Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (3) : 384-396    https://doi.org/10.1007/s11705-021-2045-y
RESEARCH ARTICLE
Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst
Xiangyu Liu1, Yanling Pan2, Peng Zhang1, Yilin Wang1, Guohao Xu1, Zhaojie Su1, Xuedong Zhu1(), Fan Yang1()
1. Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
2. Department of Product Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 Download: PDF(1892 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Alkylation of benzene to value-added, high octane number and low toxic toluene and xylenes provides a way to lower benzene content in gasoline pool, and is hence a method to promote fuel quality. On the other hand, CO2 accumulation in the atmosphere causes global warming and requires effective route for its valorization. Utilization of CO2 as a carbon source for benzene alkylation could achieve both goals. Herein, alkylation of benzene with CO2 and H2 was realized by a series of low-cost bifunctional catalysts containing zinc/titanium oxides (Zn/Ti oxides) and HZSM-5 molecular sieves in a fixed-bed reactor. By regulating and controlling oxygen vacancies of Zn/Ti oxides and the acidities of HZSM-5, benzene conversion and CO2 conversion reached 28.7% and 29.9% respectively, along with a total selectivity of toluene and xylene higher than 90%. In this process, more than 25% CO2 was effectively utilized and incorporated into the target products. Moreover, the mechanism of the reaction was analyzed and the course was simultaneously traced. CO2 was transformed into methanol firstly, and then methanol reacted with benzene generating toluene and xylene. The innovation provides a new method for upgrading of fuels and upcycling the emissions of CO2, which is of great environmental and economic benefits.

Keywords carbon dioxide      benzene      alkylation      bifunctional catalyst      mechanism     
Corresponding Author(s): Xuedong Zhu,Fan Yang   
Just Accepted Date: 16 March 2021   Online First Date: 06 May 2021    Issue Date: 24 February 2022
 Cite this article:   
Xiangyu Liu,Yanling Pan,Peng Zhang, et al. Alkylation of benzene with carbon dioxide to low-carbon aromatic hydrocarbons over bifunctional Zn-Ti/HZSM-5 catalyst[J]. Front. Chem. Sci. Eng., 2022, 16(3): 384-396.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2045-y
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I3/384
Fig.1  XRD patterns of metal oxides with the different zinc contents.
Fig.2  XPS spectrums of (a) Ti 2p; (b) Zn 2p; (c) O 1s orbitals.
Fig.3  EPR spectrums of several metal oxides with the different zinc contents.
Sample ABET1
/(m2?g?1)
Vpore
/(mL?g?1)
Dporea)
/nm
Zn/Ti ratio b) Sample ABET2
/(m2?g?1)
Vpore
/(mL?g?1)
Dporea)
/nm
ΔAc)
/(m2?g?1)
Surface Bulk
TiO2 22 0.16 3.98 0 0 TiO2-HZ5 180 0.23 1.82 158
Zn0.01Ti 45 0.20 3.81 0.04 0.01 Zn0.01Ti-HZ5 183 0.29 1.82 138
Zn0.1Ti 63 0.33 2.91 0.25 0.11 Zn0.1Ti-HZ5 184 0.29 1.84 121
Zn0.3Ti 104 0.24 5.75 n.dd) 0.34 Zn0.3Ti-HZ5 225 0.33 1.82 121
Zn0.5Ti 151 0.30 5.02 n.dd) 0.54 Zn0.5Ti-HZ5 244 0.29 1.83 93
Zn1.0Ti 115 0.28 5.04 0.96 1.05 Zn1.0Ti-HZ5 202 0.27 1.82 87
ZnO 40 0.02 8.02 ZnO-HZ5 142 0.14 1.84 102
γ-Al2O3 176 0.31 2.65 n.dd) n.dd) HZSM-5 313 0.14 1.84 n.dd)
Tab.1  Nitrogen adsorption and desorption results and Zn/Ti ratios of different samples
Fig.4  SEM patterns of several catalysts: (a) HZSM-5(30), (b) TiO2-HZ5(30), (c) Zn0.01Ti-HZ5(30), (d) Zn0.1Ti-HZ5(30), and (e) Zn1.0Ti-HZ5(30).
Fig.5  Raman spectroscopies of several metal oxides with the different zinc contents used different laser sources: (a) 325 nm and (b) 785 nm.
Fig.6  NH3-TPD patterns of catalysts with different Zn/Ti and Si/Al ratios.
Catalyst Conversion/% Selectivity/% Phenyl ring yield b)
/%
Benzene Toluene Xylene EBZ c) C9+ PX/X d)
TiO2-HZ5(30) 1.1 86.0 6.8 4.5 2.7 24.4 99.8
Zn0.01Ti-HZ5(30) 8.4 88.5 6.7 2.7 2.1 24.5 98.3
Zn0.1Ti-HZ5(30) 23.8 77.4 16.1 2.8 3.7 24.4 94.9
Zn0.3Ti-HZ5(30) 22.4 76.0 18.2 2.1 3.7 25.1 95.1
Zn0.5Ti-HZ5(30) 16.8 80.4 11.0 3.6 5.0 23.9 96.4
Zn1.0Ti-HZ5(30) 15.2 79.2 11.4 5.0 4.4 24.5 96.7
ZnO-HZ5(30) 13.5 81.3 6.7 5.6 6.5 24.4 97.0
HZSM-5(30) 1.3 86.8 4.7 8.3 0.2 23.1 99.7
Tab.2  Distribution and selectivity of liquid alkylation products of catalysts with different Zn/Ti ratios a)
Catalyst CO2 Conv/% Selectivity of product/% CO2 efficiency/% b)
CO CH4 C2 C3 C4+ EBZ+ C9+
TiO2-HZ5(30) 12.0 29.7 60.2 2.7 4.6 0.0 0.4 2.3
Zn0.01Ti-HZ5(30) 23.9 31.4 47.0 3.6 7.0 0.9 1.1 9.0
Zn0.1Ti-HZ5(30) 25.7 35.0 21.7 2.6 8.5 3.0 3.8 25.4
Zn0.3Ti-HZ5(30) 27.5 50.0 14.1 2.5 7.1 3.9 2.9 21.4
Zn0.5Ti-HZ5(30) 28.9 55.5 12.5 1.4 7.3 5.1 3.2 14.9
Zn1.0Ti-HZ5(30) 30.3 59.8 5.7 1.9 9.6 7.3 2.93 12.8
ZnO-HZ5(30) 21.9 62.9 3.1 1.1 8.9 4.8 4.7 14.6
Tab.3  Gaseous phase compositions and conversions of CO2a)
Fig.7  Relation diagrams of OV and catalytic activity.
Catalyst Conversion/% Selectivity/% Phenyl ring yield/% b)
Benzene Toluene Xylene EBZ C9+ PX/X
Zn0.1Ti-HZ5(13.5) 28.7 72.9 17.6 4.6 4.9 25.0 93.6
Zn0.1Ti-HZ5(30) 23.8 77.4 16.1 2.8 3.7 24.4 94.9
Zn0.1Ti-HZ5(100) 8.6 90.7 7.7 0.6 1.0 26.7 98.3
Tab.4  Distribution and selectivity of liquid alkylation products of catalysts with different Si/Al ratios a)
Catalyst CO2 Conv./% Selectivity of products/% CO2
efficiencyb)/%
CO CH4 C2 C3 C4+ EBZ+ C9+
Zn0.1Ti-HZ5(13.5) 29.9 39.6 10.1 2.9 11.5 4.2 5.8 25.9
Zn0.1Ti-HZ5(30) 25.7 35 21.7 2.6 8.5 3.0 3.8 25.4
Zn0.1Ti-HZ5(100) 25.3 55.3 34.5 0.5 0.2 0.1 0.4 9
Tab.5  Gaseous phase compositions and conversions of CO2a)
Fig.8  Stability of Zn0.1Ti-HZ5(13.5) catalyst in ABCH reaction.
Fig.9  In-situ IR spectra of Zn0.1Ti-HZ5(13.5) catalyst recorded at 598 K under 0.6 MPa: (a1,a2) The mixture of carbon dioxide and hydrogen (10 mL/min, H2:CO2= 3:1) was introduced into the in-situ pool (598 K and 0.6 MPa) containing an unreacted catalyst for 30 min. Afterward, the in-situ pool was swept by argon gas for 10 min; (b1,b2) after above experiment, benzene vapor was carried by argon (10 mL/min) into the in-situ pool, measured via IR spectra; (c1,c2) mixture gas of carbon dioxide and hydrogen carried benzene vapors into the in-situ pool under the condition and subsequent steps which were the same as experiments (a1,a2) and (b1,b2).
Fig.10  Reaction mechanism for the ABCH on the Zn/Ti-HZSM-5 catalyst.
1 J Cored, A Garcia-Ortiz, S Iborra, M Climent, L Liu, C Chuang, T Chan, C Escudero, P Concepcion, A Corma. ydrothermal synthesis of ruthenium nanoparticles with a metallic core and a ruthenium carbide shell for low-temperature activation of CO2 to methane. Journal of the American Chemical Society, 2019, 141(49): 19304–19311
https://doi.org/10.1021/jacs.9b07088
2 R Ye, J Ding, W Gong, M Argyle, Q Zhong, Y Wang, C Russell, Z Xu, A Russell, Q Li, M Fan, Y G Yao. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nature Communications, 2019, 10(1): 1–15
https://doi.org/10.1038/s41467-019-13638-9
3 P Dixneuf. A bridge from CO2 to methanol. Nature Chemistry, 2011, 3(8): 578–579
https://doi.org/10.1038/nchem.1103
4 Z Li, Y Qu, J Wang, H Liu, M Li, S Miao, C Li. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts. Joule, 2019, 3(2): 570–583
https://doi.org/10.1016/j.joule.2018.10.027
5 Y Ni, Z Chen, Y Fu, Y Liu, W Zhu, Z Liu. Selective conversion of CO2 and H2 into aromatics. Nature Communications, 2018, 9(1): 1–7
https://doi.org/10.1038/s41467-018-05880-4
6 P Gao, S Li, X Bu, S Dang, Z Liu, H Wang, L Zhong, M Qiu, C Yang, J Cai, W Wei, Y Sun. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst. Nature Chemistry, 2017, 9(10): 1019–1024
https://doi.org/10.1038/nchem.2794
7 C Christensen, K Johannsen, I Schmidt, C Christensen. Catalytic benzene alkylation over mesoporous zeolite single crystals: improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371
https://doi.org/10.1021/ja037063c
8 Ø Mikkelsen, P Rønning, S Kolboe. Use of isotopic labeling for mechanistic studies of the methanol-to-hydrocarbons reaction. Microporous and Mesoporous Materials, 2000, 40(1): 95–113
https://doi.org/10.1016/S1387-1811(00)00245-6
9 F Yang, J Zhong, X Liu, X Zhu. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite. Applied Energy, 2018, 226: 22–30
https://doi.org/10.1016/j.apenergy.2018.05.093
10 S Saeidi, N Amin, M. Rahimpour Hydrogenation of CO2 to value-added products-a review and potential future developments. Journal of CO2 Utilization, 2014, 5: 66–81
11 K Ting, H Kamakura, S Poly, T Toyao, S Siddiki, Z Maeno, K Matsushita, K Shimizu. Catalytic methylation of aromatic hydrocarbons using CO2/H2 over Re/TiO2 and H-MOR catalysts. ChemCatChem, 2020, 12(8): 1–7
https://doi.org/10.1002/cctc.202000036
12 M Zeng, Y Li, M Mao, J Bai, L Ren, X Zhao. Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catalysis, 2015, 5(6): 3278–3286
https://doi.org/10.1021/acscatal.5b00292
13 Z Li, R Wnetrzak, W Kwapinski, J Leahy. Synthesis and characterization of sulfated TiO2 nanorods and ZrO2/TiO2 nanocomposites for the esterification of biobased organic acid. ACS Applied Materials & Interfaces, 2012, 4(9): 4499–4505
https://doi.org/10.1021/am300510u
14 K Cheng, W Zhou, J Kang, S He, S Shi, Q Zhang, Y Pan, W Wen, Y Wang. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability. Chem, 2017, 3(2): 334–347
https://doi.org/10.1016/j.chempr.2017.05.007
15 J Wang, G Li, Z Li, C Tang, Z Feng, H An, H Liu, T Liu, C Li. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Science Advances, 2017, 3(10): e1701290
https://doi.org/10.1126/sciadv.1701290
16 J Arin, S Thongtem, A Phuruangrat, T Thongtem. Characterization of ZnO-TiO2 and zinc titanate nanoparticles synthesized by hydrothermal process. Research on Chemical Intermediates, 2016, 43(5): 3183–3195
https://doi.org/10.1007/s11164-016-2818-y
17 Y Qu, W Zhou, Z Ren, G Wang, B Jiang, H Fu. Facile synthesis of porous Zn2Ti3O8 nanorods for photocatalytic overall water splitting. ChemCatChem, 2014, 6(8): 2258–2262
https://doi.org/10.1002/cctc.201402184
18 C Wang, W Hwang, H Ko, C Hsi, K Chang, M Wang. Phase transformation and microstructure of Zn2Ti3O8 nanocrystallite powders prepared using the hydrothermal process. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2013, 45(1): 250–260
https://doi.org/10.1007/s11661-013-1966-6
19 N Kruse, S Chenakin. XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. Applied Catalysis A, General, 2011, 391(1-2): 367–376
https://doi.org/10.1016/j.apcata.2010.05.039
20 M Biesinger, L Lau, A Gerson, R Smart. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010, 257(3): 887–898
https://doi.org/10.1016/j.apsusc.2010.07.086
21 S Chenakin, N Kruse. Combining XPS and ToF-SIMS for assessing the CO oxidation activity of Au/TiO2 catalysts. Journal of Catalysis, 2018, 358: 224–236
https://doi.org/10.1016/j.jcat.2017.12.010
22 X Xin, T Xu, J Yin, L Wang, C Wang. Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis. Applied Catalysis B: Environmental, 2015, 176-177: 354–362
https://doi.org/10.1016/j.apcatb.2015.04.016
23 Y Chai, L Li, J Lu, D Li, J Shen, Y Zhang, J Liang, X Wang. Germanium-substituted Zn2TiO4 solid solution photocatalyst for conversion of CO2 into fuels. Journal of Catalysis, 2019, 371: 144–152
https://doi.org/10.1016/j.jcat.2019.01.017
24 F Xiao. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Applied Materials & Interfaces, 2012, 4(12): 7055–7063
https://doi.org/10.1021/am302462d
25 S Katea, P Broqvist, J Kullgren, E Hemmer, G Westin. Fast, low-cost synthesis of ZnO: Eu nanosponges and the nature of Ln doping in ZnO. Inorganic Chemistry, 2020, 59(11): 7584–7602
https://doi.org/10.1021/acs.inorgchem.0c00472
26 Z He, W Que, J Chen, Y He, G Wang. Surface chemical analysis on the carbon-doped mesoporous TiO2 photocatalysts after post-thermal treatment: XPS and FTIR characterization. Journal of Physics and Chemistry of Solids, 2013, 74(7): 924–928
https://doi.org/10.1016/j.jpcs.2013.02.001
27 F Yang, Y Fang, X Liu, X Li, D Muir, A Maclennan, X Zhu. One-step alkylation of benzene with syngas over non-noble catalysts mixed with modified HZSM-5. Industrial & Engineering Chemistry Research, 2019, 58(31): 13879–13888
https://doi.org/10.1021/acs.iecr.9b02156
28 H Wagata, K Sakakibara, K Kawashima, M Hojamberdiev, K Yubuta, K Teshima. Alkali metal chloride flux growth of ilmenite-type ZnTiO3 and subsequent nitrogen doping for visible-light-driven water oxidation catalysis. ACS Applied Energy Materials, 2019, 2(11): 7762–7771
https://doi.org/10.1021/acsaem.9b00815
29 M Wang, J Han, Y Hu, R Guo, Y Yin. Carbon-incorporated NiO/TiO2 mesoporous shells with p-n heterojunctions for efficient visible light photocatalysis. ACS Applied Materials & Interfaces, 2016, 8(43): 29511–29521
https://doi.org/10.1021/acsami.6b10480
30 R Kam, C Selomulya, R Amal, J Scott. The influence of La-doping on the activity and stability of Cu/ZnO catalyst for the low-temperature water-gas shift reaction. Journal of Catalysis, 2010, 273(1): 73–81
https://doi.org/10.1016/j.jcat.2010.05.004
31 X Liu, M Wang, C Zhou, W Zhou, K Cheng, J Kang, Q Zhang, W Deng, Y Wang. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34. Chemical Communications, 2018, 54(2): 140–143
https://doi.org/10.1039/C7CC08642C
32 J Ye, C Liu, D Mei, Q Ge. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study. ACS Catalysis, 2013, 3(6): 1296–1306
https://doi.org/10.1021/cs400132a
33 C Zhou, J Shi, W Zhou, K Cheng, Q Zhang, J Kang, Y Wang. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide. ACS Catalysis, 2019, 10(1): 302–310
https://doi.org/10.1021/acscatal.9b04309
34 W Hu, L Li, G Li, C Tang, L Sun. High-quality brookite TiO2 flowers: synthesis, characterization, and dielectric performance. Crystal Growth & Design, 2009, 9(8): 3676–3682
https://doi.org/10.1021/cg9004032
35 S Pal, A Laera, A Licciulli, M Catalano, A Taurino. Biphase TiO2 microspheres with enhanced photocatalytic activity. Industrial & Engineering Chemistry Research, 2014, 53(19): 7931–7938
https://doi.org/10.1021/ie404123f
36 H Wang, L Chen, W Su, J Chung, B Hwang. Effect of the compact TiO2 layer on charge transfer between N3 dyes and TiO2 investigated by Raman spectroscopy. Journal of Physical Chemistry C, 2010, 114(7): 3185–3189
https://doi.org/10.1021/jp908233h
37 S Chong, N Suresh, J Xia, N Al-Salim, H Idriss. TiO2 nanobelts/CdSSe quantum dots nanocomposite. Journal of Physical Chemistry C, 2007, 111(28): 10389–10393
https://doi.org/10.1021/jp072579u
38 J Dong, X Zhang, J You, P Cai, Z Yin, Q An, X Ma, P Jin, Z Wang, P Chu. Effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films: identification of hydrogen donors in ZnO. ACS Applied Materials & Interfaces, 2010, 2(6): 1780–1784
https://doi.org/10.1021/am100298p
39 H Song, D Laudenschleger, J Carey, H Ruland, M Nolan, M Muhler. Spinel-structured ZnCr2O4 with wxcess Zn is the active ZnO/Cr2O3 catalyst for high-temperature methanol synthesis. ACS Catalysis, 2017, 7(11): 7610–7622
https://doi.org/10.1021/acscatal.7b01822
40 S Zheng. On the enhanced para-selectivity of HZSM-5 modified by antimony oxide. Journal of Catalysis, 2003, 219(2): 310–319
https://doi.org/10.1016/S0021-9517(03)00234-3
41 Y Bai, F Yang, X Liu, C Liu, X Zhu. Performance of bifunctional ZnZr/ZSM-5 catalysts in the alkylation of benzene with syngas. Catalysis Letters, 2018, 148(12): 3618–3627
https://doi.org/10.1007/s10562-018-2570-6
42 P Zhang, L Tan, G Yang, N Tsubaki. One-pass selective conversion of syngas to para-xylene. Chemical Science (Cambridge), 2017, 8(12): 7941–7946
https://doi.org/10.1039/C7SC03427J
43 H Bahruji, M Bowker, G Hutchings, N Dimitratos, P Wells, E Gibson, W Jones, C Brookes, D Morgan, G Lalev. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343: 133–146
https://doi.org/10.1016/j.jcat.2016.03.017
44 E Choi, Y Lee, D Lee, D Moon, K Lee. Hydrogenation of CO2 to methanol over Pd-Cu/CeO2 catalysts. Molecular Catalysis, 2017, 434: 146–153
https://doi.org/10.1016/j.mcat.2017.02.005
45 J Lyu, H Hu, C Tait, J Rui, C Lou, Q Wang, W Han, Q Zhang, Z Pan, X Li. Benzene alkylation with methanol over phosphate modified hierarchical porous ZSM-5 with tailored acidity. Chinese Journal of Chemical Engineering, 2017, 25(9): 1187–1194
https://doi.org/10.1016/j.cjche.2016.12.005
46 S Svelle, M Visur, U Olsbye, M Bjørgen. Mechanistic aspects of the zeolite catalyzed methylation of alkenes and aromatics with methanol: a review. Topics in Catalysis, 2011, 54(13-15): 897–906
https://doi.org/10.1007/s11244-011-9697-7
47 P Murthy, Z Wang, L Wang, J Zhao, Z Wang, W Liang, J Huang. Improved CO2 hydrogenation on Ni-ZnO/MCM-41 catalysts with cooperative Ni and ZnO sites. Energy & Fuels, 2020, 34(12): 16320–16329
https://doi.org/10.1021/acs.energyfuels.0c02813
48 Q Wang, L Wang, H Wang, Z Li, X Zhang, S Zhang, K Zhou. Effect of SiO2/Al2O3 ratio on the conversion of methanol to olefins over molecular sieve catalysts. Frontiers of Chemical Science and Engineering, 2011, 5(1): 79–88
https://doi.org/10.1007/s11705-010-0550-6
49 J Zuo, W Chen, J Liu, X Duan, L Ye, Y Yuan. Selective methylation of toluene using CO2 and H2 to para-xylene. Science Advances, 2020, 6(34): eaba5433
https://doi.org/10.1126/sciadv.aba5433
50 C Tobin, A Ian, T Alexis. In situ infrared study of methanol synthesis from CO2/H2 on titania and zirconia promoted Cu/SiO2. Journal of Catalysis, 1999, 184(1): 144–156
https://doi.org/10.1006/jcat.1999.2434
[1] Electronic Supplementary Material Download
[1] Ruiqing Wang, Xiaolan Cao, Sheng Sui, Bing Li, Qingfeng Li. Study on the growth of platinum nanowires as cathode catalysts in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2022, 16(3): 364-375.
[2] Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane[J]. Front. Chem. Sci. Eng., 2022, 16(2): 141-151.
[3] Huiying Quan, Kejiang Qian, Ying Xuan, Lan-Lan Lou, Kai Yu, Shuangxi Liu. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS[J]. Front. Chem. Sci. Eng., 2021, 15(6): 1561-1571.
[4] Lina Liang, Youzhi Liu, Weizhou Jiao, Qiaoling Zhang, Chao Zhang. Octane compositions in sulfuric acid catalyzed isobutane/butene alkylation products: experimental and quantum chemistry studies[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1229-1242.
[5] Ji Liu, Xinrui Fan, Wei Zhao, Shi-guan Yang, Wenluan Xie, Bin Hu, Qiang Lu. A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1217-1228.
[6] Weizhou Jiao, Shengjuan Shao, Peizhen Yang, Kechang Gao, Youzhi Liu. Kinetics and mechanism of nitrobenzene degradation by hydroxyl radicals-based ozonation process enhanced by high gravity technology[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1197-1205.
[7] Guozhi Jia, Chunmu Guo, Wei Wang, Xuefeng Bai, Xiaomeng Wei, Xiaofang Su, Tong Li, Linfei Xiao, Wei Wu. The synergic effects of highly selective bimetallic Pt-Pd/SAPO-41 catalysts for the n-hexadecane hydroisomerization[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1111-1124.
[8] Xiaoyan Deng, Luxing Wang, Qihui Xiu, Ying Wang, Hong Han, Dongmei Dai, Yongji Xu, Hongtao Gao, Xien Liu. Adsorption performance and physicochemical mechanism of MnO2-polyethylenimine-tannic acid composites for the removal of Cu(II) and Cr(VI) from aqueous solution[J]. Front. Chem. Sci. Eng., 2021, 15(3): 538-551.
[9] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[10] Xiangchun Liu, Jun Hu, Ruilun Xie, Bin Fang, Ping Cui. Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale[J]. Front. Chem. Sci. Eng., 2021, 15(2): 363-372.
[11] Kai Cai, Ying Li, Hongbao Shen, Zaizhe Cheng, Shouying Huang, Yue Wang, Xinbin Ma. A density functional theory study on the mechanism of dimethyl ether carbonylation over heteropolyacids catalyst[J]. Front. Chem. Sci. Eng., 2021, 15(2): 319-329.
[12] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[13] Ehsan Rahmani, Mohammad Rahmani. Catalytic process modeling and sensitivity analysis of alkylation of benzene with ethanol over MIL-101(Fe) and MIL-88(Fe)[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1100-1111.
[14] You Han, Yulian Wang, Tengzhou Ma, Wei Li, Jinli Zhang, Minhua Zhang. Mechanistic understanding of Cu-based bimetallic catalysts[J]. Front. Chem. Sci. Eng., 2020, 14(5): 689-748.
[15] Xingling Zhao, Jun Xu, Feng Deng. Solid-state NMR for metal-containing zeolites: from active sites to reaction mechanism[J]. Front. Chem. Sci. Eng., 2020, 14(2): 159-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed