Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2015, Vol. 9 Issue (2) : 142-153    https://doi.org/10.1007/s11705-015-1516-4
REVIEW ARTICLE
Recent advances in selective acetylene hydrogenation using palladium containing catalysts
Alan J. McCue1,*(),James A. Anderson1,2,*()
1. Surface Chemistry and Catalysis Group, Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
2. Materials and Chemical Engineering Group, School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
 Download: PDF(1139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent advances with Pd containing catalysts for the selective hydrogenation of acetylene are described. The overview classifies enhancement of catalytic properties for monometallic and bimetallic Pd catalysts. Activity/selectivity of Pd catalysts can be modified by controlling particle shape/morphology or immobilisation on a support which interacts strongly with Pd particles. In both cases enhanced ethylene selectivity is generally associated with modifying ethylene adsorption strength and/or changes to hydride formation. Inorganic and organic selectivity modifiers (i.e., species adsorbed onto Pd particle surface) have also been shown to enhance ethylene selectivity. Inorganic modifiers such as TiO2 change Pd ensemble size and modify ethylene adsorption strength whereas organic modifiers such as diphenylsulfide are thought to create a surface template effect which favours acetylene adsorption with respect to ethylene. A number of metals and synthetic approaches have been explored to prepare Pd bimetallic catalysts. Examples where enhanced selectivity is observed are generally associated with decreased Pd ensemble size and/or hindering of the ease with which an unselective hydride phase is formed for Pd. A final class of bimetallic catalysts are discussed where Pd is not thought to be the primary reaction site but merely acts as a site where hydrogen dissociation and spillover occurs onto a second metal (Cu or Au) where the reaction takes place more selectively.

Keywords acetylene      ethylene      selective hydrogenation      palladium      bimetallic     
Corresponding Author(s): Alan J. McCue,James A. Anderson   
Online First Date: 23 June 2015    Issue Date: 14 July 2015
 Cite this article:   
Alan J. McCue,James A. Anderson. Recent advances in selective acetylene hydrogenation using palladium containing catalysts[J]. Front. Chem. Sci. Eng., 2015, 9(2): 142-153.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-015-1516-4
https://academic.hep.com.cn/fcse/EN/Y2015/V9/I2/142
Fig.1  Reaction network for acetylene hydrogenation
Item Front-end reactor Back-end reactor
Feed composition /%
??C2H2 0.9 1.5
??C2H4 38.0 75.0
??C2H4 7.0 22.50
??CH4 35.0 1.00
??H2 19.0
??CO 0.1
Reactor parameter
??Space velocity /h?1 5–8000 1.5–3000
??Pressure /bar 15–35 15–35
??Temperature /K 343–363 313–393
??Regeneration Rarely 1–4 times per year
Tab.1  Typical feed compositions and reactor conditions for front-end and back-end hydrogenation reactors
Fig.2  Product selectivity (bars, left hand Y-axis) and turnover frequency (line, right hand Y-axis) for different Pd particle shapes. Conditions: 13% conversion and 393 K. ‘Pdcub’ denotes cubic shape, ‘Pdco’ denotes cuboctahrdal shape and ‘Pdoct’ denotes octahedral shape. Reproduced from reference [29] with kind permission from Springer Science and Business Media
Fig.3  Particle size distribution (LHS) and excess ethylene versus acetylene conversion (RHS) for Pd catalysts immobilised on carbon, magnesia and alumina supports (see legend inset). Reproduced with permission from Elsevier [33]
Fig.4  Ethylene selectivity versus acetylene conversion over Pd/Fibreglass catalyst. Outer graph: 330 K, GHSV= 1570?9000 h?1. Inset: 350 K, GHSV= 2210?2840 h?1. Reproduced with permission from Elsevier [36]
Fig.5  Ethylene selectivity versus acetylene conversion for Pd/SiO2 catalyst treated with various inorganic selectivity modifiers. Legend inset: (a) Pd/SiO2 reduced at 573 K, (b) Pd/SiO2 reduced at 773 K, (c) Pd/SiO2 + Ti reduced at 573 K, (d) Pd/SiO2 + Ti reduced at 773 K, (e) Pd/SiO2 + La reduced at 573 K, (f) Pd/SiO2 + La reduced at 773 K, (g) Pd/SiO2 + Nb reduced at 573 K and (h) Pd/SiO2 + Ni reduced at 773 K. Reproduced with permission from Elsevier [41]
Fig.6  Hydrogenation rate of acetylene (black) and ethylene (green) from non-competitive reactions at 323 K. (1) Pd/TiO2, (2) Pd/TiO2 with 3 ppm CO in the fed, (3) Pd/TiO2 + diphenylsulfide reduced at 323 K, (4) Pd/TiO2 + diphenylsulfide reduced at 393 K and (5) Pd/TiO2 + triphenylphosphine reduced at 393 K. Reproduced with permission from Elsevier [46] and Royal Society of Chemistry [50]
Fig.7  Temperature programmed reduction profiles for (a) Pd/TiO2 and (b) Pd/TiO2 + diphenylsulfide. Reproduced with permission from Elsevier [46]
Fig.8  Conversion (black circles) and ethylene selectivity (red triangles) versus Ag surface coverage on Pd (LHS) and Au surface coverage on Pd (RHS). Reproduced with permission from Elsevier [52]
Fig.9  H2 desorption from Cu (111) surface with various amounts of Pd deposited ontop (scale on RHS). Reproduced from reference [61] with permission of the Royal Society of Chemistry
Fig.10  (a) Acetylene conversion and (b) Product selectivity (yellow= ethylene, cyan= ethane, pink= oligomers) over CuPd/Al2O3 catalysts (number denotes Cu : Pd atomic ratio). Conditions: 0.6% acetylene, 1.8% H2, balance N2, 373 K. Reproduced from reference [62]
Fig.11  (a) acetylene conversion and (b) ethylene selectivity over Au/SiO2 and Pd doped Au/SiO2 catalysts (see legend inset). Reproduced from reference [65] with permission of the Royal Society of Chemistry
1 Tiedtke D B, Cheung T T P, Leger J, Zisman S A, Bergmeister J J, Delzer G A. In: 13th Ethylene Producers Conference, 2001, 10: 1–21
2 Borodziński A, Bond G C. Selective Hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catalysis Reviews, 2006, 48(2): 91–144
3 Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene—rich streams on palladium catalysts. Part 2: Steady—state kinetics and effects of palladium particle size, carbon monoxide, and promoters. Catalysis Reviews, 2008, 50(3): 379–469
4 Nikolaev S A, Zanaveskin I L N, Smirnov V V, Averyanov V A, Zanaveskin K I. Catalytic hydrogenation of alkyne and alkadiene impurities from alkenes. Practical and theoretical aspects. Russian Chemical Reviews, 2009, 78(3): 231–247
5 García-Mota M, Gómez-Díaz J, Novell-Leruth G, Vargas-Fuentes C, Bellarosa L, Bridier B, Pérez-Ramírez J, López N. A density functional theory study of the “mythic” Lindlar hydrogenation catalyst. Theoretical Chemistry Accounts, 2011, 128(4): 663–673
6 Bridier B, Lopez N, Pérez-Ramírez J. Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Transactions, 2010, 39(36): 8412–8419
7 Segura Y, López N, Pérez-Ramírez J. Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne+ alkene mixtures: Triple- versus double-bond activation. Journal of Catalysis, 2007, 247(2): 383–386
8 Vilé G, Baudouin D, Remediakis I N, Copéret C, López N, Pérez-Ramírez J. Silver nanoparticles for olefin production: New insights into the mechanistic description of propyne hydrogenation. ChemCatChem, 2013, 5(12): 3750–3759
9 Wehrli J T, Thomas D J, Wainwright M S, Trimm D L, Cant N W. Selective hydrogenation of propyne over supported copper catalysts: Influence of support. Applied Catalysis, 1991, 70(1): 253–262
10 Bridier B, López N, Pérez-Ramírez J. Partial hydrogenation of propyne over copper-based catalysts and comparison with nickel-based analogues. Journal of Catalysis, 2010, 269(1): 80–92
11 Abelló S, Verboekend D, Bridier B, Pérez-Ramírez J. Activated takovite catalysts for partial hydrogenation of ethyne, propyne, and propadiene. Journal of Catalysis, 2008, 259(1): 85–95
12 Trimm D L, Liu I O Y, Cant N W. The selective hydrogenation of acetylene over a Ni/SiO2 catalyst in the presence and absence of carbon monoxide. Applied Catalysis A, General, 2010, 374(1-2): 58–64
13 Trimm D L, Cant N W, Liu I O Y. The selective hydrogenation of acetylene in the presence of carbon monoxide over Ni and Ni-Zn supported on MgAl2O4. Catalysis Today, 2011, 178(1): 181–186
14 Lopez-Sanchez J A, Lennon D. The use of titania- and iron oxide-supported gold catalysts for the hydrogenation of propyne. Applied Catalysis A, General, 2005, 291(1-2): 230–237
15 García-Mota M, Bridier B, Pérez-Ramírez J, López N. Interplay between carbon monoxide, hydrides, and carbides in selective alkyne hydrogenation on palladium. Journal of Catalysis, 2010, 273(2): 92–102
16 Yang B, Burch R, Hardacre C, Headdock G, Hu P. Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study. Journal of Catalysis, 2013, 305: 264–276
17 Gabasch H, Hayek K, Kl?tzer B, Knop-Gericke A, Schl?gl R. Carbon incorporation in Pd(111) by adsorption and dehydrogenation of ethene. Journal of Physical Chemistry B, 2006, 110(10): 4947–4952
18 Teschner D, Borsodi J, Wootsch A, Révay Z, H?vecker M, Knop-Gericke A, Jackson S D, Schl?gl R. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science, 2008, 320(5872): 86–89
19 Teschner D, Borsodi J, Kis Z, Szentmiklósi L, Révay Z, Knop-Gericke A, Schl?gl R, Torres D, Sautet P. Role of hydrogen species in palladium-catalyzed alkyne hydrogenation. Journal of Physical Chemistry C, 2010, 114(5): 2293–2299
20 Sá J, Arteaga G D, Daley R A, Bernardi J, Anderson J A. Factors influencing hydride formation in a Pd/TiO2 catalyst. Journal of Physical Chemistry B, 2006, 110(34): 17090–17095
21 Schauermann S, Nilius N, Shaikhutdinov S, Freund H J. Nanoparticles for heterogeneous catalysis: New mechanistic insights. Accounts of Chemical Research, 2013, 46(8): 1673–1681
22 Ludwig W, Savara A, Madix R J, Schauermann S, Freund H J. Subsurface hydrogen diffusion into Pd nanoparticles: Role of low-coordinated surface sites and facilitation by carbon. Journal of Physical Chemistry C, 2012, 116(5): 3539–3544
23 Ludwig W, Savara A, Dostert K H, Schauermann S. Olefin hydrogenation on Pd model supported catalysts: New mechanistic insights. Journal of Catalysis, 2011, 284(2): 148–156
24 Wilde M, Fukutani K, Ludwig W, Brandt B, Fischer J H, Schauermann S, Freund H J. Influence of carbon deposition on the hydrogen distribution in Pd nanoparticles and their reactivity in olefin hydrogenation. Angewandte Chemie International Edition, 2008, 47(48): 9289–9293
25 Armbrüster M, Behrens M, Cinquini F, F?ttinger K, Grin Y, Haghofer A, Kl?tzer B, Knop-Gericke A, Lorenz H, Ota A, Penner S, Prinz J, Rameshan C, Révay Z, Rosenthal D, Rupprechter G, Teschner D, Torres D, Wagner R, Widmer R, Wowsnick G. How to control the selectivity of palladium-based catalysts in hydrogenation reactions: The role of subsurface chemistry. ChemCatChem, 2012, 4(8): 1048–1063
26 Khan N A, Shaikhutdinov S, Freund H J. Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catalysis Letters, 2006, 108(3-4): 159–164
27 Johnson M M, Walker D W, Nowack G P. U S Patent, 4404124A, 1983-<month>09</month>-<day>13</day>
28 Lim B, Jiang M, Tao J, Camargo P H C, Zhu Y, Xia Y. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Advanced Functional Materials, 2009, 19(2): 189–200
29 Yarulin A E, Crespo-Quesada R M, Egorova E V, Kiwi-Minsker L?L. Structure sensitivity of selective acetylene hydrogenation over the catalysts with shape-controlled palladium nanoparticles. Kinetics and Catalysis, 2012, 53(2): 253–261
30 Crespo-Quesada M, Andanson J M, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L. UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: Effect of stabilizer removal on morphology and catalytic behavior. Langmuir, 2011, 27(12): 7909–7916
31 Kim S K, Kim C, Lee J H, Kim J, Lee H, Moon S H. Performance of shape-controlled Pd nanoparticles in the selective hydrogenation of acetylene. Journal of Catalysis, 2013, 306: 146–150
32 He Y F, Feng J T, Du Y Y, Li D Q. Controllable synthesis and acetylene hydrogenation performance of supported pd nanowire and cuboctahedron catalysts. ACS Catalysis, 2012, 2(8): 1703–1710
33 Benavidez A D, Burton P D, Nogales J L, Jenkins A R, Ivanov S A, Miller J T, Karim A M, Datye A K. Improved selectivity of carbon-supported palladium catalysts for the hydrogenaiton of acetylene in excess ethylene. Applied Catalysis A, General, 2014, 482: 108–115
34 Burton P D, Boyle T J, Datye A K. Facile. Surfactant-free synthesis of Pd nanoparticles for heterogeneous catalysts. Journal of Catalysis, 2011, 280(2): 145–149
35 Boudart M, Hwang H S. Solubility of hydrogen in small particles of palladium. Journal of Catalysis, 1975, 39(1): 44–52
36 Gulyaeva Y K, Kaichev V V, Zaikovskii V I, Kovalyov E V, Suknev A P, Bal’zhinimaev B S. Selective hydrogenation of acetylene over novel Pd/fiberglass catalysts. Catalysis Today, 2015, 245: 139–146
37 Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Yoshida H, Fujita S I, Arai M, Panpranot J. Improved catalytic performance of Pd/TiO2 in the selective hydrogenation of acetylene by using H2-treated sol-gel TiO2. Journal of Molecular Catalysis A Chemical, 2014, 383-384: 182–187
38 Riyapan S, Boonyongmaneerat Y, Mekasuwandumrong O, Praserthdam P, Panpranot J. Effect of surface Ti3+ on the sol-gel derived TiO2 in the selective acetylene hydrogenation on Pd/TiO2 catalysts. Catalysis Today, 2014, 245: 134–138
39 Li Y, Jang B W L. Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Applied Catalysis A, General, 2011, 392(1-2): 173–179
40 Zhu B, Jang B W L. Insights into surface properties of non-thermal RF plasmas treated Pd/TiO2 in acetylene hydrogenation. Journal of Molecular Catalysis A, Chemical, 2014, 395: 137–144
41 Kim W J, Moon S H. Modified Pd catalysts for the selective hydrogenation of acetylene. Catalysis Today, 2012, 185(1): 2–16
42 Shin E W, Choi C H, Chang K S, Na Y H, Moon S H. Properties of Si-modified Pd catalyst for selective hydrogenation of acetylene. Catalysis Today, 1998, 44(3): 137–143
43 Shin E W, Kang J H, Kim W J, Park J D, Moon S H. Performance of Si-modified Pd catalyst in acetylene hydrogenation: The origin of the ethylene selectivity improvement. Applied Catalysis A, General, 2002, 223(1-2): 161–172
44 Ahn I Y, Kim W J, Moon S H. Performance of La2O3- or Nb2O5-added Pd/SiO2 catalysts in acetylene hydrogenation. Applied Catalysis A, General, 2006, 308: 75–81
45 Kim W J, Ahn I Y, Lee J H, Moon S H. Properties of Pd/SiO2 catalyst doubly promoted with La oxide and Si for acetylene hydrogenation. Catalysis Communications, 2012, 24: 52–55
46 McKenna F M, Anderson J A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. Journal of Catalysis, 2011, 281(2): 231–240
47 McCue A J, Anderson J A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catalysis Science & Technology, 2014, 4(2): 272–294
48 McKenna F M, Wells R P K, Anderson J A. Enhanced selectivity in acetylene hydrogenation by ligand modified Pd/TiO2 catalysts. Chemical Communications, 2011, 47(8): 2351–2353
49 McKenna F M, Mantarosie L, Wells R P K, Hardacre C, Anderson J A. Selective hydrogenation of acetylene in ethylene rich feed streams at high pressure over ligand modified Pd/TiO2. Catalysis Science & Technology, 2012, 2(3): 632–638
50 McCue A J, McKenna F M, Anderson J A. Triphenylphosphine: A ligand for heterogeneous catalysis too? Selectivity enhancement in acetylene hydrogenation over modified Pd/TiO2 catalyst. Catalysis Science & Technology, 2015, 5(4): 2449–2459
51 Han Y, Peng D, Xu Z, Wan H, Zheng S, Zhu D. TiO2 supported Pd@Ag as highly selective catalysts for hydrogenation of acetylene in excess ethylene. Chemical Communications, 2013, 49(75): 8350–8352
52 Zhang Y, Diao W, Williams C T, Monnier J R. Selective hydrogenation of acetylene in excess ethylene using Ag- and Au-Pd/SiO2 bimetallic catalysts prepared by electroless deposition. Applied Catalysis A, General, 2014, 469: 419–426
53 Ma C, Du Y, Feng J, Cao X, Yang J, Li D. Fabrication of supported PdAu nanoflower catalyst for partial hydrogenation of acetylene. Journal of Catalysis, 2014, 317: 263–271
54 Cherkasov N, Ibhadon A O, McCue A J, Anderson J A, Johnston S K. Palladium-bismuth intermetallic and surface-poisoned catalysts for the semi-hydrogenation of 2-methyl-3-butyn-2-ol. Applied Catalysis A, General, 2015, 497: 22–30
55 Osswald J, Giedigkeit R, Jentoft R E, Armbrüster M, Girgsdies F, Kovnir K, Ressler T, Grin Y, Schl?gl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene Part 1: Preparation and structural investigation under reaction conditions. Journal of Catalysis, 2008, 258(1): 210–218
56 Osswald J, Kovnir K, Armbrüster M, Giedigkeit R, Jentoft R E, Wild U, Grin Y, Schl?gl R. Palladium-gallium intermetallic compounds for the selective hydrogenation of acetylene. Part II: Surface characterization and catalytic performance. Journal of Catalysis, 2008, 258(1): 219–227
57 Friedrich M, Villaseca S A, Szentmiklósi L, Teschner D, Armbrüster M. Order-induced selectivity increase of Cu60Pd40 in the semi-hydrogenation of acetylene. Materials, 2013, 6(7): 2958–2977
58 Kim S K, Lee J H, Ahn I Y, Kim W J, Moon S H. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation. Applied Catalysis A, General, 2011, 401(1-2): 12–19
59 Tierney H L, Baber A E, Kitchin J R, Sykes E C H. Hydrogen dissociation and spillover on individual isolated palladium atoms. Physical Review Letters, 2009, 103(24): 246102–246104
60 Kyriakou G, Boucher M B, Jewell A D, Lewis E A, Lawton T J, Baber A E, Tierney H L, Flytzani-Stephanopoulos M, Sykes E C H. Isolated metal atom geomretries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209–1212
61 Boucher M B, Zugic B, Cladaras G, Kammert J, Marcinkowski M D, Lawton T J, Sykes E C H, Flytzani-Stephanopoulos M. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15(29): 12187–12196
62 McCue A J, McRitchie C J, Shepherd A M, Anderson J A. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation. Journal of Catalysis, 2014, 319: 127–135
63 Fu Q, Luo Y. Active sites of Pd-doped flat and stepped Cu(111) surfaces for H2 dissociation in heterogeneous catalytic hydrogenation. ACS Catalysis, 2013, 3(6): 1245–1252
64 McCue A J, Shepherd A M, Anderson J A. Optimisation of preparation method for Pd coped Cu/Al2O3 catalysts for selective acetylene hydrogenation. Catalysis Science & Technology, 2015, 5(5): 2880–2890
65 Pei G X, Liu X Y, Wang A, Li L, Huang Y, Zhang T, Lee J W, Jang B W L, Mou C Y. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New Journal of Chemistry, 2014, 38(5): 2043–2051
[1] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[2] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[3] Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Front. Chem. Sci. Eng., 2020, 14(5): 813-823.
[4] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[5] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[6] Jiao Feng, Qiuhao Lu, Weimin Tan, Kequan Chen, Pingkai Ouyang. The influence of the NCO/OH ratio and the 1,6-hexanediol/dimethylol propionic acid molar ratio on the properties of waterborne polyurethane dispersions based on 1,5-pentamethylene diisocyanate[J]. Front. Chem. Sci. Eng., 2019, 13(1): 80-89.
[7] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
[8] Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu. 3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. Front. Chem. Sci. Eng., 2018, 12(3): 417-424.
[9] Zhe Yang, Xiaoyu Huang, Jianqiang Wang, Chuyang Y. Tang. Novel polyethyleneimine/TMC-based nanofiltration membrane prepared on a polydopamine coated substrate[J]. Front. Chem. Sci. Eng., 2018, 12(2): 273-282.
[10] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
[11] Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance[J]. Front. Chem. Sci. Eng., 2017, 11(4): 575-585.
[12] Baicang Liu,Chen Chen,Pingju Zhao,Tong Li,Caihong Liu,Qingyuan Wang,Yongsheng Chen,John Crittenden. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate[J]. Front. Chem. Sci. Eng., 2016, 10(4): 562-574.
[13] Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon. Polymeric micelle nanocarriers in cancer research[J]. Front. Chem. Sci. Eng., 2016, 10(3): 348-359.
[14] Peibo Hu,Yahao Dong,Xiaotian Wu,Yuping Wei. 2-Aminopyridine functionalized cellulose based Pd nanoparticles: An efficient and ecofriendly catalyst for the Suzuki cross-coupling reaction[J]. Front. Chem. Sci. Eng., 2016, 10(3): 389-395.
[15] Xinxiang Cao,Arash Mirjalili,James Wheeler,Wentao Xie,Ben W.-L. Jang. Investigation of the preparation methodologies of Pd-Cu single atom alloy catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2015, 9(4): 442-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed