Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (6) : 1408-1426    https://doi.org/10.1007/s11705-021-2102-6
REVIEW ARTICLE
An overview and recent advances in electrocatalysts for direct seawater splitting
Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan()
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
 Download: PDF(2503 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

Keywords seawater splitting      electrocatalysts      oxygen evolution reaction      hydrogen evolution reaction      chlorine chemistry     
Corresponding Author(s): Zhong-Yong Yuan   
Online First Date: 22 October 2021    Issue Date: 09 November 2021
 Cite this article:   
Hao-Yu Wang,Chen-Chen Weng,Jin-Tao Ren, et al. An overview and recent advances in electrocatalysts for direct seawater splitting[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1408-1426.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2102-6
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I6/1408
Fig.1  Illustrations for the mechanisms of OER vs. chloride chemistry. (a) The Pourbaix diagram of an artificial model solution (0.5 mol·L–1 NaCl solution with electrolytes to control the pH and no other chlorine species) depicting the thermodynamic equilibrium of H2O/O2 (green line) and Cl/Cl2-HOCl-OCl (red line). Reprinted with permission from ref. [24], copyright 2016, Wiley-VCH. Free energy diagram over RuO2 (110) for (b) ClER Volmer-Heyrovsky mechanism and (c) two OER competing water splitting reactions (electrochemical and chemical pathway) at different potentials. Reprinted with permission from ref. [25], copyright 2018, American Chemical Society. (d) ΔGloss volcano diagram for OER (black) and chloride evolution reaction (ClER, gray). Reprinted with permission from ref. [26], copyright 2014, Wiley-VCH.
Catalyst Support Electrolyte Prominent performance Ref.
(MnMo)Ox IrO2/Ti 0.5 mol·L–1 NaCl OER selectivity of 91% [36]
(Mn-W)Ox IrO2/Ti 0.5 mol·L–1 NaCl OER selectivity of 99.6% [37]
Co3O4 Ni foam 1 mol·L–1 KOH+ natural seawater Overpotential: about 280 mV for HER and 450 mV for OER at 100 mA·cm–2 [38]
Co-Fe-O-B Glassy carbon 1 mol·L–1 KOH+ 0.5 mol·L–1 NaCl Overpotential: 294 mV for OER at 10 mA·cm–2 [39]
(Mn0.88Mo0.12)O2.12 IrO2/Ti 0.5 mol·L–1 NaCl OER selectivity of 99.6% after 1500 h electrolysis at 100 mA·cm–2 [40]
NiFe-LDH Membrane 0.5 mol·L–1 KOH+ 0.5 mol·L–1 NaCl Stable electrolysis at 200 mA·cm–2 for 100 h [41]
S-(Ni,Fe)OOH Ni foam 1 mol·L–1 KOH+ natural seawater Overpotential of 300 and 398 mV for OER at 100 and 500 mA·cm–2 [42]
NiCoS Ni foam 1 mol·L–1 KOH+ natural seawater Stable electrolysis at 800 mA·cm–2 [43]
RuO2:Zn Ti mesh 150 mmol·L–1 NaCl+ 0.1 mol·L–1 HClO4 Change of selectivity by the incorporation of Zn [44]
Pb2Ru2O7−x Glassy carbon 0.1 mol·L–1 NaOH+ 0.6 mol·L–1 NaCl OER selectivity of 99% at pH= 13 and 5 h stable electrolysis at 200 mA·cm–2 [45]
Co-Se4 Co foil Buffered seawater (pH= 7.09) 10.3 mA·cm–2 at 1.8 V for overall seawater electrolysis [46]
Co-Pi Glassy carbon 0.5 mol·L–1 NaCl+ 0.1 mol·L–1 Pi (pH= 7.0) Retained activity for O2 generation in Cl-containing electrolyte [47]
Co/Co3O4@C Carbon fiber paper 1 mol·L–1 KOH+ natural seawater Overpotential: about 600 mV for HER and 630 mV for OER at 10 mA·cm–2 [48]
Co-Fe LDH Ti mesh Simulated seawater (pH= 8.0) Stable electrolysis for a diurnal cycle (8 h·d–1) [49]
MnOx/IrOx Glassy carbon 30 mmol·L–1 KCl+ 0.5 mol·L–1 KHSO4 CER selectivity decreased from 86% to 7% by MnOx deposition [50]
CaFeOx|FePO4 FTO Buffered synthetic seawater (pH= 7.0) Overpotential: about 710 mV for OER at 10 mA·cm–2 and stable electrolysis for over 10 h [51]
GO@Fe@Ni-Co Ni foam 1 mol·L–1 KOH+ 0.5 mol·L–1 NaCl 20 and 1000 mA·cm–2 at 1.57 and 2.02 V for overall seawater electrolysis [52]
NM/IrO2 Ti mesh 0.5 mol·L–1 NaCl (pH= 8.3) OER selectivity of nearly 100% by Nafion coating [53]
NiFe/NiSx Ni foam 1 mol·L–1 KOH+ 0.5 mol·L–1 NaCl Stable electrolysis at 1000 mA·cm–2 for over 500 h [54]
Tab.1  Oxygen evolution electrocatalysts reported in saline electrolyte
Fig.2  Maximum allowed overpotential region where only OER is thermodynamically possible in seawater electrolysis. The E–EOER values are the difference between chloride-related reactions (chlorine evolution, hypochlorous acid formation and hypochlorite formation reaction) and OER at different pH values. Reprinted with permission from ref. [24], copyright 2016, Wiley-VCH.
Fig.3  Polarization curves for the (a) S-(NiFe)OOH and (b) NiCoS electrode tested in different electrolytes. Reprinted with permission from ref. [42], copyright 2020, Royal Society of Chemistry and ref. [43], copyright 2021, Elsevier, respectively.
Fig.4  (a) Original current density (black) and current densities attributed to oxygen (black) and chlorine (red) for anodic OER in 0.1 mol·L–1 HClO4 + 0.14 mol·L–1 NaCl solution. Reprinted with permission from ref. [44], copyright 2010, Wiley-VCH. (b) OER current efficiencies at various potentials for PbRu2O7 and RuO2 in 0.6 mol·L–1 NaCl. Reprinted with permission from ref. [45], copyright 2020, American Chemical Society. (c) Polarization curves of Co-Se1//Co-Se4 and Ir-C//Pt-C in buffer solution and seawater. Reprinted from with permission ref. [46], copyright 2018, Wiley-VCH.
Fig.5  (a) Sketch of OER and ClER on IrOx/GC catalyst with and without MnOx deposition. Reprinted with permission from ref. [50], copyright 2018, American Chemical Society. (b) Representation of the improved selectivity and stability on active NiFeOx catalyst with CeOx deposition. Reprinted with permission from ref. [62], copyright 2018, Wiley-VCH. (c) Schematic illustration of the preparation of GO@Fe@Ni-Co@NF. Reprinted with permission from ref [52], copyright 2020, Royal Society of Chemistry.
Fig.6  (a) Reduction potential-dependent sequential reduction of platinum group metal (PGM) in Ni-Mo matrix; (b) hydrogen evolution polarization curves of Pt/C and Pt/Ni-Mo; (c) the comparison of the Pt/Ni-Mo and other PGM-based and Non-PGM catalysts. Reprinted with permission from ref. [63], copyright 2021, Wiley-VCH.
Fig.7  Schematic illustration of the preparation of nitrogen-deficient 2D MoN and nitrogen 2D Mo5N6 electrocatalysts through an ammonization synthesis without and with Ni-induced process, respectively. Reprinted with permission from ref. [73], copyright 2018, American Chemical Society.
Fig.8  Schematic illustration of the preparation of (a) CoMoP@C catalyst and (b) U-CNT-900 catalyst. Reprinted with permission from ref. [77], copyright 2017, Royal Society of Chemistry and ref. [33], copyright 2015, Royal Society of Chemistry.
Fig.9  (a) Schemes for AEMWE using asymmetric feeding electrolyte with different electrolyte composition. Reprinted with permission from ref. [98], copyright 2020, Royal Society of Chemistry. (b) Scheme of a GO device for concentration-cell measurements, hydrogen pumping and water vapor electrolysis. Reprinted with permission from ref. [100], copyright 2018, American Chemical Society.
1 K Xu, H Cheng, H F Lv, J Y Wang, L Q Liu, S Liu, X J Wu, W S Chu, C Z Wu, Y Xie. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322
https://doi.org/10.1002/adma.201703322
2 T Liu, P Li, N Yao, G Z Cheng, S L Chen, W Luo, Y D Yin. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angewandte Chemie International Edition, 2019, 58(14): 4679–4684
https://doi.org/10.1002/anie.201901409
3 J T Ren, Y S Wang, L Chen, L J Gao, W W Tian, Z Y Yuan. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408
https://doi.org/10.1016/j.cej.2020.124408
4 B C M Martindale, E Reisner. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Advanced Energy Materials, 2016, 6(6): 1502095
https://doi.org/10.1002/aenm.201502095
5 J W Zhang, X W Lv, T Z Ren, Z Wang, T J Bandosz, Z Y Yuan. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment, 2021, doi: 10.1016/j.gee.2020.12.009
6 J T Ren, L Chen, D D Yang, Z Y Yuan. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263: 118352
https://doi.org/10.1016/j.apcatb.2019.118352
7 Y Zheng, Y Jiao, A Vasileff, S Z Qiao. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018, 57(26): 7568–7579
https://doi.org/10.1002/anie.201710556
8 J T Ren, Y Yao, Z Y Yuan. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643
https://doi.org/10.1016/j.gee.2020.11.023
9 I Roger, M A Shipman, M D Symes. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003
10 X W Lv, Z P Hu, L Chen, J T Ren, Y P Liu, Z Y Yuan. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778
https://doi.org/10.1021/acssuschemeng.9b01355
11 J W Zhang, H Zhang, T Z Ren, Z Y Yuan, T J Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287
https://doi.org/10.1007/s11705-020-1965-2
12 X X Ji, Y H Lin, J Zeng, Z H Ren, Z J Lin, Y B Mu, Y J Qiu, J Yu. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12(1): 1380
https://doi.org/10.1038/s41467-021-21742-y
13 J Wang, S J Kim, J P Liu, Y Gao, S B Choi, J W Han, H Y Shin, S G Jo, J W Kim, F Ciucci, et al.. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4(3): 212–222
https://doi.org/10.1038/s41929-021-00578-1
14 A Ursua, L M Gandia, P Sanchis. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2012, 100(2): 410–426
https://doi.org/10.1109/JPROC.2011.2156750
15 H Zhao, Z Y Yuan. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14(1): 130–149
https://doi.org/10.1002/cssc.202002103
16 J A Turner. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
https://doi.org/10.1126/science.1103197
17 C C Weng, J T Ren, Z Y Yuan. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375
https://doi.org/10.1002/cssc.202000416
18 J T Ren, Y J Song, Z Y Yuan. Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32: 78–84
https://doi.org/10.1016/j.jechem.2018.07.006
19 M Cuartero, G Crespo, T Cherubini, N Pankratova, F Confalonieri, F Massa, M L Tercier-Waeber, M Abdou, J Schäfer, E Bakker. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Analytical Chemistry, 2018, 90(7): 4702–4710
https://doi.org/10.1021/acs.analchem.7b05299
20 C Xiang, K M Papadantonakis, N S Lewis. Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3(3): 169–173
https://doi.org/10.1039/C6MH00016A
21 W Tong, M Forster, F Dionigi, S Dresp, R Sadeghi Erami, P Strasser, A J Cowan, P Farràs. Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5(5): 367–377
https://doi.org/10.1038/s41560-020-0550-8
22 D R Kester, I W Duedall, D N Connors, R M Pytkowicz. Preparation of artifcicial seawater. Limnology and Oceanography, 1967, 12(1): 176–179
https://doi.org/10.4319/lo.1967.12.1.0176
23 L Yu, Q Zhu, S Song, B McElhenny, D Wang, C Wu, Z Qin, J Bao, Y Yu, S Chen, Z Ren. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106
https://doi.org/10.1038/s41467-019-13092-7
24 F Dionigi, T Reier, Z Pawolek, M Gliech, P Strasser. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem, 2016, 9(9): 962–972
https://doi.org/10.1002/cssc.201501581
25 K S Exner, I Sohrabnejad-Eskan, H Over. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catalysis, 2018, 8(3): 1864–1879
https://doi.org/10.1021/acscatal.7b03142
26 K S Exner, J Anton, T Jacob, H Over. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angewandte Chemie International Edition, 2014, 53(41): 11032–11035
https://doi.org/10.1002/anie.201406112
27 N Ysea, L A Diaz, G I Lacconi, E A Franceschini. Stability study of materials for electrode supports for the hydrogen generation from a NaCl aqueous solution. Electrocatalysis, 2021, 12(5): 537–547
https://doi.org/10.1007/s12678-021-00672-9
28 M Auinger, I Katsounaros, J C Meier, S O Klemm, P U Biedermann, A A Topalov, M Rohwerder, K J J Mayrhofer. Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 2011, 13(36): 16384–16394
https://doi.org/10.1039/c1cp21717h
29 I Katsounaros, J C Meier, S O Klemm, A A Topalov, P U Biedermann, M Auinger, K J J Mayrhofer. The effective surface pH during reactions at the solid-liquid interface. Electrochemistry Communications, 2011, 13(6): 634–637
https://doi.org/10.1016/j.elecom.2011.03.032
30 D W Kirk, A E Ledas. Precipitate formation during sea water electrolysis. International Journal of Hydrogen Energy, 1982, 7(12): 925–932
https://doi.org/10.1016/0360-3199(82)90160-4
31 J E Bennett. Electrodes for generation of hydrogen and oxygen from seawater. International Journal of Hydrogen Energy, 1980, 5(4): 401–408
https://doi.org/10.1016/0360-3199(80)90021-X
32 X Wu, S Zhou, Z Wang, J Liu, W Pei, P Yang, J Zhao, J Qiu. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333
https://doi.org/10.1002/aenm.201901333
33 S Gao, G D Li, Y Liu, H Chen, L L Feng, Y Wang, M Yang, D Wang, S Wang, X Zou. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7(6): 2306–2316
https://doi.org/10.1039/C4NR04924A
34 R K B Karlsson, A Cornell. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chemical Reviews, 2016, 116(5): 2982–3028
https://doi.org/10.1021/acs.chemrev.5b00389
35 B S Oh, S G Oh, Y Y Hwang, H W Yu, J W Kang, I S Kim. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Science of the Total Environment, 2010, 408(23): 5958–5965
https://doi.org/10.1016/j.scitotenv.2010.08.057
36 K Izumiya, E Akiyama, H Habazaki, N Kumagai, A Kawashima, K Hashimoto. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater. Materials Transactions, 1997, 38(10): 899–905
https://doi.org/10.2320/matertrans1989.38.899
37 K Izumiya, E Akiyama, H Habazaki, N Kumagai, A Kawashima, K Hashimoto. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43(21): 3303–3312
https://doi.org/10.1016/S0013-4686(98)00075-9
38 J Niu, J Yang, A I Channa, E Ashalley, J Yang, J Jiang, H Li, H Ji, X Niu. Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Advances, 2020, 10(45): 27235–27241
https://doi.org/10.1039/D0RA02128H
39 S Gupta, M Forster, A Yadav, A J Cowan, N Patel, M Patel. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Applied Energy Materials, 2020, 3(8): 7619–7628
https://doi.org/10.1021/acsaem.0c01040
40 K Fujimura, T Matsui, H Habazaki, A Kawashima, N Kumagai, K Hashimoto. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45(14): 2297–2303
https://doi.org/10.1016/S0013-4686(00)00316-9
41 S Dresp, F Dionigi, S Loos, J Ferreira de Araujo, C Spöri, M Gliech, H Dau, P Strasser. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials, 2018, 8(22): 1800338
https://doi.org/10.1002/aenm.201800338
42 L Yu, L B Wu, B McElhenny, S W Song, D Luo, F H Zhang, Y Yu, S Chen, Z F Ren. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020, 13(10): 3439–3446
https://doi.org/10.1039/D0EE00921K
43 C Z Wang, M Z Zhu, Z Y Cao, P Zhu, Y Q Cao, X Y Xu, C X Xu, Z Y Yin. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021, 291: 120071
https://doi.org/10.1016/j.apcatb.2021.120071
44 V Petrykin, K Macounova, O A Shlyakhtin, P Krtil. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angewandte Chemie International Edition, 2010, 49(28): 4813–4815
https://doi.org/10.1002/anie.200907128
45 P Gayen, S Saha, V Ramani. Selective seawater splitting using pyrochlore electrocatalyst. ACS Applied Energy Materials, 2020, 3(4): 3978–3983
https://doi.org/10.1021/acsaem.0c00383
46 Y Zhao, B Jin, Y Zheng, H Jin, Y Jiao, S Z Qiao. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926
https://doi.org/10.1002/aenm.201801926
47 Y Surendranath, M Dincǎ, D G Nocera. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society, 2009, 131(7): 2615–2620
https://doi.org/10.1021/ja807769r
48 Q J Zhang, X J Zhao, X J Miao, W T Yang, C T Wang, Q H Pan. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45(58): 33028–33036
https://doi.org/10.1016/j.ijhydene.2020.09.058
49 F F Cheng, X L Feng, X Chen, W G Lin, J F Rong, W S Yang. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochimica Acta, 2017, 251: 336–343
https://doi.org/10.1016/j.electacta.2017.08.098
50 J G Vos, T A Wezendonk, A W Jeremiasse, M T M Koper. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. Journal of the American Chemical Society, 2018, 140(32): 10270–10281
https://doi.org/10.1021/jacs.8b05382
51 W H Huang, C Y Lin. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215: 205–215
https://doi.org/10.1039/C8FD00172C
52 A R Jadhav, A Kumar, J J Lee, T H Yang, S Y Na, J S Lee, Y G Luo, X H Liu, Y Hwang, Y Liu, H Lee. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(46): 24501–24514
https://doi.org/10.1039/D0TA08543J
53 R Balaji, B S Kannan, J Lakshmi, N Senthil, S Vasudevan, G Sozhan, A K Shukla, S Ravichandran. An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11(8): 1700–1702
https://doi.org/10.1016/j.elecom.2009.06.022
54 Y Kuang, M J Kenney, Y Meng, W H Hung, Y Liu, J E Huang, R Prasanna, P Li, Y Li, L Wang, et al.. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629
https://doi.org/10.1073/pnas.1900556116
55 K Fujimura, T Matsui, K Izumiya, N Kumagai, E Akiyama, H Habazaki, A Kawashima, K Asami, K Hashimoto. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis. Materials Science and Engineering A, 1999, 267(2): 254–259
https://doi.org/10.1016/S0921-5093(99)00100-8
56 N A Abdel Ghany, N Kumagai, S Meguro, K Asami, K Hashimoto. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochimica Acta, 2002, 48(1): 21–28
https://doi.org/10.1016/S0013-4686(02)00539-X
57 A A El-Moneim, N Kumagai, K Asami, K Hashimoto. Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Materials Transactions, 2005, 46(2): 309–316
https://doi.org/10.2320/matertrans.46.309
58 A A El-Moneim, N Kumagai, K Hashimoto. Mn-Mo-W oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. Materials Transactions, 2009, 50(8): 1969–1977
https://doi.org/10.2320/matertrans.M2009107
59 Z Kato, J Bhattarai, N Kumagai, K Izumiya, K Hashimoto. Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production. Applied Surface Science, 2011, 257(19): 8230–8236
https://doi.org/10.1016/j.apsusc.2010.12.042
60 Z Kato, M Sato, Y Sasaki, K Izumiya, N Kumagai, K Hashimoto. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochimica Acta, 2014, 116: 152–157
https://doi.org/10.1016/j.electacta.2013.10.014
61 S Trasatti. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 1984, 29(11): 1503–1512
https://doi.org/10.1016/0013-4686(84)85004-5
62 K Obata, K Takanabe. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2018, 57(6): 1616–1620
https://doi.org/10.1002/anie.201712121
63 F Yang, Y Luo, Q Yu, Z Zhang, S Zhang, Z Liu, W Ren, H M Cheng, J Li, B Liu. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm–2. Advanced Functional Materials, 2021, 31(21): 2010367
https://doi.org/10.1002/adfm.202010367
64 M M Jakšić. Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochimica Acta, 1984, 29(11): 1539–1550
https://doi.org/10.1016/0013-4686(84)85007-0
65 J J Zheng, Y Y Zhao, H Xi, C H Li. Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M= Cr, Fe, Co, Ni, Mo) incorporated Pt. RSC Advances, 2018, 8(17): 9423–9429
https://doi.org/10.1039/C7RA12112A
66 H Y Li, Q W Tang, B L He, P Z Yang. Robust electrocatalysts from an alloyed Pt-Ru-M (M= Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6513–6520
https://doi.org/10.1039/C6TA00785F
67 M F Camões, B Anes, C S Oliveira, M E M Jorge. Surface changes at platinized platinum based hydrogen gas electrodes following use in highly saline aqueous solutions. Electroanalysis, 2014, 26(9): 1952–1957
https://doi.org/10.1002/elan.201400132
68 W Yuan, Z Cui, S Zhu, Z Li, S Wu, Y Liang. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochimica Acta, 2021, 365: 137366
https://doi.org/10.1016/j.electacta.2020.137366
69 J W Miao, F X Xiao, H B Yang, S Y Khoo, J Z Chen, Z X Fan, Y Y Hsu, H M Chen, H Zhang, B Liu. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259
https://doi.org/10.1126/sciadv.1500259
70 L Shang, Y Zhao, X Y Kong, R Shi, G I N Waterhouse, L Wen, T Zhang. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78: 105375
https://doi.org/10.1016/j.nanoen.2020.105375
71 L J Song, H M Meng. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater. International Journal of Hydrogen Energy, 2010, 35(19): 10060–10066
https://doi.org/10.1016/j.ijhydene.2010.08.003
72 C T Dinh, A Jain, F P G de Arquer, P De Luna, J Li, N Wang, X Zheng, J Cai, B Z Gregory, O Voznyy, et al.. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4(2): 107–114
https://doi.org/10.1038/s41560-018-0296-8
73 H Jin, X Liu, A Vasileff, Y Jiao, Y Zhao, Y Zheng, S Z Qiao. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano, 2018, 12(12): 12761–12769
https://doi.org/10.1021/acsnano.8b07841
74 W Zang, T Sun, T Yang, S Xi, M Waqar, Z Kou, Z Lyu, Y P Feng, J Wang, S J Pennycook. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33(8): 2003846
https://doi.org/10.1002/adma.202003846
75 L Yu, L B Wu, S W Song, B McElhenny, F H Zhang, S Chen, Z F Ren. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Letters, 2020, 5(8): 2681–2689
https://doi.org/10.1021/acsenergylett.0c01244
76 B Endrődi, S Sandin, V Smulders, N Simic, M Wildlock, G Mul, B T Mei, A Cornell. Towards sustainable chlorate production: the effect of permanganate addition on current efficiency. Journal of Cleaner Production, 2018, 182: 529–537
https://doi.org/10.1016/j.jclepro.2018.02.071
77 Y Y Ma, C X Wu, X J Feng, H Q Tan, L K Yan, Y Liu, Z H Kang, E B Wang, Y G Li. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798
https://doi.org/10.1039/C6EE03768B
78 X Gao, H Zhang, Q Li, X Yu, Z Hong, X Zhang, C Liang, Z Lin. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294
https://doi.org/10.1002/anie.201600525
79 J T Ren, Z Y Yuan. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7203–7210
https://doi.org/10.1021/acssuschemeng.7b01419
80 X W Lv, Z P Hu, J T Ren, Y P Liu, Z Wang, Z Y Yuan. Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6(1): 74–81
https://doi.org/10.1039/C8QI01026A
81 Y P Zhu, Y P Liu, T Z Ren, Z Y Yuan. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347
https://doi.org/10.1002/adfm.201503666
82 T Ling, D Y Yan, H Wang, Y Jiao, Z Hu, Y Zheng, L Zheng, J Mao, H Liu, X W Du, M Jaroniec, S Z Qiao. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8(1): 1509
https://doi.org/10.1038/s41467-017-01872-y
83 F Z Song, W Li, J Q Yang, G Q Han, P L Liao, Y J Sun. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9(1): 4531
https://doi.org/10.1038/s41467-018-06728-7
84 N N Han, K R Yang, Z Y Lu, Y J Li, W W Xu, T F Gao, Z Cai, Y Zhang, V S Batista, W Liu, et al.. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9(1): 924
https://doi.org/10.1038/s41467-018-03429-z
85 E Fabbri, M Nachtegaal, T Binninger, X Cheng, B J Kim, J Durst, F Bozza, T Graule, R Schäublin, L Wiles, et al.. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16(9): 925–931
https://doi.org/10.1038/nmat4938
86 X W Lv, W W Tian, Y P Liu, Z Y Yuan. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries. Materials Chemistry Frontiers, 2019, 3(11): 2428–2436
https://doi.org/10.1039/C9QM00449A
87 S Duan, Z Liu, H H Zhuo, T Y Wang, J Y Liu, L Wang, J S Liang, J T Han, Y H Huang, Q Li. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12(42): 21743–21749
https://doi.org/10.1039/D0NR05458E
88 L B Wu, L Yu, F H Zhang, B McElhenny, D Luo, A Karim, S Chen, Z F Ren. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1): 2006484
https://doi.org/10.1002/adfm.202006484
89 Y Q Zhao, B Jin, A Vasileff, Y Jiao, S Z Qiao. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8117–8121
https://doi.org/10.1039/C9TA01903K
90 C Ros, S Murcia-López, X Garcia, M Rosado, J Arbiol, J Llorca, J R Morante. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe OER/HER bifunctional electrocatalyst. ChemSusChem, 2021, 14(14): 2872–2881
https://doi.org/10.1002/cssc.202100194
91 S S Xu, X W Lv, Y M Zhao, T Z Ren, Z Y Yuan. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52: 139–146
https://doi.org/10.1016/j.jechem.2020.04.054
92 H Zhao, Z Y Yuan. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54: 89–104
https://doi.org/10.1016/j.jechem.2020.05.048
93 S H Hsu, J Miao, L Zhang, J Gao, H Wang, H Tao, S F Hung, A Vasileff, S Z Qiao, B Liu. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261
https://doi.org/10.1002/adma.201707261
94 I Vincent, D Bessarabov. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable & Sustainable Energy Reviews, 2018, 81: 1690–1704
https://doi.org/10.1016/j.rser.2017.05.258
95 M Carmo, D L Fritz, J Mergel, D Stolten. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12): 4901–4934
https://doi.org/10.1016/j.ijhydene.2013.01.151
96 K J Chae, M Choi, F F Ajayi, W Park, I S Chang, I S Kim. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1): 169–176
https://doi.org/10.1021/ef700308u
97 M Müller, M Carmo, A Glüsen, M Hehemann, S Saba, W Zwaygardt, D Stolten. Water management in membrane electrolysis and options for advanced plants. International Journal of Hydrogen Energy, 2019, 44(21): 10147–10155
https://doi.org/10.1016/j.ijhydene.2019.02.139
98 S Dresp, T Ngo Thanh, M Klingenhof, S Brückner, P Hauke, P Strasser. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729
https://doi.org/10.1039/D0EE01125H
99 S Kumari, R Turner White, B Kumar, J M Spurgeon. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science, 2016, 9(5): 1725–1733
https://doi.org/10.1039/C5EE03568F
100 T Kida, Y Kuwaki, A Miyamoto, N L Hamidah, K Hatakeyama, A T Quitain, M Sasaki, A Urakawa. Water vapor electrolysis with proton-conducting graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11753–11758
https://doi.org/10.1021/acssuschemeng.8b01998
[1] Laicong Deng, Zhuxian Yang, Rong Li, Binling Chen, Quanli Jia, Yanqiu Zhu, Yongde Xia. Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient multifunctional electrocatalysts[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1487-1499.
[2] Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong. Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution reaction electrocatalyst[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1134-1146.
[3] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[4] Shenghua Ye, Gaoren Li. Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction in alkaline solution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 473-480.
[5] Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(3): 537-554.
[6] Meifeng Hao, Mingshu Xiao, Lihong Qian, Yuqing Miao. Synthesis of cobalt vanadium nanomaterials for efficient electrocatalysis of oxygen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 409-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed