Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (4) : 461-474    https://doi.org/10.1007/s11705-021-2072-8
RESEARCH ARTICLE
Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics
Pingle Liu, Yu Liu, Yang Lv, Wei Xiong(), Fang Hao(), Hean Luo
College of Chemical Engineering, National & Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, China
 Download: PDF(2028 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The catalytic hydrogenation of nitroaromatics is an environmentally friendly technology for aniline production, and it is crucial to develop noble-metal-free catalysts that can achieve chemoselective hydrogenation of nitroaromatics under mild reaction conditions. In this work, zinc-modified Ni-Ti catalysts (NixZnyTi1) were fabricated and applied for the hydrogenation of nitroaromatics hydrogenation. It was found that the introduction of zinc effectively increases the surface Ni density, enhances the electronic effect, and improves the interaction between Ni and TiO2, resulting in smaller Ni particle size, more oxygen vacancies, higher dispersion and greater concentration of Ni on the catalyst surface. Furthermore, the electron-rich Niδ obtained by electron transfer from Zn and Ti to Ni effectively adsorbs and dissociates hydrogen. The results reveal that NixZnyTi1 (Ni0.5Zn0.5Ti1) shows excellent catalytic performance under mild conditions (70 °C and 6 bar). These findings provide a rational strategy for the development of highly active non-noble-metal hydrogenation catalysts.

Keywords bimetal strategy      oxygen vacancy      non-noble metal catalyst      hydrogenation      aromatic nitro compounds     
Corresponding Author(s): Wei Xiong,Fang Hao   
Online First Date: 26 August 2021    Issue Date: 21 March 2022
 Cite this article:   
Pingle Liu,Yu Liu,Yang Lv, et al. Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics[J]. Front. Chem. Sci. Eng., 2022, 16(4): 461-474.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2072-8
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I4/461
Fig.1  (A) H2-TPR profiles of NixZnyTi1 samples before reduction, and (B) XRD patterns of the reduced catalysts: (a) Ni1Ti1, (b) Ni0.8Zn0.2Ti1, (c) Ni0.67Zn0.33Ti1, (d) Ni0.5Zn0.5Ti1, (e) Ni0.33Zn0.67Ti1, (f) Ni0.2Zn0.8Ti1, and (g) Zn1Ti1.
Catalyst SBETa)
/(m2?g–1)
Vpb)
/(cm3?g–1)
Dpc)
/nm
D111d)
/nm
Ni content e)
/(wt-%)
Dispersion f)
/%
Zn1Ti1 96 0.38 15.14
Ni0.2Zn0.8Ti1 79 0.19 8.32 18.17 6.15 1.25
Ni0.33Zn0.67Ti1 127 0.42 12.90 13.11 12.89 1.07
Ni0.5Zn0.5Ti1 132 0.37 10.46 11.44 18.11 2.35
Ni0.67Zn0.33Ti1 117 0.23 6.79 18.08 24.79 1.01
Ni0.8Zn0.2Ti1 99 0.21 7.13 21.00 32.64 0.92
Ni1Ti1 109 0.21 6.22 16.23 41.47 0.64
Tab.1  The physicochemical characteristics and textural properties of the catalysts
Fig.2  (a) HRTEM of Ni1Ti1, (b) HRTEM of Ni0.5Zn0.5Ti1, (c) EDS line scanning profiles of Ni and Zn element on Ni0.5Zn0.5Ti1, and EDS mapping of Ni0.5Zn0.5Ti1.
Fig.3  XPS spectra of (A) Ti 2p, (B) Zn 2p, (C) O 1s, and (D) Ni 2p3/2 regions in reduced samples: (a) Ni1Ti1, (b) Ni0.33Zn0.67Ti1, (c) Ni0.67Zn0.33Ti1, and (d) Ni0.5Zn0.5Ti1.
Catalyst O2?Ototal–1/% a) XPS metal atomic ratio (%) Tiδ+ BE/eV Niδ– BE/eV
Ni b) Zn c) Ti d)
Ni1Ti1 20.45 5.05 17.53 458.49 851.98
Ni0.67Zn0.33Ti1 27.03 3.95 8.68 19.47 458.42 851.86
Ni0.5Zn0.5Ti1 38.95 4.13 11.34 18.02 458.38 851.82
Ni0.33Zn0.67Ti1 21.62 3.58 14.96 17.91 458.45 851.77
Tab.2  Surface chemical states of metal and oxygen species on NixZnyTi1 samples
Fig.4  EPR spectra of Ni0.5Zn0.5Ti1, Ni0.67Zn0.33Ti1, Ni0.33Zn0.67Ti1, and Ni1Ti1.
Fig.5  Scheme 1 Network of reactions for the hydrogenation of 1-nitronaphthalene.
Fig.6  (a) Hydrogenation of 1-nitronaphthalene with different NixZnyTi1, and (b) the conversion trends along with the reaction time and the reaction rates at t = 300 min over different NixZnyTi1 catalysts und. Reaction conditions: catalysts, 0.1 g; 1-nitronaphthalene, 1 g; DMF, 20 mL; reaction temperature, 70 °C; PH2, 6 bar.
Fig.7  On catalytic activity and chemoselectivity for hydrogenation of 1-nitronaphthalene, effect of reaction temperature over (a) Ni1Ti1 and (c) Ni0.5Zn0.5Ti1with reaction time being 5 h, and effect of reaction time over (b) Ni1Ti1 at 90 °C and (d) Ni0.5Zn0.5Ti1 at 70 °C. Other reaction conditions: catalysts, 0.1 g; 1-nitronaphthalene, 1 g; DMF, 20 mL; PH2, 6 bar.
Fig.8  Dependences of reaction rate on (a) H2 pressure and (b) 1-nitronaphthalene concentration.
Fig.9  Pseudo-zero-order kinetics linear plots for 1-nitronaphthalene hydrogenation over the (a) Ni0.5Zn0.5Ti1 and (b) Ni1Ti1 catalysts, and (c) the fitting results for the corresponding kinetic pseudo-zero-order model.
Entry Substrates Products Temperature/°C Time/h Con. (Sel.)/% d)
1 b) 70 5 >99.9 (>99.9)
2 b) 70 7 >99.9 (97.2)
3 b) 70 5 >99.9 (98.8)
4 b) 70 5 >99.9 (98.0)
5 c) 100 6.5 >99.9 (>99.9)
6 c) 100 8 >99.9 (>99.9)
Tab.3  The hydrogenation of other aromatic nitro compounds over Ni0.5Zn0.5Ti1a)
Fig.10  The recycle stability of Ni0.5Zn0.5Ti1 under reaction conditions: catalysts, 0.1 g; 1-nitronaphthalene, 1 g; DMF, 20 mL; reaction temperature, 80 °C; time, 5 h; PH2, 6 bar.
1 D Formenti, F Ferretti, F K Scharnagl, M Beller. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chemical Reviews, 2019, 119(4): 2611–2680
https://doi.org/10.1021/acs.chemrev.8b00547
2 W Xiong, Z Wang, S He, F Hao, Y Yang, Y Lv, W Zhang, P Liu, H Luo. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Applied Catalysis B: Environmental, 2019, 260: 118105–118114
https://doi.org/10.1016/j.apcatb.2019.118105
3 W Xiong, K Wang, X Liu, F Hao, H Xiao, P Liu, H Luo. 1,5-Dinitronaphthalene hydrogenation to 1,5-diaminonaphthalene over carbon nanotube supported non-noble metal catalysts under mild conditions. Applied Catalysis A, General, 2016, 514: 126–134
https://doi.org/10.1016/j.apcata.2016.01.018
4 L Huang, Y Lv, S Wu, P Liu, W Xiong, F Hao, H Luo. Activated carbon supported bimetallic catalysts with combined catalytic effects for aromatic nitro compounds hydrogenation under mild conditions. Applied Catalysis A, General, 2019, 577: 76–85
https://doi.org/10.1016/j.apcata.2019.03.017
5 A J Amali, R K Rana. Trapping Pd (0) in nanoparticle-assembled microcapsules: an efficient and reusable catalyst. Chemical Communications, 2008, (35): 4165–4167
https://doi.org/10.1039/b807736c
6 F Visentin, G Puxty, O M Kut, K Hungerbühler. Study of the hydrogenation of selected nitro compounds by simultaneous measurements of calorimetric, FT-IR, and gas-uptake signals. Industrial & Engineering Chemistry Research, 2006, 45(13): 4544–4553
https://doi.org/10.1021/ie0509591
7 A Corma, P Concepcion, P Serna. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angewandte Chemie International Edition, 2007, 46(38): 7266–7269
https://doi.org/10.1002/anie.200700823
8 Z Peng, W Li, Y Miao, S Chen, G Liu, S Liu, J Gao, B Li, Z Liu. Ru nanospheres in water drops for enhanced catalytic performances in selective hydrogenation. ACS Applied Energy Materials, 2018, 1(8): 4277–4284
https://doi.org/10.1021/acsaem.8b00918
9 R V Jagadeesh, T Stemmler, A Surkus, H Junge, K Junge, M Beller. Hydrogenation using iron oxide-based nanocatalysts for the synthesis of amines. Nature Protocols, 2015, 10(4): 548–557
https://doi.org/10.1038/nprot.2015.025
10 Z Wei, J Wang, S Mao, D Su, H Jin, Y Wang, F Xu, H Li, Y Wang. In situ-generated Co0-Co3O4/N-doped carbon nanotubes hybrids as efficient and chemoselective catalysts for hydrogenation of nitroarenes. ACS Catalysis, 2015, 5(8): 4783–4789
https://doi.org/10.1021/acscatal.5b00737
11 Y Liu, C Huang, Y Chen. Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts. Journal of Nanoparticle Research, 2006, 8(2): 223–234
https://doi.org/10.1007/s11051-005-5944-9
12 T N Ye, Y Lu, J Li, T Nakao, H Yang, T Tada, M Kitano, H Hosono. Copper-based intermetallic electride catalyst for chemoselective hydrogenation reactions. Journal of the American Chemical Society, 2017, 139(47): 17089–17097
https://doi.org/10.1021/jacs.7b08252
13 S Tauster. Strong metal-support interactions. Accounts of Chemical Research, 1987, 20(11): 389–394
https://doi.org/10.1021/ar00143a001
14 S Tauster, S Fung, R L Garten. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. Journal of the American Chemical Society, 1978, 100(1): 170–175
https://doi.org/10.1021/ja00469a029
15 K Yu, L L Lou, S Liu, W Zhou. Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts. Advancement of Science, 2019, 7(2): 1901970
16 H Tang, F Liu, J Wei, B Qiao, K Zhao, Y Su, C Jin, L Li, J J Liu, J Wang, et al.. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angewandte Chemie International Edition, 2016, 55(36): 10606–10611
https://doi.org/10.1002/anie.201601823
17 J Li, Q Guan, H Wu, W Liu, Y Lin, Z Sun, X Ye, X Zheng, H Pan, J Zhu, et al.. Highly active and stable metal single-atom catalysts achieved by strong electronic metal-support interactions. Journal of the American Chemical Society, 2019, 141(37): 14515–14519
https://doi.org/10.1021/jacs.9b06482
18 S Zhang, Z Xia, T Ni, Z Zhang, Y Ma, Y Qu. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. Journal of Catalysis, 2018, 359: 101–111
https://doi.org/10.1016/j.jcat.2018.01.004
19 J A Rodriguez, P Liu, X Wang, W Wen, J Hanson, J Hrbek, M Pérez, J Evans. Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides. Catalysis Today, 2009, 143(1–2): 45–50
https://doi.org/10.1016/j.cattod.2008.08.022
20 T Gao, J Chen, W Fang, Q Cao, W Su, F Dumeignil. Ru/MnxCe1Oy catalysts with enhanced oxygen mobility and strong metal-support interaction: exceptional performances in 5-hydroxymethylfurfural base-free aerobic oxidation. Journal of Catalysis, 2018, 368: 53–68
https://doi.org/10.1016/j.jcat.2018.09.034
21 J Xiong, J Chen, J Zhang. Liquid-phase hydrogenation of o-chloronitrobenzene over supported nickel catalysts. Catalysis Communications, 2007, 8(3): 345–350
https://doi.org/10.1016/j.catcom.2006.06.028
22 M Armbruster, K Kovnir, M Friedrich, D Teschner, G Wowsnick, M Hahne, P Gille, L Szentmiklosi, M Feuerbacher, M Heggen, et al.. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nature Materials, 2012, 11(8): 690–693
https://doi.org/10.1038/nmat3347
23 J Yu, Y Yang, L Chen, Z Li, W Liu, E Xu, Y Zhang, S Hong, X Zhang, M Wei. NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental, 2020, 277: 119273–119281
https://doi.org/10.1016/j.apcatb.2020.119273
24 F H Wong, T J Tiong, L K Leong, K Lin, Y H Yap. Effects of ZnO on characteristics and selectivity of coprecipitated Ni/ZnO/Al2O3 catalysts for partial hydrogenation of sunflower oil. Industrial & Engineering Chemistry Research, 2018, 57(9): 3163–3174
https://doi.org/10.1021/acs.iecr.7b04963
25 A Yarulin, C Berguerand, I Yuranov, L F Cárdenas, I Prokopyeva, M L Kiwi. Pt-Zn nanoparticles supported on porous polymeric matrix for selective 3-nitrostyrene hydrogenation. Journal of Catalysis, 2015, 321: 7–12
https://doi.org/10.1016/j.jcat.2014.10.011
26 R Kumar, K K Pant. Promotional effects of Cu and Zn in hydrotalcite-derived methane tri-reforming catalyst. Applied Surface Science, 2020, 515: 146010
https://doi.org/10.1016/j.apsusc.2020.146010
27 O B Belskaya, L N Stepanova, T I Gulyaeva, S B Erenburg, S V Trubina, K Kvashnina, A I Nizovskii, A V Kalinkin, V I Zaikovskii, V I Bukhtiyarov, et al.. Zinc influence on the formation and properties of Pt/Mg(Zn)AlOx catalysts synthesized from layered hydroxides. Journal of Catalysis, 2016, 341: 13–23
https://doi.org/10.1016/j.jcat.2016.06.006
28 M Chen, X Li, Y Wang, C Wang, T Liang, H Zhang, Z Yang, Z Zhou, J Wang. Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts. Energy Conversion and Management, 2019, 184: 315–326
https://doi.org/10.1016/j.enconman.2019.01.066
29 K S Baamran, M Tahir. Ni-embedded TiO2-ZnTiO3 reducible perovskite composite with synergistic effect of metal/support towards enhanced H2 production via phenol steam reforming. Energy Conversion and Management, 2019, 200: 112064–112079
https://doi.org/10.1016/j.enconman.2019.112064
30 Z Pan, R Wang, J Chen. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: geometric and electronic effects of oxophilic Zn. Applied Catalysis B: Environmental, 2018, 224: 88–100
https://doi.org/10.1016/j.apcatb.2017.10.040
31 B Jansi Rani, G Ravi, R Yuvakkumar, S Ravichandran, F Ameen, S AlNadhary. Sn doped α-Fe2O3 (Sn= 0, 10, 20, 30 wt-%) photoanodes for photoelectrochemical water splitting applications. Renewable Energy, 2019, 133: 566–574
https://doi.org/10.1016/j.renene.2018.10.067
32 C Miao, G Zhou, S Chen, H Xie, X Zhang. Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate. Renewable Energy, 2020, 153: 1439–1454
https://doi.org/10.1016/j.renene.2020.02.099
33 J J Hidalgo, Q Wang, K Edalati, S J M Cubero, K H Razavi, Y Ikoma, F D Gutiérrez, M F A Dittel, R J C Rodríguez, M Fuji, et al.. Phase transformations, vacancy formation and variations of optical and photocatalytic properties in TiO2-ZnO composites by high-pressure torsion. International Journal of Plasticity, 2020, 124: 170–185
https://doi.org/10.1016/j.ijplas.2019.08.010
34 D Liu, C Wang, Y Yu, B Zhao, W Wang, Y Du, B Zhang. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem, 2019, 5(2): 376–389
https://doi.org/10.1016/j.chempr.2018.11.001
35 F Yang, R Yang, L Yan, X Liu, X Luo, L Zhang. In situ growth of porous TiO2 with controllable oxygen vacancies on an atomic scale for highly efficient photocatalytic water splitting. Catalysis Science & Technology, 2020, 10(16): 5659–5665
https://doi.org/10.1039/D0CY00666A
36 C P Kumar, N O Gopal, T C Wang, M Wong, S C Ke. EPR investigation of TiO2 nanoparticles with temperature-dependent properties. Journal of Physical Chemistry B, 2006, 110(11): 5223–5229
https://doi.org/10.1021/jp057053t
37 D Wang, X Kang, Y Gu, H Zhang, J Liu, A Wu, H Yan, C Tian, H Fu. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts. ACS Catalysis, 2020, 10(18): 10449–10458
https://doi.org/10.1021/acscatal.0c01159
38 G Liang, L He, H Cheng, C Zhang, X Li, S Fujita, B Zhang, M Arai, F Zhao. ZSM-5-supported multiply-twinned nickel particles: formation, surface properties, and high catalytic performance in hydrolytic hydrogenation of cellulose. Journal of Catalysis, 2015, 325: 79–86
https://doi.org/10.1016/j.jcat.2015.02.014
39 J Zhao, C Chen, C Xing, Z Jiao, M Yu, B Mei, J Yang, B Zhang, Z Jiang, Y Qin. Selectivity regulation in Au-catalyzed nitroaromatic hydrogenation by anchoring single-site metal oxide promoters. ACS Catalysis, 2020, 10(4): 2837–2844
https://doi.org/10.1021/acscatal.9b04855
40 I Hussain, A A Jalil, N S Hassan, H U Hambali, N W C Jusoh. Fabrication and characterization of highly active fibrous silica-mordenite (FS@SiO2-MOR) cockscomb shaped catalyst for enhanced CO2 methanation. Chemical Engineering Science, 2020, 228: 115978
https://doi.org/10.1016/j.ces.2020.115978
41 S Zhang, C Chang, Z Huang, J Li, Z Wu, Y Ma, Z Zhang, Y Wang, Y Qu. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. Journal of the American Chemical Society, 2016, 138(8): 2629–2637
https://doi.org/10.1021/jacs.5b11413
42 L Wang, E Guan, J Zhang, J Yang, Y Zhu, Y Han, M Yang, C Cen, G Fu, B C Gates, F S Xiao. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nature Communications, 2018, 9(1): 1–8
https://doi.org/10.1038/s41467-018-03810-y
43 H Niu, J Lu, J Song, L Pan, X Zhang, L Wang, J Zou. Iron oxide as a catalyst for nitroarene hydrogenation: important role of oxygen vacancies. Industrial & Engineering Chemistry Research, 2016, 55(31): 8527–8533
https://doi.org/10.1021/acs.iecr.6b00984
44 L Yang, Z Jiang, G Fan, F Li. The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral. Catalysis Science & Technology, 2014, 4(4): 1123–1131
https://doi.org/10.1039/c3cy01017a
45 L Zhang, M Zhou, A Wang, T Zhang. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chemical Reviews, 2020, 120(2): 683–733
https://doi.org/10.1021/acs.chemrev.9b00230
46 B MacQueen, M Royko, B S Crandall, A Heyden, Y J Pagán-Torres, J Lauterbach. Kinetics study of the hydrodeoxygenation of xylitol over a ReOx-Pd/CeO2 catalyst. Catalysts, 2021, 11(1): 108–124
https://doi.org/10.3390/catal11010108
47 I Banu, G Bumbac, D Bombos, S Velea, A Gălan, G Bozga. Glycerol acetylation with acetic acid over Purolite CT-275. Product yields and process kinetics. Renewable Energy, 2020, 148: 548–557
https://doi.org/10.1016/j.renene.2019.10.060
48 R Gao, L Pan, H Wang, X Zhang, L Wang, J Zou. Ultradispersed nickel phosphide on phosphorus-doped carbon with tailored d-band center for efficient and chemoselective hydrogenation of nitroarenes. ACS Catalysis, 2018, 8(9): 8420–8429
https://doi.org/10.1021/acscatal.8b02091
49 W Lin, H Cheng, J Ming, Y Yu, F Zhao. Deactivation of Ni/TiO2 catalyst in the hydrogenation of nitrobenzene in water and improvement in its stability by coating a layer of hydrophobic carbon. Journal of Catalysis, 2012, 291: 149–154
https://doi.org/10.1016/j.jcat.2012.04.020
50 R Millán, L Liu, M Boronat, A Corma. A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. Journal of Catalysis, 2018, 364: 19–30
https://doi.org/10.1016/j.jcat.2018.05.004
[1] FCE-21009-OF-LP_suppl_1 Download
[1] Deng Pan, Jiahua Zhou, Bo Peng, Shengping Wang, Yujun Zhao, Xinbin Ma. The cooperation effect of Ni and Pt in the hydrogenation of acetic acid[J]. Front. Chem. Sci. Eng., 2022, 16(3): 397-407.
[2] Shan Wang, Xuelian Xu, Ping Xiao, Junjiang Zhu, Xinying Liu. Cooperative effect between copper species and oxygen vacancy in Ce0.7−xZrxCu0.3O2 catalysts for carbon monoxide oxidation[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1524-1536.
[3] Wei Xiong, Susu Zhou, Zeyong Zhao, Fang Hao, Zhihui Cai, Pingle Liu, Hailiang Zhang, Hean Luo. Highly uniform Ni particles with phosphorus and adjacent defects catalyze 1,5-dinitronaphthalene hydrogenation with excellent catalytic performance[J]. Front. Chem. Sci. Eng., 2021, 15(4): 998-1007.
[4] Jingwei Zhang, Lingxin Kong, Yao Chen, Huijiang Huang, Huanhuan Zhang, Yaqi Yao, Yuxi Xu, Yan Xu, Shengping Wang, Xinbin Ma, Yujun Zhao. Enhanced synergy between Cu0 and Cu+ on nickel doped copper catalyst for gaseous acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2021, 15(3): 666-678.
[5] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[6] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[7] Xiuhui Huang, Junfeng Li, Jun Wang, Zeqiu Li, Jiayin Xu. Catalytic combustion of methane over a highly active and stable NiO/CeO2 catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(4): 534-545.
[8] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[9] Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts[J]. Front. Chem. Sci. Eng., 2018, 12(1): 155-161.
[10] Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
[11] Guozhen Xu, Jian Zhang, Shengping Wang, Yujun Zhao, Xinbin Ma. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
[12] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
[13] Zhiqiang Song,Hua Wang,Yufei Niu,Xiao Liu,Jinyu Han. Selective conversion of cellulose to hexitols over bi-functional Ru-supported sulfated zirconia and silica-zirconia catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(4): 461-466.
[14] Qiang Wei, Jinwen Chen, Chaojie Song, Guangchun Li. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 336-348.
[15] Alan J. McCue, James A. Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(2): 142-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed