Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2016, Vol. 10 Issue (3) : 417-424    https://doi.org/10.1007/s11705-016-1583-1
RESEARCH ARTICLE
Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation
Guozhen Xu,Jian Zhang(),Shengping Wang,Yujun Zhao(),Xinbin Ma
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(383 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effect of thermal pretreatment on the active sites and catalytic performances of PtSn/SiO2 catalyst in acetic acid (AcOH) hydrogenation was investigated in this article. The catalysts were characterized by N2 physical adsorption, X-ray diffraction, transmission electron microscopy, pyridine Fourier-transform infrared spectra, and H2-O2 titration on its physicochemical properties. The results showed that Pt species were formed primarily in crystalline structure and no PtSnx alloy was observed. Meanwhile, with the increment of thermal pretreatment temperature, Pt dispersion showed a decreasing trend due to the aggregation of Pt particles. Simultaneously, the amount of Lewis acid sites was remarkably influenced by such thermal pretreatment owning to the consequent physicochemical property variation of Sn species. Interestingly, the catalytic activity showed the similar variation trend with that of Lewis acid sites, confirming the important roles of Lewis acid sites in AcOH hydrogenation. Moreover, a balancing effect between exposed Pt and Lewis acid sites was obtained, resulting in the superior catalytic performance in AcOH hydrogenation.

Keywords thermal pretreatment      acetic acid      hydrogenation      ethanol      PtSn/SiO2     
PACS:     
Fund: 
Corresponding Author(s): Jian Zhang,Yujun Zhao   
Just Accepted Date: 08 July 2016   Online First Date: 10 August 2016    Issue Date: 23 August 2016
 Cite this article:   
Guozhen Xu,Jian Zhang,Shengping Wang, et al. Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation[J]. Front. Chem. Sci. Eng., 2016, 10(3): 417-424.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-016-1583-1
https://academic.hep.com.cn/fcse/EN/Y2016/V10/I3/417
Catalysts loadinga) /wt-% SBET /(m2·g?1) Dpore /nm Vpore /(cm3·g?1) Db) /nm Pt dispersionc)/% Lewis acid sited) /(µmol·g?1)
Pt Sn
PtSn/SiO2-100 0.87 0.89 435 4.25 0.54 1.46 55.6 14.50
PtSn/SiO2-200 0.88 0.90 419 4.89 0.59 2.21 48.2 12.11
PtSn/SiO2-300 0.90 0.87 418 4.88 0.59 3.12 42.6 10.31
PtSn/SiO2-400 0.87 0.90 408 3.58 0.37 4.80 25.9 14.39
PtSn/SiO2-500 0.89 0.88 381 3.72 0.39 5.12 15.0 10.69
Tab.1  Physical properties of supported PtSn/SiO2 catalysts
Fig.1  (A) N2 adsorption-desorption isotherms; (B) pore size distribution of catalysts
Fig.2  XRD patterns of the reduced catalysts
Fig.3  TEM images of the reduced catalysts. (A) PtSn/SiO2-100, (B) PtSn/SiO2-200, (C) PtSn/SiO2-300, (D) PtSn/SiO2-400, (E) PtSn/SiO2-500, and (F) the lattice fringe image of the selected particle in (E)
Fig.4  (A,C) HAADF-STEM images, (B) EDX analysis of point 4 in A, (D) EDX line scans across individual particle (the red line 1) in C of reduced PtSn/SiO2-500
Fig.5  FTIR spectra of chemisorbed pyridine on reduced catalysts
Fig.6  Thermogravimetric analysis (TGA) and the differential results (DTG) of fresh catalyst
Catalysts Conv. /% Selectivity /%
EtOH AcOEt
PtSn/SiO2-100 94.9 89.1 10.0
PtSn/SiO2-200 80.7 86.4 13.0
PtSn/SiO2-300 45.6 75.5 22.9
PtSn/SiO2-400 53.9 83.4 15.9
PtSn/SiO2-500 36.5 84.7 14.0
Tab.2  Hydrogenation of AcOH over supported PtSn/SiO2 catalystsa).
Fig.7  Effect of L/Pt molar ratio on the catalytic performance. Reaction conditions: 270 °C, 2.6 MPa, H2/AcOH (mol/mol) = 20
Fig.8  A hypothesized mechanism of AcOH hydrogenation over PtSn/SiO2 catalysts
1 Goldemberg J. Ethanol for a sustainable energy future. Science, 2007, 315(5813): 808–810
https://doi.org/10.1126/science.1137013
2 Goldemberg J. Special issue on sustainability and energy. Perspectives: Ethanol for a sustainable energy future. Science, 2007, 317(5843): 1325
3 Gong J, Yue H, Zhao Y, Zhao S, Zhao L, Lv J, Wang S, Ma X. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites. Journal of the American Chemical Society, 2012, 134(34): 13922–13925
https://doi.org/10.1021/ja3034153
4 Zhang S, Duan X, Ye L, Lin H, Xie Z, Yuan Y. Production of ethanol by gas phase hydrogenation of acetic acid over carbon nanotube-supported Pt-Sn nanoparticles. Catalysis Today, 2013, 215: 260–266
https://doi.org/10.1016/j.cattod.2013.05.002
5 Zhang K, Zhang H, Ma H, Ying W, Fang D. Effect of Sn addition in gas phase hydrogenation of acetic acid on alumina supported PtSn catalysts. Catalysis Letters, 2014, 144(4): 691–701
https://doi.org/10.1007/s10562-014-1210-z
6 Rachmady W, Vannice M A. Acetic acid reduction to acetaldehyde over iron catalysts II. Characterization by Mossbauer spectroscopy, DRIFTS, TPD, and TPR. Journal of Catalysis, 2002, 208(1): 170–179
https://doi.org/10.1006/jcat.2002.3561
7 Rachmady W, Vannice M A. Acetic acid reduction by H2 on bimetallic Pt-Fe catalysts. Journal of Catalysis, 2002, 209(1): 87–98
https://doi.org/10.1006/jcat.2002.3623
8 Margitfalvi J L, Vankó G, Borbáth I, Tompos A, Vértes A. Characterization of Sn-Pt/SiO2 catalysts used in selective hydrogenation of crotonaldehyde by Mössbauer spectroscopy. Journal of Catalysis, 2000, 190(2): 474–477
https://doi.org/10.1006/jcat.1999.2775
9 Serrano-Ruiz J C, Huber G W, Sanchez-Castillo M A, Dumesic J A, Rodriguez-Reinoso F, Sepulveda-Escribano A. Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 catalysts: An XPS, Sn-119 Mossbauer and microcalorimetry study. Journal of Catalysis, 2006, 241(2): 378–388
https://doi.org/10.1016/j.jcat.2006.05.005
10 Taniya K, Jinno H, Kishida M, Ichihashi Y, Nishiyama S. Preparation of Sn-modified silica-coated Pt catalysts: A new PtSn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. Journal of Catalysis, 2012, 288: 84–91
https://doi.org/10.1016/j.jcat.2012.01.006
11 Onyestyák G, Harnos S, Kaszonyi A, Štolcová M, Kalló D. Acetic acid hydroconversion to ethanol over novel InNi/Al2O3 catalysts. Catalysis Communications, 2012, 27: 159–163
https://doi.org/10.1016/j.catcom.2012.07.021
12 Rachmady W, Vannice M A. Acetic acid reduction by H2 over supported Pt catalysts: A DRIFTS and TPD/TPR Study. Journal of Catalysis, 2002, 207(2): 317–330
https://doi.org/10.1006/jcat.2002.3556
13 Chen L G, Li Y P, Zhang X H, Zhang Q, Wang T J, Ma L L. Mechanistic insights into the effects of support on the reaction pathway for aqueous-phase hydrogenation of carboxylic acid over the supported Ru catalysts. Applied Catalysis A, General, 2014, 478: 117–128
https://doi.org/10.1016/j.apcata.2014.03.038
14 Brewster T P, Miller A J M, Heinekey D M, Goldberg K I. Hydrogenation of carboxylic acids catalyzed by half-sandwich complexes of iridium and rhodium. Journal of the American Chemical Society, 2013, 135(43): 16022–16025
https://doi.org/10.1021/ja408149n
15 Goguet A, Schweich D, Candy J P. Preparation of a Pt/SiO2 catalyst: II. Temperature-programmed decomposition of the adsorbed platinum tetrammine hydroxide complex under flowing hydrogen, oxygen, and argon. Journal of Catalysis, 2003, 220(2): 280–290
https://doi.org/10.1016/S0021-9517(03)00189-1
16 Miller J T, Schreier M, Kropf A J, Regalbuto J R. A fundamental study of platinum tetraammine impregnation of silica: 2. The effect of method of preparation, loading, and calcination temperature on (reduced) particle size. Journal of Catalysis, 2004, 225(1): 203–212
https://doi.org/10.1016/j.jcat.2004.04.007
17 Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. Journal of Catalysis, 1993, 141(2): 347–354
https://doi.org/10.1006/jcat.1993.1145
18 Li D, Zeng L, Li X Y, Wang X, Ma H Y, Assabumrungrat S, Gong J L. Ceria-promoted Ni/SBA-15 catalysts for ethanol steam reforming with enhanced activity and resistance to deactivation. Applied Catalysis B: Environmental, 2015, 176: 532–541
https://doi.org/10.1016/j.apcatb.2015.04.020
19 Kwak D H, Lee Y W, Han S B, Hwang E T, Park H C, Kim M C, Park K W. Ultrasmall PtSn alloy catalyst for ethanol electro-oxidation reaction. Journal of Power Sources, 2015, 275: 557–562
https://doi.org/10.1016/j.jpowsour.2014.11.050
20 Zhu H, Anjum D H, Wang Q, Abou-Hamad E, Emsley L, Dong H, Laveille P, Li L, Samal A K, Basset J M. Sn surface-enriched Pt-Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. Journal of Catalysis, 2014, 320: 52–62
https://doi.org/10.1016/j.jcat.2014.09.013
21 Oudenhuijzen M K, Kooyman P J, Tappel B, van Bokhoven J A, Koningsberger D C. Understanding the influence of the pretreatment procedure on platinum particle size and particle-size distribution for SiO2 impregnated with [Pt2+(NH3)4](NO3−)2: A Combination of HRTEM, Mass spectrometry, and Quick EXAFS. Journal of Catalysis, 2002, 205(1): 135–146
https://doi.org/10.1006/jcat.2001.3433
22 Liu Z, Jackson G S, Eichhorn B W. PtSn intermetallic, core-shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angewandte Chemie International Edition, 2010, 49(18): 3173–3176
https://doi.org/10.1002/anie.200907019
23 Wang Z Q, Li G Y, Liu X Y, Huang Y Q, Wang A Q, Chu W, Wang X D, Li N. Aqueous phase hydrogenation of acetic acid to ethanol over Ir-MoOx/SiO2 catalyst. Catalysis Communications, 2014, 43: 38–41
https://doi.org/10.1016/j.catcom.2013.09.007
24 Neri G, Rizzo G, Arico A S, Crisafulli C, De Luca L, Donato A, Musolino M G, Pietropaolo R. One-pot synthesis of naturanol from α-pinene oxide on bifunctional Pt-Sn/SiO2 heterogeneous catalysts Part I: The catalytic system. Applied Catalysis A, General, 2007, 325(1): 15–24
https://doi.org/10.1016/j.apcata.2007.02.026
25 Sun J, Zhu K, Gao F, Wang C, Liu J, Peden C H, Wang Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites. Journal of the American Chemical Society, 2011, 133(29): 11096–11099
https://doi.org/10.1021/ja204235v
26 Zhan H M, Huang S Y, Li Y, Lv J, Wang S P, Ma X B. Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR. Catalysis Science & Technology, 2015, 5(9): 4378–4389
https://doi.org/10.1039/C5CY00460H
27 Pallassana V, Neurock M. Reaction paths in the hydrogenolysis of acetic acid to ethanol over Pd(111), Re(0001), and PdRe alloys. Journal of Catalysis, 2002, 209(2): 289–305
https://doi.org/10.1006/jcat.2002.3585
28 Rachmady W, Vannice M A. Acetic acid reduction to acetaldehyde over iron catalysts: I. kinetic behavior. Journal of Catalysis, 2002, 208(1): 158–169
https://doi.org/10.1006/jcat.2002.3560
[1] FCE-16010-of-XG_suppl_1 Download
[1] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[2] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[3] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[4] Shumei Wei, Yarong Xu, Zhaoyang Jin, Xuedong Zhu. Co-conversion of methanol and n-hexane into aromatics using intergrown ZSM-5/ZSM-11 as a catalyst[J]. Front. Chem. Sci. Eng., 2020, 14(5): 783-792.
[5] Pavlo I. Kyriienko. Selective catalytic reduction of NOx with ethanol and other C1-4 oxygenates over Ag/Al2O3 catalysts: A review[J]. Front. Chem. Sci. Eng., 2020, 14(4): 471-491.
[6] Yang Su, Liping Lü, Weifeng Shen, Shun’an Wei. An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming[J]. Front. Chem. Sci. Eng., 2020, 14(4): 614-628.
[7] Chunyan Yang, Xiaoliang Yuan, Xueting Wang, Kejing Wu, Yingying Liu, Changjun Liu, Houfang Lu, Bin Liang. Ball milling promoted direct liquefaction of lignocellulosic biomass in supercritical ethanol[J]. Front. Chem. Sci. Eng., 2020, 14(4): 605-613.
[8] Xinxiang Cao, Tengteng Lyu, Wentao Xie, Arash Mirjalili, Adelaide Bradicich, Ricky Huitema, Ben W.-L. Jang, Jong K. Keum, Karren More, Changjun Liu, Xiaoliang Yan. Preparation and investigation of Pd doped Cu catalysts for selective hydrogenation of acetylene[J]. Front. Chem. Sci. Eng., 2020, 14(4): 522-533.
[9] Yuehua Fang, Fan Yang, Xuan He, Xuedong Zhu. Dealumination and desilication for Al-rich HZSM-5 zeolite via steam-alkaline treatment and its application in methanol aromatization[J]. Front. Chem. Sci. Eng., 2019, 13(3): 543-553.
[10] Qing Li, Yingjie Qin, Yunfei Liu, Jianjun Liu, Qing Liu, Pingli Li, Liqiang Liu. Detoxification and concentration of corn stover hydrolysate and its fermentation for ethanol production[J]. Front. Chem. Sci. Eng., 2019, 13(1): 140-151.
[11] Andreja Nemet, Jiří J. Klemeš, Zdravko Kravanja. Process synthesis with simultaneous consideration of inherent safety-inherent risk footprint[J]. Front. Chem. Sci. Eng., 2018, 12(4): 745-762.
[12] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[13] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[14] Dali Cai, Yu Cui, Zhao Jia, Yao Wang, Fei Wei. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process[J]. Front. Chem. Sci. Eng., 2018, 12(1): 77-82.
[15] Enxian Yuan, Xiangwei Ren, Li Wang, Wentao Zhao. A comparison of the catalytic hydrogenation of 2-amylanthraquinone and 2-ethylanthraquinone over a Pd/Al 2O3 catalyst[J]. Front. Chem. Sci. Eng., 2017, 11(2): 177-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed