Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 939-949    https://doi.org/10.1007/s11705-022-2152-4
RESEARCH ARTICLE
Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants
Ping Zhang1, Yi-Han Li1, Li Chen2, Mao-Jie Zhang1(), Yang Ren1, Yan-Xu Chen1, Zhi Hu1, Qi Wang1, Wei Wang2(), Liang-Yin Chu2
1. College of Engineering, Sichuan Normal University, Chengdu 610101, China
2. School of Chemical Engineering, Sichuan University, Chengdu 610065, China
 Download: PDF(6559 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This work reports on a simple microfluidic strategy to controllably fabricate uniform polymeric microparticles containing hierarchical porous structures integrated with highly accessible catalytic metal organic frameworks for efficient degradation of organic contaminants. Monodisperse (W1/O)/W2 emulsion droplets generated from microfluidics are used as templates for the microparticle synthesis. The emulsion droplets contain tiny water microdroplets from homogenization and water nanodroplets from diffusion-induced swollen micelles as the dual pore-forming templates, and Fe-based metal-organic framework nanorods as the nanocatalysts. The obtained microparticles possess interconnected hierarchical porous structures decorated with highly accessible Fe-based metal-organic framework nanorods for enhanced degradation of organic contaminants via a heterogeneous Fenton-like reaction. Such a degradation performance is highlighted by using these microparticles for efficient degradation of rhodamine B in hydrogen peroxide solution. This work provides a simple and general strategy to flexibly combine hierarchical porous structures and catalytic metal-organic frameworks to engineer advanced microparticles for water decontamination.

Keywords metal-organic framework      polymer microparticle      nanocatalyst      decontamination      organic contaminant     
Corresponding Author(s): Mao-Jie Zhang,Wei Wang   
Online First Date: 29 April 2022    Issue Date: 28 June 2022
 Cite this article:   
Ping Zhang,Yi-Han Li,Li Chen, et al. Hierarchical porous metal-organic frameworks/polymer microparticles for enhanced catalytic degradation of organic contaminants[J]. Front. Chem. Sci. Eng., 2022, 16(6): 939-949.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2152-4
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/939
Fig.1  Schematic illustration of microfluidic fabrication of hierarchical porous MIL-88A/polymer microparticles: (a) microfluidic generation of monodisperse (W1/O)/W2 emulsion droplets as templates, and (b) fabrication of hierarchical porous MIL-88A/polymer microparticles from (W1/O)/W2 emulsion droplets.
Fig.2  Morphological and structural characterization of MIL-88A nanorods: (a) SEM image (scale bar is 5 μm), (b) XRD analysis, (c) FTIR spectra, and (d) N2 adsorption–desorption isotherms of MIL-88A nanorods.
Fig.3  Microfluidic generation of emulsion templates for fabricating PM-0 and PM-3 microparticles: (a) optical images of O/W2 emulsions without MIL-88A nanorods (a1), and the resultant PM-0 microparticles (a2), and their size distributions (a3); and (b) optical images of O/W2 emulsions with 3% (w/v) MIL-88A nanorods (b1), and the resultant PM-3 microparticles (b2), and their size distributions (b3). Scale bars are 500 μm.
Fig.4  Microfluidic generation of emulsion templates for fabricating HPM-3 microparticles: (a) optical and (b) CLSM images of (W1/O)/W2 emulsions with 3% (w/v) MIL-88A nanorods, (c) optical image of the resultant HPM-3 microparticles, and (d) size distributions of (W1/O)/W2 emulsions and HPM-3 microparticles. Scale bars are 500 μm in (a,c), and 250 μm in (b).
Fig.5  SEM images of microparticles: (a) PM-0 (a1) with porous structures on the surface (a2) and the cross-section (a3, a4), (b) PM-3 (b1) with MIL-88A-integrated porous structures on the surface (b2) and the cross-section (b3, b4), (c) HPM-0 (c1) with hierarchical porous structures on the surface (c2) and the cross-section (c3, c4), and (d) HPM-3 (d1) with MIL-88A-integrated hierarchical porous structures on the surface (d2) and the cross-section (d3, d4). Scale bars are 100 μm in (a1–d1, and a3–d3), and 10 μm in (a2–d2, and a4–d4).
Fig.6  Time-dependent changes of (a) concentration and (b) removal efficiency of RhB molecules during their adsorption by PM-0, PM-3, HPM-0 and HPM-3 microparticles.
Fig.7  (a) Illustration of hierarchical porous MIL-88A/polymer microparticles for catalytic degradation of organic contaminants; time-dependent changes of (b) concentration and (c) removal efficiency of RhB molecules during their degradation in H2O2 solution (blank) and in H2O2 solution containing PM-0, PM-3, HPM-0 and HPM-3 microparticles (The insets in (b) show the RhB solution before and after catalytic degradation by the HPM-3 microparticles).
Fig.8  (a) Time-dependent qt change of PM-0, PM-3, HPM-0 and HPM-3 microparticles for RhB degradation and (b) their pseudo-second order plot.
1 C C Wang, J R Li, X L Lv, Y Q Zhang, G Guo. Photocatalytic organic pollutants degradation in metal-organic frameworks. Energy & Environmental Science, 2014, 7( 9): 2831– 2867
https://doi.org/10.1039/C4EE01299B
2 F Xiao, H Ren, H Zhou, H Wang, N Wang, D Pan. Porous montmorillonite@graphene oxide@Au nanoparticle composite microspheres for organic dye degradation. ACS Applied Nano Materials, 2019, 2( 9): 5420– 5429
https://doi.org/10.1021/acsanm.9b01043
3 Y Liu, C Wang, J P Veder, M Saunders, M Tade, S Wang, Z Shao. Hierarchically porous cobalt-carbon nanosphere-in-microsphere composites with tunable properties for catalytic pollutant degradation and electrochemical energy storage. Journal of Colloid and Interface Science, 2018, 530 : 556– 566
https://doi.org/10.1016/j.jcis.2018.07.010
4 J Li, L Zhou, Y Song, X Yu, X Li, Y Liu, Z Zhang, Y Yuan, S Yan, J Zhang. Green fabrication of porous microspheres containing cellulose nanocrystal/MnO2 nanohybrid for efficient dye removal. Carbohydrate Polymers, 2021, 270 : 118340
https://doi.org/10.1016/j.carbpol.2021.118340
5 L Zeng, X Guo, C He, C Duan. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis. ACS Catalysis, 2016, 6( 11): 7935– 7947
https://doi.org/10.1021/acscatal.6b02228
6 L Jiao, Y Wang, H L Jiang, Q Xu. Metal-organic frameworks as platforms for catalytic applications. Advanced Materials, 2018, 30( 37): e1703663
https://doi.org/10.1002/adma.201703663
7 Y B Huang, J Liang, X S Wang, R Cao. Multifunctional metal-organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46( 1): 126– 157
https://doi.org/10.1039/C6CS00250A
8 L Y Chen, N Tsumori, Q Xu. Quasi-MOF-immobilized metal nanoparticles for synergistic catalysis. Science China Chemistry, 2020, 63( 11): 1601– 1607
https://doi.org/10.1007/s11426-020-9781-7
9 C Zhang, L Ai, J Jiang. Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 6): 1– 8
https://doi.org/10.1039/C4TA04622F
10 H Zhao, Y Chen, Q Peng, Q Wang, G Zhao. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and OH generation in solar photo-electro-Fenton process. Applied Catalysis B: Environmental, 2017, 203 : 127– 137
https://doi.org/10.1016/j.apcatb.2016.09.074
11 S Tanaka, R Miyashita. Aqueous-system-enabled spray-drying technique for the synthesis of hollow polycrystalline ZIF-8 MOF particles. ACS Omega, 2017, 2( 10): 6437– 6445
https://doi.org/10.1021/acsomega.7b01325
12 L Chen, M J Zhang, S Y Zhang, L Shi, Y M Yang, Z Liu, X J Ju, R Xie, W Wang, L Y Chu. Simple and continuous fabrication of self-propelled micromotors with photocatalytic metal-organic frameworks for enhanced synergistic environmental remediation. ACS Applied Materials & Interfaces, 2020, 12( 31): 35120– 35131
https://doi.org/10.1021/acsami.0c11283
13 S Mosleh, M R Rahimi. Intensification of abamectin pesticide degradation using the combination of ultrasonic cavitation and visible-light driven photocatalytic process: synergistic effect and optimization study. Ultrasonics Sonochemistry, 2017, 35 : 449– 457
https://doi.org/10.1016/j.ultsonch.2016.10.025
14 Y Xue, P Wang, C Wang, Y Ao. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation: environmental factors, mechanisms and degradation pathways. Chemosphere, 2018, 203 : 497– 505
https://doi.org/10.1016/j.chemosphere.2018.04.017
15 G P Li, K Zhang, C B Li, R C Gao, Y Cheng, L Hou, Y Y Wang. Solvent-free method to encapsulate polyoxometalate into metal-organic frameworks as efficient and recyclable photocatalyst for harmful sulfamethazine degrading in water. Applied Catalysis B: Environmental, 2019, 245 : 753– 759
https://doi.org/10.1016/j.apcatb.2019.01.012
16 L Shi, T Wang, H Zhang, K Chang, X Meng, H Liu, J Ye. An amine-functionalized iron(III) metal-organic framework as efficient visible-light photocatalyst for Cr(VI) reduction. Advancement of Science, 2015, 2( 3): 1500006
https://doi.org/10.1002/advs.201500006
17 X Wang, J Liu, S Leong, X Lin, J Wei, B Kong, Y Xu, Z X Low, J Yao, H Wang. Rapid construction of ZnO@ZIF-8 heterostructures with size-selective photocatalysis properties. ACS Applied Materials & Interfaces, 2016, 8( 14): 9080– 9087
https://doi.org/10.1021/acsami.6b00028
18 L Huang, M He, B Chen, B Hu. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water. Chemosphere, 2018, 199 : 435– 444
https://doi.org/10.1016/j.chemosphere.2018.02.019
19 M J Zhang, W Wang, X L Yang, B Ma, Y M Liu, R Xie, X J Ju, Z Liu, L Y Chu. Uniform microparticles with controllable highly interconnected hierarchical porous structures. ACS Applied Materials & Interfaces, 2015, 7( 25): 13758– 13767
https://doi.org/10.1021/acsami.5b01031
20 Y Y Su, M J Zhang, W Wang, C F Deng, J Peng, Z Liu, Y Faraj, X J Ju, R Xie, L Y Chu. Bubble-propelled hierarchical porous micromotors from evolved double emulsions. Industrial & Engineering Chemistry Research, 2019, 58( 4): 1590– 1600
https://doi.org/10.1021/acs.iecr.8b05791
21 T Ataei-Germi, A Nematollahzadeh. Bimodal porous silica microspheres decorated with polydopamine nano-particles for the adsorption of methylene blue in fixed-bed columns. Journal of Colloid and Interface Science, 2016, 470 : 172– 182
https://doi.org/10.1016/j.jcis.2016.02.057
22 M J Zhang, T Chen, P Zhang, Z L Li, L Chen, Y Y Su, L D Qiu, G Peng, W Wang, L Y Chu. Magnetic hierarchical porous SiO2 microparticles from droplet microfluidics for water decontamination. Soft Matter, 2020, 16( 10): 2581– 2593
https://doi.org/10.1039/C9SM02391G
23 C Yu, W Zhu, Z He, J Xu, F Fang, Z Gao, W Ding, Y Wang, J Wang, J Wang, A Huang, A Cheng, Y Wei, S Ai. ATP-triggered drug release system based on ZIF-90 loaded porous poly(lactic-co-glycolic acid) microspheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615 : 126255
https://doi.org/10.1016/j.colsurfa.2021.126255
24 D Yu, L Li, M Wu, J C Crittenden. Enhanced photocatalytic ozonation of organic pollutants using an iron-based metal-organic framework. Applied Catalysis B: Environmental, 2019, 251 : 66– 75
https://doi.org/10.1016/j.apcatb.2019.03.050
25 Y Zhang, J Zhou, X Chen, L Wang, W Cai. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: synergistic effect and degradation pathway. Chemical Engineering Journal, 2019, 369 : 745– 757
https://doi.org/10.1016/j.cej.2019.03.108
26 A Xie, J Cui, J Yang, Y Chen, J Lang, C Li, Y Yan, J Dai. Graphene oxide/Fe(III)-based metal-organic framework membrane for enhanced water purification based on synergistic separation and photo-Fenton processes. Applied Catalysis B: Environmental, 2020, 264 : 118548
https://doi.org/10.1016/j.apcatb.2019.118548
27 W T Xu, L Ma, F Ke, F M Peng, G S Xu, Y H Shen, J F Zhu, L G Qiu, Y P Yuan. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye. Dalton Transactions, 2014, 43( 9): 3792– 3798
https://doi.org/10.1039/C3DT52574K
28 Y Liu, Y Huang, A Xiao, H Qiu, L Liu. Preparation of magnetic Fe(3)O(4)/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials, 2019, 9( 1): 51
https://doi.org/10.3390/nano9010051
29 X Liao, F Wang, F Wang, Y Cai, Y Yao, B T Teng, Q Hao, S Lu. Synthesis of (100) surface oriented MIL-88A-Fe with rod-like structure and its enhanced Fenton-like performance for phenol removal. Applied Catalysis B: Environmental, 2019, 259 : 118064
https://doi.org/10.1016/j.apcatb.2019.118064
30 N Liu, W Huang, X Zhang, L Tang, L Wang, Y Wang, M Wu. Ultrathin graphene oxide encapsulated in uniform MIL-88A(Fe) for enhanced visible light-driven photodegradation of RhB. Applied Catalysis B: Environmental, 2018, 221 : 119– 128
https://doi.org/10.1016/j.apcatb.2017.09.020
31 L Y Chu, A S Utada, R K Shah, J W Kim, D A Weitz. Controllable monodisperse multiple emulsions. Angewandte Chemie International Edition, 2007, 46( 47): 8970– 8974
https://doi.org/10.1002/anie.200701358
32 W Wang, M J Zhang, R Xie, X J Ju, C Yang, C L Mou, D A Weitz, L Y Chu. Hole-shell microparticles from controllably evolved double emulsions. Angewandte Chemie International Edition, 2013, 52( 31): 8084– 8087
https://doi.org/10.1002/anie.201301590
33 W Li, L Y Zhang, X H Ge, B Y Xu, W X Zhang, L L Qu, C H Choi, J H Xu, A Zhang, H M Lee, D A Weitz. Microfluidic fabrication of microparticles for biomedical applications. Chemical Society Reviews, 2018, 47( 15): 5646– 5683
https://doi.org/10.1039/C7CS00263G
34 W Wang, R Xie, X J Ju, T Luo, L Liu, D A Weitz, L Y Chu. Controllable microfluidic production of multicomponent multiple emulsions. Lab on a Chip, 2011, 11( 9): 1587– 1592
https://doi.org/10.1039/c1lc20065h
35 W Y Liu, W Wang, X J Ju, Z Liu, R Xie, L Y Chu. Functional microparticles from multiscale regulation of multiphase emulsions for mass-transfer intensification. Chemical Engineering Science, 2021, 231 : 116242
https://doi.org/10.1016/j.ces.2020.116242
36 W Wang, M J Zhang, L Y Chu. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Accounts of Chemical Research, 2014, 47( 2): 373– 384
https://doi.org/10.1021/ar4001263
37 B J Wang, P Prinsen, H Z Wang, Z S Bai, H L Wang, R Luque, J Xuan. Macroporous materials: microfluidic fabrication, functionalization and applications. Chemical Society Reviews, 2017, 46( 3): 855– 914
https://doi.org/10.1039/C5CS00065C
38 Y Gao, S Li, Y Li, L Yao, H Zhang. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Applied Catalysis B: Environmental, 2017, 202 : 165– 174
https://doi.org/10.1016/j.apcatb.2016.09.005
39 J Tang, J Wang. Metal organic framework with coordinatively unsaturated sites as efficient Fenton-like catalyst for enhanced degradation of sulfamethazine. Environmental Science & Technology, 2018, 52( 9): 5367– 5377
https://doi.org/10.1021/acs.est.8b00092
40 R Yuan, J Qiu, C Yue, C Shen, D Li, C Zhu, F Liu, A Li. Self-assembled hierarchical and bifunctional MIL-88A(Fe)@ZnIn2S4 heterostructure as a reusable sunlight-driven photocatalyst for highly efficient water purification. Chemical Engineering Journal, 2020, 401 : 126020
https://doi.org/10.1016/j.cej.2020.126020
41 X Hu, R Li, S Zhao, Y Xing. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Applied Surface Science, 2017, 396 : 1393– 1402
https://doi.org/10.1016/j.apsusc.2016.11.172
42 Z Lian, C Wei, B Gao, X Yang, Y Chan, J Wang, G Z Chen, K S Koh, Y Shi, Y Yan, Y Ren, J He, F Liu. Synergetic treatment of dye contaminated wastewater using microparticles functionalized with carbon nanotubes/titanium dioxide nanocomposites. RSC Advances, 2020, 10( 16): 9210– 9225
https://doi.org/10.1039/C9RA10899H
[1] Gaofeng Jin, Jiale Zhang, Baoying Dang, Feichao Wu, Jingde Li. Engineering zirconium-based metal-organic framework-801 films on carbon cloth as shuttle-inhibiting interlayers for lithium-sulfur batteries[J]. Front. Chem. Sci. Eng., 2022, 16(4): 511-522.
[2] Jiajia Li, Shengcheng Zhai, Weibing Wu, Zhaoyang Xu. Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1158-1168.
[3] Jamal Rahimi, Seyedeh Shadi Mirmohammadi, Ali Maleki. Trihydrazinotriazine-grafting Fe3O4/SiO2 core-shell nanoparticles with expanded porous structure for organic reactions[J]. Front. Chem. Sci. Eng., 2021, 15(4): 1008-1020.
[4] Chenkai Gu, Yang Liu, Weizhou Wang, Jing Liu, Jianbo Hu. Effects of functional groups for CO2 capture using metal organic frameworks[J]. Front. Chem. Sci. Eng., 2021, 15(2): 437-449.
[5] Xinlei Liu. Metal-organic framework UiO-66 membranes[J]. Front. Chem. Sci. Eng., 2020, 14(2): 216-232.
[6] Pascal Brault, William Chamorro-Coral, Sotheara Chuon, Amaël Caillard, Jean-Marc Bauchire, Stève Baranton, Christophe Coutanceau, Erik Neyts. Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source[J]. Front. Chem. Sci. Eng., 2019, 13(2): 324-329.
[7] Andrea P. Reverberi, P.S. Varbanov, M. Vocciante, B. Fabiano. Bismuth oxide-related photocatalysts in green nanotechnology: A critical analysis[J]. Front. Chem. Sci. Eng., 2018, 12(4): 878-892.
[8] Minhua Zhang, Baojuan Huang, Haoxi Jiang, Yifei Chen. Metal-organic framework loaded manganese oxides as efficient catalysts for low-temperature selective catalytic reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2017, 11(4): 594-602.
[9] Yinlong Hu,Shuang Zheng,Fumin Zhang. Fabrication of MIL-100(Fe)@SiO2@Fe3O4 core-shell microspheres as a magnetically recyclable solid acidic catalyst for the acetalization of benzaldehyde and glycol[J]. Front. Chem. Sci. Eng., 2016, 10(4): 534-541.
[10] Nadeen Al-Janabi,Abdullatif Alfutimie,Flor R. Siperstein,Xiaolei Fan. Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework[J]. Front. Chem. Sci. Eng., 2016, 10(1): 103-107.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed