| 
							
      					 | 
  					 
  					
    					 | 
   					 
   										
    					An overview and recent advances in electrocatalysts for direct seawater splitting  | 
  					 
  					  										
						Hao-Yu Wang, Chen-Chen Weng, Jin-Tao Ren, Zhong-Yong Yuan( ) | 
					 
															
						| Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), School of Materials Science and Engineering, Nankai University, Tianjin 300350, China | 
					 
										
						 | 
					 
				 
				
				
					
						
							
								
									
		
		 
          
          
            
              
				
								                
													
													    | 
													    	
														 | 
													 
													
													
													
														
															
													
													    | 
													     		                            						                            																	    Abstract  In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided. 
																										     | 
														 
																												
												        														
															| Keywords 
																																																				seawater splitting  
																		  																																				electrocatalysts  
																		  																																				oxygen evolution reaction  
																		  																																				hydrogen evolution reaction  
																		  																																				chlorine chemistry  
																																			  
															 | 
														 
																												
														 																											    														
															| 
																																Corresponding Author(s):
																Zhong-Yong Yuan   
																													     		
													     	 | 
														 
																																										
															| 
																																														Online First Date: 22 October 2021   
																																														Issue Date: 09 November 2021
																														 | 
														 
														 
                                                         | 
														 
														 
														
														
														
												 
												
												
                                                    
													
								             
                                             
            
					            
								            								            
								            								                                                        
								            
								                
																																												
															| 1 | 
															 
														      K Xu, H Cheng, H F Lv, J Y Wang, L Q Liu, S Liu, X J Wu, W S Chu, C Z Wu, Y Xie. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Advanced Materials, 2018, 30(1): 1703322
														     														     	 
														     															     		https://doi.org/10.1002/adma.201703322
														     															     															     															 | 
																  
																														
															| 2 | 
															 
														      T Liu, P Li, N Yao, G Z Cheng, S L Chen, W Luo, Y D Yin. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angewandte Chemie International Edition, 2019, 58(14): 4679–4684
														     														     	 
														     															     		https://doi.org/10.1002/anie.201901409
														     															     															     															 | 
																  
																														
															| 3 | 
															 
														      J T Ren, Y S Wang, L Chen, L J Gao, W W Tian, Z Y Yuan. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389: 124408
														     														     	 
														     															     		https://doi.org/10.1016/j.cej.2020.124408
														     															     															     															 | 
																  
																														
															| 4 | 
															 
														      B C M Martindale, E Reisner. Bi-functional iron-only electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration. Advanced Energy Materials, 2016, 6(6): 1502095
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201502095
														     															     															     															 | 
																  
																														
															| 5 | 
															 
														      J W Zhang, X W Lv, T Z Ren, Z Wang, T J Bandosz, Z Y Yuan. Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy & Environment, 2021, doi: 10.1016/j.gee.2020.12.009
														     															 | 
																  
																														
															| 6 | 
															 
														      J T Ren, L Chen, D D Yang, Z Y Yuan. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263: 118352
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2019.118352
														     															     															     															 | 
																  
																														
															| 7 | 
															 
														      Y Zheng, Y Jiao, A Vasileff, S Z Qiao. The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts. Angewandte Chemie International Edition, 2018, 57(26): 7568–7579
														     														     	 
														     															     		https://doi.org/10.1002/anie.201710556
														     															     															     															 | 
																  
																														
															| 8 | 
															 
														      J T Ren, Y Yao, Z Y Yuan. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy & Environment, 2021, 6(5): 620–643
														     														     	 
														     															     		https://doi.org/10.1016/j.gee.2020.11.023
														     															     															     															 | 
																  
																														
															| 9 | 
															 
														      I Roger, M A Shipman, M D Symes. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nature Reviews Chemistry, 2017, 1: 0003
														     															 | 
																  
																														
															| 10 | 
															 
														      X W Lv, Z P Hu, L Chen, J T Ren, Y P Liu, Z Y Yuan. Organic-inorganic metal phosphonate-derived nitrogen-doped core-shell Ni2P nanoparticles supported on Ni foam for efficient hydrogen evolution reaction at all pH values. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12770–12778
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.9b01355
														     															     															     															 | 
																  
																														
															| 11 | 
															 
														      J W Zhang, H Zhang, T Z Ren, Z Y Yuan, T J Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15(2): 279–287
														     														     	 
														     															     		https://doi.org/10.1007/s11705-020-1965-2
														     															     															     															 | 
																  
																														
															| 12 | 
															 
														      X X Ji, Y H Lin, J Zeng, Z H Ren, Z J Lin, Y B Mu, Y J Qiu, J Yu. Graphene/MoS2/FeCoNi(OH)x and graphene/MoS2/FeCoNiPx multilayer-stacked vertical nanosheets on carbon fibers for highly efficient overall water splitting. Nature Communications, 2021, 12(1): 1380
														     														     	 
														     															     		https://doi.org/10.1038/s41467-021-21742-y
														     															     															     															 | 
																  
																														
															| 13 | 
															 
														      J Wang, S J Kim, J P Liu, Y Gao, S B Choi, J W Han, H Y Shin, S G Jo, J W Kim, F Ciucci, et al.. Redirecting dynamic surface restructuring of a layered transition metal oxide catalyst for superior water oxidation. Nature Catalysis, 2021, 4(3): 212–222
														     														     	 
														     															     		https://doi.org/10.1038/s41929-021-00578-1
														     															     															     															 | 
																  
																														
															| 14 | 
															 
														      A Ursua, L M Gandia, P Sanchis. Hydrogen production from water electrolysis: current status and future trends. Proceedings of the IEEE, 2012, 100(2): 410–426
														     														     	 
														     															     		https://doi.org/10.1109/JPROC.2011.2156750
														     															     															     															 | 
																  
																														
															| 15 | 
															 
														      H Zhao, Z Y Yuan. Design strategies of transition-metal phosphate and phosphonate electrocatalysts for energy-related reactions. ChemSusChem, 2021, 14(1): 130–149
														     														     	 
														     															     		https://doi.org/10.1002/cssc.202002103
														     															     															     															 | 
																  
																														
															| 16 | 
															 
														      J A Turner. Sustainable hydrogen production. Science, 2004, 305(5686): 972–974
														     														     	 
														     															     		https://doi.org/10.1126/science.1103197
														     															     															     															 | 
																  
																														
															| 17 | 
															 
														      C C Weng, J T Ren, Z Y Yuan. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review. ChemSusChem, 2020, 13(13): 3357–3375
														     														     	 
														     															     		https://doi.org/10.1002/cssc.202000416
														     															     															     															 | 
																  
																														
															| 18 | 
															 
														      J T Ren, Y J Song, Z Y Yuan. Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32: 78–84
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2018.07.006
														     															     															     															 | 
																  
																														
															| 19 | 
															 
														      M Cuartero, G Crespo, T Cherubini, N Pankratova, F Confalonieri, F Massa, M L Tercier-Waeber, M Abdou, J Schäfer, E Bakker. In situ detection of macronutrients and chloride in seawater by submersible electrochemical sensors. Analytical Chemistry, 2018, 90(7): 4702–4710
														     														     	 
														     															     		https://doi.org/10.1021/acs.analchem.7b05299
														     															     															     															 | 
																  
																														
															| 20 | 
															 
														      C Xiang, K M Papadantonakis, N S Lewis. Principles and implementations of electrolysis systems for water splitting. Materials Horizons, 2016, 3(3): 169–173
														     														     	 
														     															     		https://doi.org/10.1039/C6MH00016A
														     															     															     															 | 
																  
																														
															| 21 | 
															 
														      W Tong, M Forster, F Dionigi, S Dresp, R Sadeghi Erami, P Strasser, A J Cowan, P Farràs. Electrolysis of low-grade and saline surface water. Nature Energy, 2020, 5(5): 367–377
														     														     	 
														     															     		https://doi.org/10.1038/s41560-020-0550-8
														     															     															     															 | 
																  
																														
															| 22 | 
															 
														      D R Kester, I W Duedall, D N Connors, R M Pytkowicz. Preparation of artifcicial seawater. Limnology and Oceanography, 1967, 12(1): 176–179
														     														     	 
														     															     		https://doi.org/10.4319/lo.1967.12.1.0176
														     															     															     															 | 
																  
																														
															| 23 | 
															 
														      L Yu, Q Zhu, S Song, B McElhenny, D Wang, C Wu, Z Qin, J Bao, Y Yu, S Chen, Z Ren. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nature Communications, 2019, 10(1): 5106
														     														     	 
														     															     		https://doi.org/10.1038/s41467-019-13092-7
														     															     															     															 | 
																  
																														
															| 24 | 
															 
														      F Dionigi, T Reier, Z Pawolek, M Gliech, P Strasser. Design criteria, operating conditions, and nickel-iron hydroxide catalyst materials for selective seawater electrolysis. ChemSusChem, 2016, 9(9): 962–972
														     														     	 
														     															     		https://doi.org/10.1002/cssc.201501581
														     															     															     															 | 
																  
																														
															| 25 | 
															 
														      K S Exner, I Sohrabnejad-Eskan, H Over. A universal approach to determine the free energy diagram of an electrocatalytic reaction. ACS Catalysis, 2018, 8(3): 1864–1879
														     														     	 
														     															     		https://doi.org/10.1021/acscatal.7b03142
														     															     															     															 | 
																  
																														
															| 26 | 
															 
														      K S Exner, J Anton, T Jacob, H Over. Controlling selectivity in the chlorine evolution reaction over RuO2-based catalysts. Angewandte Chemie International Edition, 2014, 53(41): 11032–11035
														     														     	 
														     															     		https://doi.org/10.1002/anie.201406112
														     															     															     															 | 
																  
																														
															| 27 | 
															 
														      N Ysea, L A Diaz, G I Lacconi, E A Franceschini. Stability study of materials for electrode supports for the hydrogen generation from a NaCl aqueous solution. Electrocatalysis, 2021, 12(5): 537–547
														     														     	 
														     															     		https://doi.org/10.1007/s12678-021-00672-9
														     															     															     															 | 
																  
																														
															| 28 | 
															 
														      M Auinger, I Katsounaros, J C Meier, S O Klemm, P U Biedermann, A A Topalov, M Rohwerder, K J J Mayrhofer. Near-surface ion distribution and buffer effects during electrochemical reactions. Physical Chemistry Chemical Physics, 2011, 13(36): 16384–16394
														     														     	 
														     															     		https://doi.org/10.1039/c1cp21717h
														     															     															     															 | 
																  
																														
															| 29 | 
															 
														      I Katsounaros, J C Meier, S O Klemm, A A Topalov, P U Biedermann, M Auinger, K J J Mayrhofer. The effective surface pH during reactions at the solid-liquid interface. Electrochemistry Communications, 2011, 13(6): 634–637
														     														     	 
														     															     		https://doi.org/10.1016/j.elecom.2011.03.032
														     															     															     															 | 
																  
																														
															| 30 | 
															 
														      D W Kirk, A E Ledas. Precipitate formation during sea water electrolysis. International Journal of Hydrogen Energy, 1982, 7(12): 925–932
														     														     	 
														     															     		https://doi.org/10.1016/0360-3199(82)90160-4
														     															     															     															 | 
																  
																														
															| 31 | 
															 
														      J E Bennett. Electrodes for generation of hydrogen and oxygen from seawater. International Journal of Hydrogen Energy, 1980, 5(4): 401–408
														     														     	 
														     															     		https://doi.org/10.1016/0360-3199(80)90021-X
														     															     															     															 | 
																  
																														
															| 32 | 
															 
														      X Wu, S Zhou, Z Wang, J Liu, W Pei, P Yang, J Zhao, J Qiu. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Advanced Energy Materials, 2019, 9(34): 1901333
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201901333
														     															     															     															 | 
																  
																														
															| 33 | 
															 
														      S Gao, G D Li, Y Liu, H Chen, L L Feng, Y Wang, M Yang, D Wang, S Wang, X Zou. Electrocatalytic H2 production from seawater over Co, N-codoped nanocarbons. Nanoscale, 2015, 7(6): 2306–2316
														     														     	 
														     															     		https://doi.org/10.1039/C4NR04924A
														     															     															     															 | 
																  
																														
															| 34 | 
															 
														      R K B Karlsson, A Cornell. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chemical Reviews, 2016, 116(5): 2982–3028
														     														     	 
														     															     		https://doi.org/10.1021/acs.chemrev.5b00389
														     															     															     															 | 
																  
																														
															| 35 | 
															 
														      B S Oh, S G Oh, Y Y Hwang, H W Yu, J W Kang, I S Kim. Formation of hazardous inorganic by-products during electrolysis of seawater as a disinfection process for desalination. Science of the Total Environment, 2010, 408(23): 5958–5965
														     														     	 
														     															     		https://doi.org/10.1016/j.scitotenv.2010.08.057
														     															     															     															 | 
																  
																														
															| 36 | 
															 
														      K Izumiya, E Akiyama, H Habazaki, N Kumagai, A Kawashima, K Hashimoto. Effects of additional elements on electrocatalytic properties of thermally decomposed manganese oxide electrodes for oxygen evolution from seawater. Materials Transactions, 1997, 38(10): 899–905
														     														     	 
														     															     		https://doi.org/10.2320/matertrans1989.38.899
														     															     															     															 | 
																  
																														
															| 37 | 
															 
														      K Izumiya, E Akiyama, H Habazaki, N Kumagai, A Kawashima, K Hashimoto. Anodically deposited manganese oxide and manganese-tungsten oxide electrodes for oxygen evolution from seawater. Electrochimica Acta, 1998, 43(21): 3303–3312
														     														     	 
														     															     		https://doi.org/10.1016/S0013-4686(98)00075-9
														     															     															     															 | 
																  
																														
															| 38 | 
															 
														      J Niu, J Yang, A I Channa, E Ashalley, J Yang, J Jiang, H Li, H Ji, X Niu. Enhancing the water splitting performance via decorating Co3O4 nanoarrays with ruthenium doping and phosphorization. RSC Advances, 2020, 10(45): 27235–27241
														     														     	 
														     															     		https://doi.org/10.1039/D0RA02128H
														     															     															     															 | 
																  
																														
															| 39 | 
															 
														      S Gupta, M Forster, A Yadav, A J Cowan, N Patel, M Patel. Highly efficient and selective metal oxy-boride electrocatalysts for oxygen evolution from alkali and saline solutions. ACS Applied Energy Materials, 2020, 3(8): 7619–7628
														     														     	 
														     															     		https://doi.org/10.1021/acsaem.0c01040
														     															     															     															 | 
																  
																														
															| 40 | 
															 
														      K Fujimura, T Matsui, H Habazaki, A Kawashima, N Kumagai, K Hashimoto. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochimica Acta, 2000, 45(14): 2297–2303
														     														     	 
														     															     		https://doi.org/10.1016/S0013-4686(00)00316-9
														     															     															     															 | 
																  
																														
															| 41 | 
															 
														      S Dresp, F Dionigi, S Loos, J Ferreira de Araujo, C Spöri, M Gliech, H Dau, P Strasser. Direct electrolytic splitting of seawater: activity, selectivity, degradation, and recovery studied from the molecular catalyst structure to the electrolyzer cell level. Advanced Energy Materials, 2018, 8(22): 1800338
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201800338
														     															     															     															 | 
																  
																														
															| 42 | 
															 
														      L Yu, L B Wu, B McElhenny, S W Song, D Luo, F H Zhang, Y Yu, S Chen, Z F Ren. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy & Environmental Science, 2020, 13(10): 3439–3446
														     														     	 
														     															     		https://doi.org/10.1039/D0EE00921K
														     															     															     															 | 
																  
																														
															| 43 | 
															 
														      C Z Wang, M Z Zhu, Z Y Cao, P Zhu, Y Q Cao, X Y Xu, C X Xu, Z Y Yin. Heterogeneous bimetallic sulfides based seawater electrolysis towards stable industrial-level large current density. Applied Catalysis B: Environmental, 2021, 291: 120071
														     														     	 
														     															     		https://doi.org/10.1016/j.apcatb.2021.120071
														     															     															     															 | 
																  
																														
															| 44 | 
															 
														      V Petrykin, K Macounova, O A Shlyakhtin, P Krtil. Tailoring the selectivity for electrocatalytic oxygen evolution on ruthenium oxides by zinc substitution. Angewandte Chemie International Edition, 2010, 49(28): 4813–4815
														     														     	 
														     															     		https://doi.org/10.1002/anie.200907128
														     															     															     															 | 
																  
																														
															| 45 | 
															 
														      P Gayen, S Saha, V Ramani. Selective seawater splitting using pyrochlore electrocatalyst. ACS Applied Energy Materials, 2020, 3(4): 3978–3983
														     														     	 
														     															     		https://doi.org/10.1021/acsaem.0c00383
														     															     															     															 | 
																  
																														
															| 46 | 
															 
														      Y Zhao, B Jin, Y Zheng, H Jin, Y Jiao, S Z Qiao. Charge state manipulation of cobalt selenide catalyst for overall seawater electrolysis. Advanced Energy Materials, 2018, 8(29): 1801926
														     														     	 
														     															     		https://doi.org/10.1002/aenm.201801926
														     															     															     															 | 
																  
																														
															| 47 | 
															 
														      Y Surendranath, M Dincǎ, D G Nocera. Electrolyte-dependent electrosynthesis and activity of cobalt-based water oxidation catalysts. Journal of the American Chemical Society, 2009, 131(7): 2615–2620
														     														     	 
														     															     		https://doi.org/10.1021/ja807769r
														     															     															     															 | 
																  
																														
															| 48 | 
															 
														      Q J Zhang, X J Zhao, X J Miao, W T Yang, C T Wang, Q H Pan. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. International Journal of Hydrogen Energy, 2020, 45(58): 33028–33036
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2020.09.058
														     															     															     															 | 
																  
																														
															| 49 | 
															 
														      F F Cheng, X L Feng, X Chen, W G Lin, J F Rong, W S Yang. Synergistic action of Co-Fe layered double hydroxide electrocatalyst and multiple ions of sea salt for efficient seawater oxidation at near-neutral pH. Electrochimica Acta, 2017, 251: 336–343
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2017.08.098
														     															     															     															 | 
																  
																														
															| 50 | 
															 
														      J G Vos, T A Wezendonk, A W Jeremiasse, M T M Koper. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. Journal of the American Chemical Society, 2018, 140(32): 10270–10281
														     														     	 
														     															     		https://doi.org/10.1021/jacs.8b05382
														     															     															     															 | 
																  
																														
															| 51 | 
															 
														      W H Huang, C Y Lin. Iron phosphate modified calcium iron oxide as an efficient and robust catalyst in electrocatalyzing oxygen evolution from seawater. Faraday Discussions, 2019, 215: 205–215
														     														     	 
														     															     		https://doi.org/10.1039/C8FD00172C
														     															     															     															 | 
																  
																														
															| 52 | 
															 
														      A R Jadhav, A Kumar, J J Lee, T H Yang, S Y Na, J S Lee, Y G Luo, X H Liu, Y Hwang, Y Liu, H Lee. Stable complete seawater electrolysis by using interfacial chloride ion blocking layer on catalyst surface. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(46): 24501–24514
														     														     	 
														     															     		https://doi.org/10.1039/D0TA08543J
														     															     															     															 | 
																  
																														
															| 53 | 
															 
														      R Balaji, B S Kannan, J Lakshmi, N Senthil, S Vasudevan, G Sozhan, A K Shukla, S Ravichandran. An alternative approach to selective sea water oxidation for hydrogen production. Electrochemistry Communications, 2009, 11(8): 1700–1702
														     														     	 
														     															     		https://doi.org/10.1016/j.elecom.2009.06.022
														     															     															     															 | 
																  
																														
															| 54 | 
															 
														      Y Kuang, M J Kenney, Y Meng, W H Hung, Y Liu, J E Huang, R Prasanna, P Li, Y Li, L Wang, et al.. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6624–6629
														     														     	 
														     															     		https://doi.org/10.1073/pnas.1900556116
														     															     															     															 | 
																  
																														
															| 55 | 
															 
														      K Fujimura, T Matsui, K Izumiya, N Kumagai, E Akiyama, H Habazaki, A Kawashima, K Asami, K Hashimoto. Oxygen evolution on manganese-molybdenum oxide anodes in seawater electrolysis. Materials Science and Engineering A, 1999, 267(2): 254–259
														     														     	 
														     															     		https://doi.org/10.1016/S0921-5093(99)00100-8
														     															     															     															 | 
																  
																														
															| 56 | 
															 
														      N A Abdel Ghany, N Kumagai, S Meguro, K Asami, K Hashimoto. Oxygen evolution anodes composed of anodically deposited Mn-Mo-Fe oxides for seawater electrolysis. Electrochimica Acta, 2002, 48(1): 21–28
														     														     	 
														     															     		https://doi.org/10.1016/S0013-4686(02)00539-X
														     															     															     															 | 
																  
																														
															| 57 | 
															 
														      A A El-Moneim, N Kumagai, K Asami, K Hashimoto. Nanocrystalline manganese-molybdenum-tungsten oxide anodes for oxygen evolution in acidic seawater electrolysis. Materials Transactions, 2005, 46(2): 309–316
														     														     	 
														     															     		https://doi.org/10.2320/matertrans.46.309
														     															     															     															 | 
																  
																														
															| 58 | 
															 
														      A A El-Moneim, N Kumagai, K Hashimoto. Mn-Mo-W oxide anodes for oxygen evolution in seawater electrolysis for hydrogen production. Materials Transactions, 2009, 50(8): 1969–1977
														     														     	 
														     															     		https://doi.org/10.2320/matertrans.M2009107
														     															     															     															 | 
																  
																														
															| 59 | 
															 
														      Z Kato, J Bhattarai, N Kumagai, K Izumiya, K Hashimoto. Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen production. Applied Surface Science, 2011, 257(19): 8230–8236
														     														     	 
														     															     		https://doi.org/10.1016/j.apsusc.2010.12.042
														     															     															     															 | 
																  
																														
															| 60 | 
															 
														      Z Kato, M Sato, Y Sasaki, K Izumiya, N Kumagai, K Hashimoto. Electrochemical characterization of degradation of oxygen evolution anode for seawater electrolysis. Electrochimica Acta, 2014, 116: 152–157
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2013.10.014
														     															     															     															 | 
																  
																														
															| 61 | 
															 
														      S Trasatti. Electrocatalysis in the anodic evolution of oxygen and chlorine. Electrochimica Acta, 1984, 29(11): 1503–1512
														     														     	 
														     															     		https://doi.org/10.1016/0013-4686(84)85004-5
														     															     															     															 | 
																  
																														
															| 62 | 
															 
														      K Obata, K Takanabe. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2018, 57(6): 1616–1620
														     														     	 
														     															     		https://doi.org/10.1002/anie.201712121
														     															     															     															 | 
																  
																														
															| 63 | 
															 
														      F Yang, Y Luo, Q Yu, Z Zhang, S Zhang, Z Liu, W Ren, H M Cheng, J Li, B Liu. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2000 mA·cm–2. Advanced Functional Materials, 2021, 31(21): 2010367
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202010367
														     															     															     															 | 
																  
																														
															| 64 | 
															 
														      M M Jakšić. Electrocatalysis of hydrogen evolution in the light of the Brewer-Engel theory for bonding in metals and intermetallic phases. Electrochimica Acta, 1984, 29(11): 1539–1550 
														     														     	 
														     															     		https://doi.org/10.1016/0013-4686(84)85007-0
														     															     															     															 | 
																  
																														
															| 65 | 
															 
														      J J Zheng, Y Y Zhao, H Xi, C H Li. Seawater splitting for hydrogen evolution by robust electrocatalysts from secondary M (M= Cr, Fe, Co, Ni, Mo) incorporated Pt. RSC Advances, 2018, 8(17): 9423–9429
														     														     	 
														     															     		https://doi.org/10.1039/C7RA12112A
														     															     															     															 | 
																  
																														
															| 66 | 
															 
														      H Y Li, Q W Tang, B L He, P Z Yang. Robust electrocatalysts from an alloyed Pt-Ru-M (M= Cr, Fe, Co, Ni, Mo)-decorated Ti mesh for hydrogen evolution by seawater splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(17): 6513–6520
														     														     	 
														     															     		https://doi.org/10.1039/C6TA00785F
														     															     															     															 | 
																  
																														
															| 67 | 
															 
														      M F Camões, B Anes, C S Oliveira, M E M Jorge. Surface changes at platinized platinum based hydrogen gas electrodes following use in highly saline aqueous solutions. Electroanalysis, 2014, 26(9): 1952–1957
														     														     	 
														     															     		https://doi.org/10.1002/elan.201400132
														     															     															     															 | 
																  
																														
															| 68 | 
															 
														      W Yuan, Z Cui, S Zhu, Z Li, S Wu, Y Liang. Structure engineering of electrodeposited NiMo films for highly efficient and durable seawater splitting. Electrochimica Acta, 2021, 365: 137366
														     														     	 
														     															     		https://doi.org/10.1016/j.electacta.2020.137366
														     															     															     															 | 
																  
																														
															| 69 | 
															 
														      J W Miao, F X Xiao, H B Yang, S Y Khoo, J Z Chen, Z X Fan, Y Y Hsu, H M Chen, H Zhang, B Liu. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: a flexible electrode for efficient hydrogen generation in neutral electrolyte. Science Advances, 2015, 1(7): e1500259
														     														     	 
														     															     		https://doi.org/10.1126/sciadv.1500259
														     															     															     															 | 
																  
																														
															| 70 | 
															 
														      L Shang, Y Zhao, X Y Kong, R Shi, G I N Waterhouse, L Wen, T Zhang. Underwater superaerophobic Ni nanoparticle-decorated nickel-molybdenum nitride nanowire arrays for hydrogen evolution in neutral media. Nano Energy, 2020, 78: 105375
														     														     	 
														     															     		https://doi.org/10.1016/j.nanoen.2020.105375
														     															     															     															 | 
																  
																														
															| 71 | 
															 
														      L J Song, H M Meng. Effect of carbon content on Ni-Fe-C electrodes for hydrogen evolution reaction in seawater. International Journal of Hydrogen Energy, 2010, 35(19): 10060–10066
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2010.08.003
														     															     															     															 | 
																  
																														
															| 72 | 
															 
														      C T Dinh, A Jain, F P G de Arquer, P De Luna, J Li, N Wang, X Zheng, J Cai, B Z Gregory, O Voznyy, et al.. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nature Energy, 2019, 4(2): 107–114
														     														     	 
														     															     		https://doi.org/10.1038/s41560-018-0296-8
														     															     															     															 | 
																  
																														
															| 73 | 
															 
														      H Jin, X Liu, A Vasileff, Y Jiao, Y Zhao, Y Zheng, S Z Qiao. Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano, 2018, 12(12): 12761–12769
														     														     	 
														     															     		https://doi.org/10.1021/acsnano.8b07841
														     															     															     															 | 
																  
																														
															| 74 | 
															 
														      W Zang, T Sun, T Yang, S Xi, M Waqar, Z Kou, Z Lyu, Y P Feng, J Wang, S J Pennycook. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Advanced Materials, 2021, 33(8): 2003846
														     														     	 
														     															     		https://doi.org/10.1002/adma.202003846
														     															     															     															 | 
																  
																														
															| 75 | 
															 
														      L Yu, L B Wu, S W Song, B McElhenny, F H Zhang, S Chen, Z F Ren. Hydrogen generation from seawater electrolysis over a sandwich-like NiCoN|NixP|NiCoN microsheet array catalyst. ACS Energy Letters, 2020, 5(8): 2681–2689
														     														     	 
														     															     		https://doi.org/10.1021/acsenergylett.0c01244
														     															     															     															 | 
																  
																														
															| 76 | 
															 
														      B Endrődi, S Sandin, V Smulders, N Simic, M Wildlock, G Mul, B T Mei, A Cornell. Towards sustainable chlorate production: the effect of permanganate addition on current efficiency. Journal of Cleaner Production, 2018, 182: 529–537
														     														     	 
														     															     		https://doi.org/10.1016/j.jclepro.2018.02.071
														     															     															     															 | 
																  
																														
															| 77 | 
															 
														      Y Y Ma, C X Wu, X J Feng, H Q Tan, L K Yan, Y Liu, Z H Kang, E B Wang, Y G Li. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy & Environmental Science, 2017, 10(3): 788–798
														     														     	 
														     															     		https://doi.org/10.1039/C6EE03768B
														     															     															     															 | 
																  
																														
															| 78 | 
															 
														      X Gao, H Zhang, Q Li, X Yu, Z Hong, X Zhang, C Liang, Z Lin. Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angewandte Chemie International Edition, 2016, 55(21): 6290–6294
														     														     	 
														     															     		https://doi.org/10.1002/anie.201600525
														     															     															     															 | 
																  
																														
															| 79 | 
															 
														      J T Ren, Z Y Yuan. Hierarchical nickel sulfide nanosheets directly grown on Ni foam: a stable and efficient electrocatalyst for water reduction and oxidation in alkaline medium. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7203–7210
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.7b01419
														     															     															     															 | 
																  
																														
															| 80 | 
															 
														      X W Lv, Z P Hu, J T Ren, Y P Liu, Z Wang, Z Y Yuan. Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6(1): 74–81
														     														     	 
														     															     		https://doi.org/10.1039/C8QI01026A
														     															     															     															 | 
																  
																														
															| 81 | 
															 
														      Y P Zhu, Y P Liu, T Z Ren, Z Y Yuan. Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation. Advanced Functional Materials, 2015, 25(47): 7337–7347
														     														     	 
														     															     		https://doi.org/10.1002/adfm.201503666
														     															     															     															 | 
																  
																														
															| 82 | 
															 
														      T Ling, D Y Yan, H Wang, Y Jiao, Z Hu, Y Zheng, L Zheng, J Mao, H Liu, X W Du, M Jaroniec, S Z Qiao. Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. Nature Communications, 2017, 8(1): 1509
														     														     	 
														     															     		https://doi.org/10.1038/s41467-017-01872-y
														     															     															     															 | 
																  
																														
															| 83 | 
															 
														      F Z Song, W Li, J Q Yang, G Q Han, P L Liao, Y J Sun. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nature Communications, 2018, 9(1): 4531
														     														     	 
														     															     		https://doi.org/10.1038/s41467-018-06728-7
														     															     															     															 | 
																  
																														
															| 84 | 
															 
														      N N Han, K R Yang, Z Y Lu, Y J Li, W W Xu, T F Gao, Z Cai, Y Zhang, V S Batista, W Liu, et al.. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nature Communications, 2018, 9(1): 924
														     														     	 
														     															     		https://doi.org/10.1038/s41467-018-03429-z
														     															     															     															 | 
																  
																														
															| 85 | 
															 
														      E Fabbri, M Nachtegaal, T Binninger, X Cheng, B J Kim, J Durst, F Bozza, T Graule, R Schäublin, L Wiles, et al.. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 2017, 16(9): 925–931
														     														     	 
														     															     		https://doi.org/10.1038/nmat4938
														     															     															     															 | 
																  
																														
															| 86 | 
															 
														      X W Lv, W W Tian, Y P Liu, Z Y Yuan. Well-defined CoP/Ni2P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries. Materials Chemistry Frontiers, 2019, 3(11): 2428–2436
														     														     	 
														     															     		https://doi.org/10.1039/C9QM00449A
														     															     															     															 | 
																  
																														
															| 87 | 
															 
														      S Duan, Z Liu, H H Zhuo, T Y Wang, J Y Liu, L Wang, J S Liang, J T Han, Y H Huang, Q Li. Hydrochloric acid corrosion induced bifunctional free-standing NiFe hydroxide nanosheets towards high-performance alkaline seawater splitting. Nanoscale, 2020, 12(42): 21743–21749
														     														     	 
														     															     		https://doi.org/10.1039/D0NR05458E
														     															     															     															 | 
																  
																														
															| 88 | 
															 
														      L B Wu, L Yu, F H Zhang, B McElhenny, D Luo, A Karim, S Chen, Z F Ren. Heterogeneous bimetallic phosphide Ni2P-Fe2P as an efficient bifunctional catalyst for water/seawater splitting. Advanced Functional Materials, 2021, 31(1): 2006484
														     														     	 
														     															     		https://doi.org/10.1002/adfm.202006484
														     															     															     															 | 
																  
																														
															| 89 | 
															 
														      Y Q Zhao, B Jin, A Vasileff, Y Jiao, S Z Qiao. Interfacial nickel nitride/sulfide as a bifunctional electrode for highly efficient overall water/seawater electrolysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(14): 8117–8121
														     														     	 
														     															     		https://doi.org/10.1039/C9TA01903K
														     															     															     															 | 
																  
																														
															| 90 | 
															 
														      C Ros, S Murcia-López, X Garcia, M Rosado, J Arbiol, J Llorca, J R Morante. Facing seawater splitting challenges by regeneration with Ni-Mo-Fe OER/HER bifunctional electrocatalyst. ChemSusChem, 2021, 14(14): 2872–2881
														     														     	 
														     															     		https://doi.org/10.1002/cssc.202100194
														     															     															     															 | 
																  
																														
															| 91 | 
															 
														      S S Xu, X W Lv, Y M Zhao, T Z Ren, Z Y Yuan. Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52: 139–146
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2020.04.054
														     															     															     															 | 
																  
																														
															| 92 | 
															 
														      H Zhao, Z Y Yuan. Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54: 89–104
														     														     	 
														     															     		https://doi.org/10.1016/j.jechem.2020.05.048
														     															     															     															 | 
																  
																														
															| 93 | 
															 
														      S H Hsu, J Miao, L Zhang, J Gao, H Wang, H Tao, S F Hung, A Vasileff, S Z Qiao, B Liu. An earth-abundant catalyst-based seawater photoelectrolysis system with 17.9% solar-to-hydrogen efficiency. Advanced Materials, 2018, 30(18): 1707261
														     														     	 
														     															     		https://doi.org/10.1002/adma.201707261
														     															     															     															 | 
																  
																														
															| 94 | 
															 
														      I Vincent, D Bessarabov. Low cost hydrogen production by anion exchange membrane electrolysis: a review. Renewable & Sustainable Energy Reviews, 2018, 81: 1690–1704
														     														     	 
														     															     		https://doi.org/10.1016/j.rser.2017.05.258
														     															     															     															 | 
																  
																														
															| 95 | 
															 
														      M Carmo, D L Fritz, J Mergel, D Stolten. A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy, 2013, 38(12): 4901–4934
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2013.01.151
														     															     															     															 | 
																  
																														
															| 96 | 
															 
														      K J Chae, M Choi, F F Ajayi, W Park, I S Chang, I S Kim. Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy & Fuels, 2008, 22(1): 169–176
														     														     	 
														     															     		https://doi.org/10.1021/ef700308u
														     															     															     															 | 
																  
																														
															| 97 | 
															 
														      M Müller, M Carmo, A Glüsen, M Hehemann, S Saba, W Zwaygardt, D Stolten. Water management in membrane electrolysis and options for advanced plants. International Journal of Hydrogen Energy, 2019, 44(21): 10147–10155
														     														     	 
														     															     		https://doi.org/10.1016/j.ijhydene.2019.02.139
														     															     															     															 | 
																  
																														
															| 98 | 
															 
														      S Dresp, T Ngo Thanh, M Klingenhof, S Brückner, P Hauke, P Strasser. Efficient direct seawater electrolysers using selective alkaline NiFe-LDH as OER catalyst in asymmetric electrolyte feeds. Energy & Environmental Science, 2020, 13(6): 1725–1729
														     														     	 
														     															     		https://doi.org/10.1039/D0EE01125H
														     															     															     															 | 
																  
																														
															| 99 | 
															 
														      S Kumari, R Turner White, B Kumar, J M Spurgeon. Solar hydrogen production from seawater vapor electrolysis. Energy & Environmental Science, 2016, 9(5): 1725–1733
														     														     	 
														     															     		https://doi.org/10.1039/C5EE03568F
														     															     															     															 | 
																  
																														
															| 100 | 
															 
														      T Kida, Y Kuwaki, A Miyamoto, N L Hamidah, K Hatakeyama, A T Quitain, M Sasaki, A Urakawa. Water vapor electrolysis with proton-conducting graphene oxide nanosheets. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11753–11758
														     														     	 
														     															     		https://doi.org/10.1021/acssuschemeng.8b01998
														     															     															     															 | 
																  
																																										 
								             
                                             
								                                                        
                                            
                                            
								                                                        
                                            
                                            
                                            
								            
												
											    	
											        	 | 
											        	Viewed | 
											         
													
											        	 | 
											        	 | 
											         
											      	
												         | 
												        
												        	Full text 
												          	
												         | 
											        	
												        	
												        	 
												        	
												          	 
												          	
												          	
														 | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        
												        	Abstract 
												          	
														 | 
												        
															
															 
															
															
												         | 
													 
													
												         | 
												         | 
													 
													
												         | 
												        Cited  | 
												        
												        	
												         | 
													 
													
												         | 
												         | 
												         | 
													 
													
													    |   | 
													    Shared | 
													       | 
												  	 
												  	
													     | 
													     | 
													     | 
											  		 
											  		
													    |   | 
													    Discussed | 
													       | 
												  	 
											 
											 
								         
                                        
  
									 | 
								 
							 
						 | 
					 
				 
			
		 |