal of Physical Chemistry B, 2011, 115(2): 249–261
https://doi.org/10.1021/jp108642r
|
27 |
S Agrawalla, A C T van Duin. Development and application of a ReaxFF reactive force field for hydrogen combustion. Journal of Physical Chemistry A, 2011, 115(6): 960–972
https://doi.org/10.1021/jp108325e
|
28 |
T T Järvi, A C T van Duin, K Nordlund, W A Goddard III. Development of interatomic ReaxFF potentials for Au-S-C-H systems. Journal of Physical Chemistry A, 2011, 115(37): 10315–10322
https://doi.org/10.1021/jp201496x
|
29 |
J D Gale, P Raiteri, A C T van Duin. A reactive force field for aqueous-calcium carbonate systems. Physical Chemistry Chemical Physics, 2011, 13(37): 16666–16679
https://doi.org/10.1039/c1cp21034c
|
30 |
B Narayanan, A C T van Duin, B B Kappes, I E Reimanis, C V Ciobanu. A reactive force field for lithium-aluminum silicates with applications to eucryptite phases. Modelling and Simulation in Materials Science and Engineering, 2012, 20(1): 015002-1–015002-24
https://doi.org/10.1088/0965-0393/20/1/015002
|
31 |
L C Liu, A Jaramillo-Botero, W A Goddard III, H Sun. Development of a ReaxFF reactive force field for ettringite and study of its mechanical failure modes from reactive dynamics simulations. Journal of Physical Chemistry A, 2012, 116(15): 3918–3925
https://doi.org/10.1021/jp210135j
|
32 |
Y K Shin, H Kwak, C Y Zou, A V Vasenkov, A C T van Duin. Development and validation of a ReaxFF reactive force field for Fe/Al/Ni alloys: Molecular dynamics study of elastic constants, diffusion, and segregation. Journal of Physical Chemistry A, 2012, 116(49): 12163–12174
https://doi.org/10.1021/jp308507x
|
33 |
A D Kulkarni, D G Truhlar, S G Srinivasan, A C T van Duin, P Norman, T E Schwartzentruber. Oxygen interactions with silica surfaces: Coupled cluster and density functional investigation and the development of a new ReaxFF potential. Journal of Physical Chemistry C, 2013, 117(1): 258–269
https://doi.org/10.1021/jp3086649
|
34 |
S Naserifar, L C Liu, W A Goddard III, T T Tsotsis, M Sahimi. Toward a process-based molecular model of SiC membranes. 1. Development of a reactive force field. Journal of Physical Chemistry C, 2013, 117(7): 3308–3319
https://doi.org/10.1021/jp3078002
|
35 |
A Gouissem, W Fan, A C T van Duin, P Sharma. A reactive force-field for Zirconium and hafnium di-boride. Computational Materials Science, 2013, 70: 171–177
https://doi.org/10.1016/j.commatsci.2012.12.038
|
36 |
A L Kaledin, A C T van Duin, C L Hill, D G Musaev. Parameterization of reactive force field: Dynamics of the [Nb6O19H x](8−x)− Lindqvist polyoxoanion in bulk water. Journal of Physical Chemistry A, 2013, 117(32): 6967–6974
https://doi.org/10.1021/jp312033p
|
37 |
S Y Kim, N Kumar, P Persson, J Sofo, A C T van Duin, J D Kubicki. Development of a ReaxFF reactive force field for titanium dioxide/water systems. Langmuir, 2013, 29(25): 7838–7846
https://doi.org/10.1021/la4006983
|
38 |
W X Song, S J Zhao. Development of the ReaxFF reactive force field for aluminum-molybdenum alloy. Journal of Materials Research, 2013, 28(9): 1155–1164
https://doi.org/10.1557/jmr.2013.66
|
39 |
E Iype, M Hütter, A P J Jansen, S V Nedea, C C M Rindt. Parameterization of a reactive force field using a Monte Carlo algorithm. Journal of Computational Chemistry, 2013, 34(13): 1143–1154
https://doi.org/10.1002/jcc.23246
|
40 |
T P Senftle, R J Meyer, M J Janik, A C T van Duin. Development of a ReaxFF potential for Pd/O and application to palladium oxide formation. Journal of Chemical Physics, 2013, 139(4): 044109-1–044109-15
https://doi.org/10.1063/1.4815820
|
41 |
S Monti, A Corozzi, P Fristrup, K L Joshi, Y K Shin, P Oelschlaeger, A C T van Duin, V Barone. Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field. Physical Chemistry Chemical Physics, 2013, 15(36): 15062–15077
https://doi.org/10.1039/c3cp51931g
|
42 |
G T Bae, C M Aikens. Improved ReaxFF force field parameters for Au-S-C-H systems. Journal of Physical Chemistry A, 2013, 117(40): 10438–10446
https://doi.org/10.1021/jp405992m
|
43 |
F F Fan, S Huang, H Yang, M Raju, D Datta, V B Shenoy, A C T van Duin, S L Zhang, T Zhu. Mechanical properties of amorphous Li xSi alloys: A reactive force field study. Modelling and Simulation in Materials Science and Engineering, 2013, 21(7): 074002-1–074002-15
https://doi.org/10.1088/0965-0393/21/7/074002
|
44 |
T R Shan, A C T van Duin, A P Thompson. Development of a ReaxFF reactive force field for ammonium nitrate and application to shock compression and thermal decomposition. Journal of Physical Chemistry A, 2014, 118(8): 1469–1478
https://doi.org/10.1021/jp408397n
|
45 |
T Schönfelder, J Friedrich, J Prehl, S Seeger, S Spange, K H Hoffmann. Reactive force field for electrophilic substitution at an aromatic system in twin polymerization. Chemical Physics, 2014, 440: 119–126
https://doi.org/10.1016/j.chemphys.2014.06.003
|
46 |
J D Deetz, R Faller. Parallel optimization of a reactive force field for polycondensation of alkoxysilanes. Journal of Physical Chemistry B, 2014, 118(37): 10966–10978
https://doi.org/10.1021/jp504138r
|
47 |
S Huygh, A Bogaerts, A C T van Duin, E C Neyts. Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide. Computational Materials Science, 2014, 95: 579–591
https://doi.org/10.1016/j.commatsci.2014.07.056
|
48 |
B Zhang, A C T van Duin, J K Johnson. Development of a ReaxFF reactive force field for tetrabutylphosphonium glycinate/CO2 mixtures. Journal of Physical Chemistry B, 2014, 118(41): 12008–12016
https://doi.org/10.1021/jp5054277
|
49 |
D Fantauzzi, J Bandlow, L Sabo, J E Mueller, A C T van Duin, T Jacob. Development of a ReaxFF potential for Pt-O systems describing the energetics and dynamics of Pt-oxide formation. Physical Chemistry Chemical Physics, 2014, 16(42): 23118–23133
https://doi.org/10.1039/C4CP03111C
|
50 |
F O V Mackenzie, B J Thijsse. Study of metal/epoxy interfaces between epoxy precursors and metal surfaces using a newly developed reactive force field for alumina-amine adhesion. Journal of Physical Chemistry C, 2015, 119(9): 4796–4804
https://doi.org/10.1021/jp5105328
|
51 |
A C T van Duin, M Raju, S Srinivasan, J Yeon, S Y Kim, T Senftle, K Joshi. Development and application of the ReaxFF reactive force field method. LAMMPS workshop. Department of Mechanical and Nuclear Engineering Pennsylvania State University, 2013: 12
|
52 |
A Strachan, A C T van Duin, D Chakraborty, S Dasgupta, W A Goddard. Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Physical Review Letters, 2003, 91(9): 098301-1–098301-4
https://doi.org/10.1103/PhysRevLett.91.098301
|
53 |
A C T van Duin, Y Zeiri, F Dubnikova, R Kosloff, W A Goddard. Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. Journal of the American Chemical Society, 2005, 127(31): 11053–11062
https://doi.org/10.1021/ja052067y
|
54 |
F Dubnikova, R Kosloff, Y Zeiri, Z Karpas. Novel approach to the detection of triacetone triperoxide (TATP): Its structure and its complexes with ions. Journal of Physical Chemistry A, 2002, 106(19): 4951–4956
https://doi.org/10.1021/jp014189s
|
55 |
E Schmidt. Hydrazine and its derivatives: Preparation, properties and applications. New York: Wiley, 1984: 1243–1260
|
56 |
P W Cooper. Explosive Engineering. New York: Wiley, 1996: 251–273
|
57 |
T G Soares Neto, A J G Cobo, G M Cruz. Textural properties evolution of Ir and Ru supported on alumina catalysts during hydrazine decomposition in satellite thruster. Applied Catalysis A, General, 2003, 250(2): 331–340
https://doi.org/10.1016/S0926-860X(03)00301-6
|
58 |
L Z Zhang, A C T van Duin, S V Zybin, W A Goddard. Thermal decomposition of hydrazines from reactive dynamics using the ReaxFF reactive force field. Journal of Physical Chemistry B, 2009, 113(31): 10770–10778
https://doi.org/10.1021/jp900194d
|
59 |
Q An, Y Liu, S V Zybin, H Kim, W A Goddard III. Anisotropic shock sensitivity of cyclotrimethylene trinitramine (RDX) from compress-and-shear reactive dynamics. Journal of Physical Chemistry C, 2012, 116(18): 10198–10206
https://doi.org/10.1021/jp300711m
|
60 |
D Z Guo, Q An, W A Goddard III, S V Zybin, F L Huang. Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. Journal of Physical Chemistry C, 2014, 118(51): 30202–30208
https://doi.org/10.1021/jp5093527
|
61 |
D Furman, R Kosloff, F Dubnikova, S V Zybin, W A Goddard III, N Rom, B Hirshberg, Y Zeiri. Decomposition of condensed phase energetic materials: Interplay between uni- and bimolecular mechanisms. Journal of the American Chemical Society, 2014, 136(11): 4192–4200
https://doi.org/10.1021/ja410020f
|
62 |
Q L Yan, S Zeman, P E Sánchez Jiménez, T L Zhang, L A Pérez-Maqueda, A Elbeih. The mitigation effect of synthetic polymers on initiation reactivity of CL-20: Physical models and chemical pathways of thermolysis. Journal of Physical Chemistry C, 2014, 118(40): 22881–22895
https://doi.org/10.1021/jp505955n
|
63 |
J L Zhang, J T Gu, Y Han, W Li, Z X Gan, J J Gu. Supercritical water oxidation vs. supercritical gasification: Which process is better for explosive wastewater treatment? Industrial & Engineering Chemistry Research, 2015, 54(4): 1251–1260
https://doi.org/10.1021/ie5043903
|
64 |
A C T van Duin, J S S Damsté. Computational chemical investigation into isorenieratene cyclisation. Organic Geochemistry, 2003, 34(4): 515–526
https://doi.org/10.1016/S0146-6380(02)00247-4
|
65 |
K Chenoweth, A C T van Duin, W A Goddard. ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. Journal of Physical Chemistry A, 2008, 112(5): 1040–1053
https://doi.org/10.1021/jp709896w
|
66 |
A J Page, B Moghtaderi. Molecular dynamics simulation of the low-temperature partial oxidation of CH4. Journal of Physical Chemistry A, 2009, 113(8): 1539–1547
https://doi.org/10.1021/jp809576k
|
67 |
Z H He, X B Li, L M Liu, W J Zhu. The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study. Fuel, 2014, 124: 85–90
https://doi.org/10.1016/j.fuel.2014.01.070
|
68 |
Z H He, X B Li, W J Zhu, L M Liu, G F Ji. Effect of water on gas explosions: Combined ReaxFF and ab initio MD calculations. RSC Advances, 2014, 4(66): 35048–35054
https://doi.org/10.1039/C4RA04178J
|
69 |
K Chenoweth, A C T van Duin, S Dasgupta, W A Goddard III. Initiation mechanisms and kinetics of pyrolysis and combustion of JP-10 hydrocarbon jet fuel. Journal of Physical Chemistry A, 2009, 113(9): 1740–1746
https://doi.org/10.1021/jp8081479
|
70 |
Q D Wang, J B Wang, J Q Li, N X Tan, X Y Li. Reactive molecular dynamics simulation and chemical kinetic modeling of pyrolysis and combustion of n-dodecane. Combustion and Flame, 2011, 158(2): 217–226
https://doi.org/10.1016/j.combustflame.2010.08.010
|
71 |
X M Cheng, Q D Wang, J Q Li, J B Wang, X Y Li. ReaxFF molecular dynamics simulations of oxidation of toluene at high temperature. Journal of Physical Chemistry A, 2012, 116(40): 9811–9818
https://doi.org/10.1021/jp304040q
|
72 |
World Coal Association. Annual Energy Report, 2011.
|
73 |
E Salmon, A C T van Duin, F Lorant, P M Marquaire, W A Goddard III. Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures. Organic Geochemistry, 2009, 40(12): 1195–1209
https://doi.org/10.1016/j.orggeochem.2009.09.001
|
74 |
F Castro-Marcano, A M Kamat, M F Russo Jr, A C T van Duin, J P Mathews. Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field. Combustion and Flame, 2012, 159(3): 1272–1285
https://doi.org/10.1016/j.combustflame.2011.10.022
|
75 |
B Chen, X Y Wei, Z S Yang, C Liu, X Fan, Y Qing, Z M Zong. ReaxFF reactive force field for molecular dynamics simulations of lignite depolymerization in supercritical methanol with lignite-related model compounds. Energy & Fuels, 2012, 26(2): 984–989
https://doi.org/10.1021/ef201234j
|
76 |
B Chen, Z J Diao, H Y Lu. Using the ReaxFF reactive force field for molecular dynamics simulations of the spontaneous combustion of lignite with the Hatcher lignite model. Fuel, 2014, 116: 7–13
https://doi.org/10.1016/j.fuel.2013.07.113
|
77 |
M Zheng, X X Li, J Liu, L Guo. Initial chemical reaction simulation of coal pyrolysis via ReaxFF molecular dynamics. Energy & Fuels, 2013, 27(6): 2942–2951
https://doi.org/10.1021/ef400143z
|
78 |
J L Zhang, X X Weng, Y Han, W Li, J Y Cheng, Z X Gan, J J Gu. The effect of supercritical water on coal pyrolysis and hydrogen production: A combined ReaxFF and DFT study. Fuel, 2013, 108: 682–690
https://doi.org/10.1016/j.fuel.2013.01.064
|
79 |
K Chenoweth, S Cheung, A C T van Duin, W A Goddard, E M Kober. Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. Journal of the American Chemical Society, 2005, 127(19): 7192–7202
https://doi.org/10.1021/ja050980t
|
80 |
D E Jiang, A C T van Duin, W A Goddard, S Dai. Simulating the initial stage of phenolic resin carbonization via the ReaxFF reactive force field. Journal of Physical Chemistry A, 2009, 113(25): 6891–6894
https://doi.org/10.1021/jp902986u
|
81 |
Z Q Zhang, K F Yan, J L Zhang. ReaxFF molecular dynamics simulations of non-catalytic pyrolysis of triglyceride at high temperatures. RSC Advances, 2013, 3(18): 6401–6407
https://doi.org/10.1039/c3ra22902e
|
82 |
A Beste. ReaxFF study of the oxidation of lignin model compounds for the most common linkages in softwood in view of carbon fiber production. Journal of Physical Chemistry A, 2014, 118(5): 803–814
https://doi.org/10.1021/jp410454q
|
83 |
A Beste. ReaxFF study of the oxidation of softwood lignin in view of carbon fiber production. Energy & Fuels, 2014, 28(11): 7007–7013
https://doi.org/10.1021/ef501901p
|
84 |
R Zhu, F Janetzko, Y Zhang, A C T van Duin, W A Goddard, D R Salahub. Characterization of the active site of yeast RNA polymerase II by DFT and ReaxFF calculations. Theoretical Chemistry Accounts, 2008, 120(4-6): 479–489
https://doi.org/10.1007/s00214-008-0440-9
|
85 |
R M Abolfath, A C T van Duin, T Brabec. Reactive molecular dynamics study on the first steps of DNA damage by free hydroxyl radicals. Journal of Physical Chemistry A, 2011, 115(40): 11045–11049
https://doi.org/10.1021/jp204894m
|
86 |
R M Abolfath, D J Carlson, Z J Chen, R Nath. A molecular dynamics simulation of DNA damage induction by ionizing radiation. Physics in Medicine and Biology, 2013, 58(20): 7143–7157
https://doi.org/10.1088/0031-9155/58/20/7143
|
87 |
J L Zhang, J T Gu, Y Han, W Li, Z X Gan, J J Gu. Analysis of degradation mechanism of disperse orange 25 in supercritical water oxidation using molecular dynamic simulations based on the reactive force field. Journal of Molecular Modeling, 2015, 21(3): 54-1–54-13
|
88 |
X Huang, H Yang, A C T van Duin, K J Hsia, S L Zhang. Chemomechanics control of tearing paths in graphene. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195453-1–195453-6
https://doi.org/10.1103/PhysRevB.85.195453
|
89 |
A Bagri, C Mattevi, M Acik, Y J Chabal, M Chhowalla, V B Shenoy. Structural evolution during the reduction of chemically derived graphene oxide. Nature Chemistry, 2010, 2(7): 581–587
https://doi.org/10.1038/nchem.686
|
90 |
N V Medhekar, A Ramasubramaniam, R S Ruoff, V B Shenoy. Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties. ACS Nano, 2010, 4(4): 2300–2306
https://doi.org/10.1021/nn901934u
|
91 |
S S Han, J K Kang, H M Lee, A C T van Duin, W A Goddard. Liquefaction of H2 molecules upon exterior surfaces of carbon nanotube bundles. Applied Physics Letters, 2005, 86(20): 203108-1–203108-3
https://doi.org/10.1063/1.1929084
|
92 |
E C Neyts, A C T van Duin, A Bogaerts. Changing chirality during single-walled carbon nanotube growth: A reactive molecular dynamics/Monte Carlo study. Journal of the American Chemical Society, 2011, 133(43): 17225–17231
https://doi.org/10.1021/ja204023c
|
93 |
E Zaminpayma, K Mirabbaszadeh. Interaction between single-walled carbon nanotubes and polymers: A molecular dynamics simulation study with reactive force field. Computational Materials Science, 2012, 58: 7–11
https://doi.org/10.1016/j.commatsci.2012.01.023
|
94 |
D Papkov, A M Beese, A Goponenko, Y Zou, M Naraghi, H D Espinosa, B Saha, G C Schatz, A Moravsky, R Loutfy, S T Nguyen, Y Dzenis. Extraordinary improvement of the graphitic structure of continuous carbon nanofibers templated with double wall carbon nanotubes. ACS Nano, 2013, 7(1): 126–142
https://doi.org/10.1021/nn303423x
|
95 |
N Ning, F Calvo, A C T van Duin, D J Wales, H Vach. Spontaneous self-assembly of silica nanocages into inorganic framework materials. Journal of Physical Chemistry C, 2009, 113(2): 518–523
https://doi.org/10.1021/jp804528z
|
96 |
A P Garcia, M J Buehler. Bioinspired nanoporous silicon provides great toughness at great deformability. Computational Materials Science, 2010, 48(2): 303–309
https://doi.org/10.1016/j.commatsci.2010.01.011
|
97 |
A P Garcia, D Sen, M J Buehler. Hierarchical silica nanostructures inspired by diatom algae yield superior deformability, toughness, and strength. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2011, 42A(13): 3889–3897
https://doi.org/10.1007/s11661-010-0477-y
|
98 |
S Nedd, T Kobayashi, C H Tsai, I I Slowing, M Pruski, M S Gordon. Using a reactive force field to correlate mobilities obtained from solid-state 13C NMR on mesoporous silica nanoparticle systems. Journal of Physical Chemistry C, 2011, 115(33): 16333–16339
https://doi.org/10.1021/jp204510m
|
99 |
U Khalilov, G Pourtois, A C T van Duin, E C Neyts. Self-limiting oxidation in small-diameter Si nanowires. Chemistry of Materials, 2012, 24(11): 2141–2147
https://doi.org/10.1021/cm300707x
|
100 |
P X Song, Y L Ding, D S Wen. A reactive molecular dynamic simulation of oxidation of a silicon nanocluster. Journal of Nanoparticle Research, 2013, 15(1): 1309-1–1309-11
|
101 |
J A Keith, D Fantauzzi, T Jacob, A C T van Duin. Reactive forcefield for simulating gold surfaces and nanoparticles. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(23): 235404-1–235404-8
https://doi.org/10.1103/PhysRevB.81.235404
|
102 |
C R Iacovella, W R French, B G Cook, P R C Kent, P T Cummings. Role of polytetrahedral structures in the elongation and rupture of gold nanowires. ACS Nano, 2011, 5(12): 10065–10073
https://doi.org/10.1021/nn203941r
|
103 |
M Raju, A C T van Duin, K A Fichthorn. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: Reactive molecular dynamics. Nano Letters, 2014, 14(4): 1836–1842
https://doi.org/10.1021/nl404533k
|
104 |
T P Senftle, M J Janik, A C T van Duin. A ReaxFF investigation of hydride formation in palladium nanoclusters via Monte Carlo and molecular dynamics simulations. Journal of Physical Chemistry C, 2014, 118(9): 4967–4981
https://doi.org/10.1021/jp411015a
|
105 |
H Y Cheng, Y A Zhu, D Chen, P O Åstrand, P Li, Z W Qi, X G Zhou. Evolution of carbon nanofiber-supported Pt nanoparticles of different particle sizes: A molecular dynamics study. Journal of Physical Chemistry C, 2014, 118(41): 23711–23722
https://doi.org/10.1021/jp505554w
|
106 |
X Q Zhang, E Iype, S V Nedea, A P J Jansen, B M Szyja, E J M Hensen, R A van Santen. Site stability on cobalt nanoparticles: A molecular dynamics ReaxFF reactive force field study. Journal of Physical Chemistry C, 2014, 118(13): 6882–6886
https://doi.org/10.1021/jp500053u
|
107 |
Q Zhang, Y Qi, L G Hector, T Ҫağin, W A Goddard. Atomic simulations of kinetic friction and its velocity dependence at Al/Al and α-Al2O3/α-Al2O3 interfaces. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(4): 045406-1–045406-12
https://doi.org/10.1103/PhysRevB.72.045406
|
108 |
M F Russo Jr, R Li, M Mench, A C T van Duin. Molecular dynamic simulation of aluminum-water reactions using the ReaxFF reactive force field. International Journal of Hydrogen Energy, 2011, 36(10): 5828–5835
https://doi.org/10.1016/j.ijhydene.2011.02.035
|
109 |
J C Fogarty, H M Aktulga, A Y Grama, A C T van Duin, S A Pandit. A reactive molecular dynamics simulation of the silica-water interface. Journal of Chemical Physics, 2010, 132(17): 174704-1–174704-10
https://doi.org/10.1063/1.3407433
|
110 |
J Quenneville, R S Taylor, A C T van Duin. Reactive molecular dynamics studies of DMMP adsorption and reactivity on amorphous silica surfaces. Journal of Physical Chemistry C, 2010, 114(44): 18894–18902
https://doi.org/10.1021/jp104547u
|
111 |
U Khalilov, G Pourtois, A C T van Duin, E C Neyts. Hyperthermal oxidation of Si(100)2×1 surfaces: Effect of growth temperature. Journal of Physical Chemistry C, 2012, 116(15): 8649–8656
https://doi.org/10.1021/jp300506g
|
112 |
D Raymand, A C T van Duin, D Spångberg, W A Goddard III, K Hermansson. Water adsorption on stepped ZnO surfaces from MD simulation. Surface Science, 2010, 604(9-10): 741–752
https://doi.org/10.1016/j.susc.2009.12.012
|
113 |
D Raymand, A C T van Duin, W A Goddard III, K Hermansson, D Spångberg. Hydroxylation structure and proton transfer reactivity at the zinc oxide-water interface. Journal of Physical Chemistry C, 2011, 115(17): 8573–8579
https://doi.org/10.1021/jp106144p
|
114 |
M Raju, S Y Kim, A C T van Duin, K A Fichthorn. ReaxFF reactive force field study of the dissociation of water on titania surfaces. Journal of Physical Chemistry C, 2013, 117(20): 10558–10572
https://doi.org/10.1021/jp402139h
|
115 |
A Tilocca, A Selloni. Structure and reactivity of water layers on defect-free and defective anatase TiO2 (101) Surfaces. Journal of Physical Chemistry B, 2004, 108(15): 4743–4751
https://doi.org/10.1021/jp037685k
|
116 |
A Tilocca, A Selloni. DFT-GGA and DFT+U simulations of thin water layers on reduced TiO2 anatase. Journal of Physical Chemistry C, 2012, 116(14): 9114–9121
https://doi.org/10.1021/jp301624v
|
117 |
S Monti, A C T van Duin, S Y Kim, V Barone. Exploration of the conformational and reactive dynamics of glycine and diglycine on TiO2: Computational investigations in the gas phase and in solution. Journal of Physical Chemistry C, 2012, 116(8): 5141–5150
https://doi.org/10.1021/jp2121593
|
118 |
C Li, S Monti, V Carravetta. Journey toward the surface: How glycine adsorbs on titania in water solution. Journal of Physical Chemistry C, 2012, 116(34): 18318–18326
https://doi.org/10.1021/jp3060729
|
119 |
S Monti, C Li, V Carravetta. Reactive dynamics simulation of monolayer and multilayer adsorption of glycine on Cu(110). Journal of Physical Chemistry C, 2013, 117(10): 5221–5228
https://doi.org/10.1021/jp312828d
|
120 |
S Monti, V Carravetta, C Li, H Ågren. A computational study of the adsorption and reactive dynamics of diglycine on Cu(110). Journal of Physical Chemistry C, 2014, 118(7): 3610–3619
https://doi.org/10.1021/jp411191n
|
121 |
H B Su, R J Nielsen, A C T van Duin, W A Goddard III. Simulations on the effects of confinement and Ni-catalysis on the formation of tubular fullerene structures from peapod precursors. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(13): 134107-1–134107-5
https://doi.org/10.1103/PhysRevB.75.134107
|
122 |
J E Mueller, A C T van Duin, W A Goddard III. Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and decomposition. Journal of Physical Chemistry C, 2010, 114(12): 5675–5685
https://doi.org/10.1021/jp9089003
|
123 |
L J Meng, J Jiang, J L Wang, F Ding. Mechanism of metal catalyzed healing of large structural defects in graphene. Journal of Physical Chemistry C, 2014, 118(1): 720–724
https://doi.org/10.1021/jp409471a
|
124 |
W Somers, A Bogaerts, A C T van Duin, E C Neyts. Interactions of plasma species on nickel catalysts: A reactive molecular dynamics study on the influence of temperature and surface structure. Applied Catalysis B: Environmental, 2014 (154-155): 1–8
https://doi.org/10.1016/j.apcatb.2014.01.061
|
125 |
T P Senftle, A C T van Duin, M J Janik. Determining in situ phases of a nanoparticle catalyst via grand canonical Monte Carlo simulations with the ReaxFF potential. Catalysis Communications, 2014, 52: 72–77
https://doi.org/10.1016/j.catcom.2013.12.001
|
126 |
Z Z Lin. Graphdiyne as a promising substrate for stabilizing Pt nanoparticle catalyst. Carbon, 2015, 86: 301–309
https://doi.org/10.1016/j.carbon.2015.02.014
|
127 |
W A Goddard, K Chenoweth, S Pudar, A C T van Duin, M J Cheng. Structures, mechanisms, and kinetics of selective ammoxidation and oxidation of propane over multi-metal oxide catalysts. Topics in Catalysis, 2008, 50(2-4): 2–18
https://doi.org/10.1007/s11244-008-9096-x
|
128 |
K Chenoweth, A C T van Duin, W A Goddard III. The ReaxFF Monte Carlo reactive dynamics method for predicting atomistic structures of disordered ceramics: Application to the Mo3VO x catalyst. Angewandte Chemie International Edition, 2009, 48(41): 7630–7634
https://doi.org/10.1002/anie.200902574
|
129 |
C Y Zhang, Y S Wen, X G Xue. Self-enhanced catalytic activities of functionalized graphene sheets in the combustion of nitromethane: Molecular dynamic simulations by molecular reactive force field. ACS Applied Materials & Interfaces, 2014, 6(15): 12235–12244
https://doi.org/10.1021/am501562m
|
130 |
C Bai, L C Liu, H Sun. Molecular dynamics simulations of methanol to olefin reactions in HZSM-5 zeolite using a ReaxFF force field. Journal of Physical Chemistry C, 2012, 116(12): 7029–7039
https://doi.org/10.1021/jp300221j
|
131 |
W Goddard III, B Merinov, A van Duin, T Jacob, M Blanco, V Molinero, S S Jang, Y H Jang. Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes. Molecular Simulation, 2006, 32(3-4): 251–268
https://doi.org/10.1080/08927020600599709
|
132 |
A C T van Duin, B V Merinov, S S Jang, W A Goddard. ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia. Journal of Physical Chemistry A, 2008, 112(14): 3133–3140
https://doi.org/10.1021/jp076775c
|
133 |
B V Merinov, J E Mueller, A C T van Duin, Q An, W A Goddard III. ReaxFF reactive force-field modeling of the triple-phase boundary in a solid oxide fuel cell. Journal of Physical Chemistry Letters, 2014, 5(22): 4039–4043
https://doi.org/10.1021/jz501891y
|
134 |
D Bedrov, G D Smith, A C T van Duin. Reactions of singly-reduced ethylene carbonate in lithium battery electrolytes: A molecular dynamics simulation study using the ReaxFF. Journal of Physical Chemistry A, 2012, 116(11): 2978–2985
https://doi.org/10.1021/jp210345b
|
135 |
H Li, X J Huang, L Q Chen, Z G Wu, Y Liang. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid-State Letters, 1999, 2(11): 547–549
https://doi.org/10.1149/1.1390899
|
136 |
A Magasinski, P Dixon, B Hertzberg, A Kvit, J Ayala, G Yushin. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials, 2010, 9(4): 353–358
https://doi.org/10.1038/nmat2725
|
137 |
S P Kim, D Datta, V B Shenoy. Atomistic mechanisms of phase boundary evolution during initial lithiation of crystalline silicon. Journal of Physical Chemistry C, 2014, 118(31): 17247–17253
https://doi.org/10.1021/jp502523t
|
138 |
M M Islam, V S Bryantsev, A C T van Duin. ReaxFF reactive force field simulations on the influence of Teflon on electrolyte decomposition during Li/SWCNT anode discharge in lithium-sulfur batteries. Journal of the Electrochemical Society, 2014, 161(8): E3009–E3014
https://doi.org/10.1149/2.005408jes
|
139 |
M M Islam, A Ostadhossein, O Borodin, A T Yeates, W W Tipton, R G Hennig, N Kumar, A C T van Duin. ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials. Physical Chemistry Chemical Physics, 2015, 17(5): 3383–3393
https://doi.org/10.1039/C4CP04532G
|
140 |
H Jung, M Lee, B C Yeo, K R Lee, S S Han. Atomistic observation of the lithiation and delithiation behaviors of silicon nanowires using reactive molecular dynamics simulations. Journal of Physical Chemistry C, 2015, 119(7): 3447–3455
https://doi.org/10.1021/jp5094756
|
141 |
A K Rappé, W A Goddard. Charge equilibration for molecular dynamics simulations. Journal of Physical Chemistry, 1991, 95(8): 3358–3363
https://doi.org/10.1021/j100161a070
|
142 |
S M Valone, S R Atlas. An empirical charge transfer potential with correct dissociation limits. Journal of Chemical Physics, 2004, 120(16): 7262–7273
https://doi.org/10.1063/1.1676118
|
143 |
J Morales, T J Martínez. A new approach to reactive potentials with fluctuating charges: Quadratic valence-bond model. Journal of Physical Chemistry A, 2004, 108(15): 3076–3084
https://doi.org/10.1021/jp0369342
|
144 |
J Morales, T J Martínez. Classical fluctuating charge theories: The maximum entropy valence bond formalism and relationships to previous models. Journal of Physical Chemistry A, 2001, 105(12): 2842–2850
https://doi.org/10.1021/jp003823j
|
145 |
J H Chen, T D Martínez. QTPIE: Charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chemical Physics Letters, 2007, 438(4-6): 315–320
https://doi.org/10.1016/j.cplett.2007.02.065
|
146 |
K Nomura, P E Small, R K Kalia, A Nakano, P Vashishta. An extended-Lagrangian scheme for charge equilibration in reactive molecular dynamics simulations. Computer Physics Communications, 2015, 192: 91–96
https://doi.org/10.1016/j.cpc.2015.02.023
|
147 |
K Nomura, R K Kalia, A Nakano, P Vashishta. A scalable parallel algorithm for large-scale reactive force-field molecular dynamics simulations. Computer Physics Communications, 2008, 178(2): 73–87
https://doi.org/10.1016/j.cpc.2007.08.014
|
148 |
H M Aktulga, J C Fogarty, S A Pandit, A Y Grama. Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques. Parallel Computing, 2012, 38(4-5): 245–259
https://doi.org/10.1016/j.parco.2011.08.005
|
149 |
H M Aktulga, S A Pandit, A C T van Duin, A Y Grama. Reactive molecular dynamics: Numerical methods and algorithmic techniques. SIAM Journal on Scientific Computing, 2012, 34(1): C1–C23
https://doi.org/10.1137/100808599
|
150 |
K Nomura, R K Kalia, A Nakano, P Vashishta, A C T van Duin, W A Goddard. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. Physical Review Letters, 2007, 99(14): 148303-1–148303-4
https://doi.org/10.1103/PhysRevLett.99.148303
|
151 |
H P Chen, R K Kalia, E Kaxiras, G Lu, A Nakano, K Nomura, A C T van Duin, P Vashishta, Z S Yuan. Embrittlement of metal by solute segregation-induced amorphization. Physical Review Letters, 2010, 104(15): 155502-1–155502-4
https://doi.org/10.1103/PhysRevLett.104.155502
|
152 |
M Vedadi, A Choubey, K Nomura, R K Kalia, A Nakano, P Vashishta, A C T van Duin. Structure and dynamics of shock-induced nanobubble collapse in water. Physical Review Letters, 2010, 105(1): 014503-1–014503-4
https://doi.org/10.1103/PhysRevLett.105.014503
|
153 |
L C Liu, Y Liu, S V Zybin, H Sun, W A Goddard III. ReaxFF-lg: Correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials. Journal of Physical Chemistry A, 2011, 115(40): 11016–11022
https://doi.org/10.1021/jp201599t
|
154 |
E J Reed. Electron-ion coupling in shocked energetic materials. Journal of Physical Chemistry C, 2012, 116(3): 2205–2211
https://doi.org/10.1021/jp206769c
|
155 |
M M Kuklja, A B Kunz. Ab initio simulation of defects in energetic materials: Hydrostatic compression of cyclotrimethylene trinitramine. Journalof Applied Physics, 1999, 86(8): 4428–4434
https://doi.org/10.1063/1.371381
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|