Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (2) : 141-151    https://doi.org/10.1007/s11705-020-2009-7
RESEARCH ARTICLE
Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane
Linlin You1,2, Yandong Guo2(), Yanjing He1,2, Feng Huo1, Shaojuan Zeng1, Chunshan Li1, Xiangping Zhang1,3,4, Xiaochun Zhang1()
1. Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. College of Mathematics and Physics, Bohai University, Jinzhou 121013, China
3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4. Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450001, China
 Download: PDF(3312 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ionic liquid (IL)/polyimide (PI) composite membranes demonstrate promise for use in CO2 separation applications. However, few studies have focused on the microscopic mechanism of CO2 in these composite systems, which is important information for designing new membranes. In this work, a series of systems of CO2 in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide composited with 4,4-(hexafluoroisopropylidene) diphthalic anhydride (6FDA)-based PI, 6FDA-2,3,5,6-tetramethyl-1,4-phenylene-diamine, at different IL concentrations were investigated by all-atom molecular dynamics simulation. The formation of IL regions in PI was found, and the IL regions gradually became continuous channels with increasing IL concentrations. The analysis of the radial distribution functions and hydrogen bond numbers demonstrated that PI had a stronger interaction with cations than anions. However, the hydrogen bonds among PI chains were destroyed by the addition of IL, which was favorable for transporting CO2. Furthermore, the self-diffusion coefficient and free energy barrier suggested that the diffusion coefficient of CO2 decreased with increasing IL concentrations up to 35 wt-% due to the decrease of the fractional free volume of the composite membrane. However, the CO2 self-diffusion coefficients increased when the IL contents were higher than 35 wt-%, which was attributed to the formation of continuous IL domain that benefitted the transportation of CO2.

Keywords carbon dioxide      ionic liquid      6FDA-TeMPD      composite membrane      molecular dynamics simulation     
Corresponding Author(s): Yandong Guo,Xiaochun Zhang   
Just Accepted Date: 27 November 2020   Online First Date: 22 January 2021    Issue Date: 10 January 2022
 Cite this article:   
Linlin You,Yandong Guo,Yanjing He, et al. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane[J]. Front. Chem. Sci. Eng., 2022, 16(2): 141-151.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2009-7
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I2/141
Fig.1  Chemical structures of (a) [BMIM]+, (b) [Tf2N], (c) the 6FDA-TeMPD monomer and (d) the PI chain composed of 8 monomers of 6FDA-TeMPD. Color code: H atoms, white; C atoms, cyan; N atoms, blue; S atoms, yellow; O atoms, red; F atoms, pink.
IL concentration/wt-% 0 10 20 30 35 40 50 100
Amount of IL 0 39 93 160 201 250 372 400
Amount of PI 30 30 30 30 30 30 30 0
Tab.1  Simulated IL/PI systems
Fig.2  Snapshots of IL/PI systems at different concentrations: (a) 10 wt-%, (b) 20 wt-%, (c) 30 wt-%, (d) 35 wt-%, (e) 40 wt-% and (f) 50 wt-%. The white and red represent PI and IL, respectively.
Fig.3  (a) Center-of-mass RDFs of cation-anion and site-site RDFs for (b) the H5 atoms in cations and O atoms in PI; (c) the H5 atoms in cations and F1 atoms in PI; (d) the O1 atoms in anions and H atoms in PI at different IL concentrations.
Fig.4  Coordination numbers of the H5 atoms in [BMIM]+ around O atoms in PI at different IL concentrations.
Fig.5  Hydrogen bond numbers of PI-PI, PI-cations and PI-anions at different IL concentrations.
Fig.6  FFVs of the IL/PI composite systems at different IL concentrations.
Fig.7  Interaction energies of (a) PI-CO2 and (b) IL-CO2 at different IL concentrations.
Fig.8  Site-site RDFs of (a) PI-CO2 and (b) IL-CO2 at 50 wt-% IL.
Fig.9  Three-dimensional probable distribution of the O atoms of PI (blue), C atoms of CO2 (white), and N atoms of anions (green) around the cations in IL/PI composite systems at (a) 20 wt-% IL with average densities of 2.0, 2.0 and 10.0, respectively, (b) 35 wt-% IL with average densities of 2.0, 2.0 and 7.0, respectively, and (c) 50 wt-% IL with average densities of 2.2, 2.0 and 5.0, respectively.
Fig.10  Self-diffusion coefficients of the (a) cations and anions of IL and (b) CO2 in the IL/PI composite systems at different IL concentrations.
Fig.11  PMF values of CO2 in the [BMIM][Tf2N]/PI composite systems at different IL concentrations.
1 L Y Deng, H Kvamsdal. CO2 capture: challenges and opportunities. Green Energy & Environment, 2016, 1(3): 179–179
https://doi.org/10.1016/j.gee.2016.12.002
2 S Quale, V Rohling. The European carbon dioxide capture and storage laboratory infrastructure (ECCSEL). Green Energy & Environment, 2016, 1(3): 180–194
https://doi.org/10.1016/j.gee.2016.11.007
3 M E Boothandford, J C Abanades, E J Anthony, M J Blunt, S Brandani, N M Dowell, J R Fernandez, M Ferrari, R Gross, J P Hallett. Carbon capture and storage update. Energy & Environmental Science, 2014, 7(1): 130–189
https://doi.org/10.1039/C3EE42350F
4 J G Vitillo, B Smit, L Gagliardi. Introduction: carbon capture and separation. Chemical Reviews, 2017, 117(14): 9521–9523
https://doi.org/10.1021/acs.chemrev.7b00403
5 M Li, X Jiang, G He. Application of membrane separation technology in postcombustion carbon dioxide capture process. Frontiers of Chemical Science and Engineering, 2014, 8(2): 233–239
https://doi.org/10.1007/s11705-014-1408-z
6 S Kanehashi, C A Scholes. Perspective of mixed matrix membranes for carbon capture. Frontiers of Chemical Science and Engineering, 2020, 14(3): 1–10
https://doi.org/10.1007/s11705-019-1881-5
7 S Pandiyan, D Brown, S Neyertz, N F A van der Vegt. Carbon dioxide solubility in three fluorinated polyimides studied by molecular dynamics simulations. Macromolecules, 2010, 43(5): 2605–2621
https://doi.org/10.1021/ma902507d
8 H Tong, C Hu, S Yang, Y Ma, H Guo, L Fan. Preparation of fluorinated polyimides with bulky structure and their gas separation performance correlated with microstructure. Polymer, 2015, 69: 138–147
https://doi.org/10.1016/j.polymer.2015.05.045
9 K E O’Harra, I Kammakakam, E M Devriese, D M Noll, J E Bara, E M Jackson. Synthesis and performance of 6FDA-based polyimide-ionenes and composites with ionic liquids as gas separation membranes. Membranes, 2019, 9(7): 79–96
https://doi.org/10.3390/membranes9070079
10 S Kanehashi, M Kishida, T Kidesaki, R Shindo, S Sato, T Miyakoshi, K Nagai. CO2 separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222
https://doi.org/10.1016/j.memsci.2012.12.003
11 F Weigelt, S Escorihuela, A Descalzo, A Tena, S Escolastico, S Shishatskiy, J M Serra, T Brinkmann. Novel polymeric thin-film composite membranes for high-temperature gas separations. Membranes, 2019, 9(4): 51–64
https://doi.org/10.3390/membranes9040051
12 X Zhang, H Feng, Z Liu, W Wang, E J Maginn. Absorption of CO2 in the ionic liquid 1-n-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([Hmim][FEP]): a molecular view by computer simulations. Journal of Physical Chemistry B, 2009, 113(21): 7591–7598
https://doi.org/10.1021/jp900403q
13 X Zhang, Z Liu, W Wang. Screening of ionic liquids to capture CO2 by COSMO-RS and experiments. AIChE Journal. American Institute of Chemical Engineers, 2008, 54(10): 2717–2728
https://doi.org/10.1002/aic.11573
14 A Haghtalab, A Shojaeian. High pressure measurement and thermodynamic modelling of the solubility of carbon dioxide in N-methyldiethanolamine and 1-butyl-3-methylimidazolium acetate mixture. Journal of Chemical Thermodynamics, 2015, 81: 237–244
https://doi.org/10.1016/j.jct.2014.10.011
15 A H Jalili, A Mehdizadeh, M Shokouhi, H Sakhaeinia, V Taghikhani. Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Journal of Chemical Thermodynamics, 2010, 42(6): 787–791
https://doi.org/10.1016/j.jct.2010.02.002
16 X Lei, Y Xu, L Zhu, X Wang. Highly efficient and reversible CO2 capture through 1,1,3,3-tetramethylguanidinium imidazole ionic liquid. RSC Advances, 2014, 4(14): 7052–7054
https://doi.org/10.1039/c3ra47524g
17 J Wang, S Zeng, F Huo, D Shang, H He, L Bai, X Zhang, J Li. Metal chloride anion-based ionic liquids for efficient separation of NH3. Journal of Cleaner Production, 2019, 206: 661–669
https://doi.org/10.1016/j.jclepro.2018.09.192
18 P Li, M R Coleman. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications. European Polymer Journal, 2013, 49(2): 482–491
https://doi.org/10.1016/j.eurpolymj.2012.11.016
19 M S Mittenthal, B S Flowers, J E Bara, J W Whitley, S K Spear, J D Roveda, D A Wallace, M S Shannon, R Holler, R Martens, D T Daly. Ionic polyimides: hybrid polymer architectures and composites with ionic liquids for advanced gas separation membranes. Industrial & Engineering Chemistry Research, 2017, 56(17): 5055–5069
https://doi.org/10.1021/acs.iecr.7b00462
20 A Ito, T Yasuda, X Ma, M Watanabe. Sulfonated polyimide/ionic liquid composite membranes for carbon dioxide separation. Polymer Journal, 2017, 49(9): 671–676
https://doi.org/10.1038/pj.2017.31
21 B Monteiro, A R Nabais, F A Almeida Paz, L Cabrita, L C Branco, I M Marrucho, L A Neves, C C L Pereira. Membranes with a low loading of metal-organic framework-supported ionic liquids for CO2/N2 separation in CO2 capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162
https://doi.org/10.1002/ente.201700228
22 M Balçık, M G Ahunbay. Prediction of CO2-induced plasticization pressure in polyimides via atomistic simulations. Journal of Membrane Science, 2018, 547: 146–155
https://doi.org/10.1016/j.memsci.2017.10.038
23 X Zhang, Z Liu, X Liu. Understanding the interactions between tris(pentafluoroethyl)-trifluorophosphate-based ionic liquid and small molecules from molecular dynamics simulation. Science China. Chemistry, 2012, 55(8): 1557–1565
https://doi.org/10.1007/s11426-012-4647-1
24 T C Lourenco, M F Coelho, T C Ramalho, D Van Der Spoel, L T Costa. Insights on the solubility of CO2 in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide from the microscopic point of view. Environmental Science & Technology, 2013, 47(13): 7421–7429
https://doi.org/10.1021/es4020986
25 A Abedini, E Crabtree, J E Bara, C H Turner. Molecular simulation of ionic polyimides and composites with ionic liquids as gas-separation membranes. Langmuir, 2017, 33(42): 11377–11389
https://doi.org/10.1021/acs.langmuir.7b01977
26 D V D Spoel, E Lindahl, B Hess, G Groenhof, H J C Berendsen. GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718
https://doi.org/10.1002/jcc.20291
27 B Hess, C Kutzner, D Van Der Spoel, E Lindahl. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447
https://doi.org/10.1021/ct700301q
28 Z P Liu, S P Huang, W C Wang. A refined force field for molecular simulation of imidazolium-based ionic liquids. Journal of Physical Chemistry B, 2004, 108(34): 12978–12989
https://doi.org/10.1021/jp048369o
29 J N C Lopes, A A H Pádua. Molecular force field for ionic liquids composed of triflate or bistriflylimide anions. Journal of Physical Chemistry B, 2004, 108(43): 16893–16898
https://doi.org/10.1021/jp0476545
30 I Tanis, D Brown, S J Neyertz, R Heck, R Mercier. A comparison of homopolymer and block copolymer structure in 6FDA-based polyimides. Physical Chemistry Chemical Physics, 2014, 16(42): 23044–23055
https://doi.org/10.1039/C4CP03039G
31 J Wang, R M Wolf, J W Caldwell, P A Kollman, D A Case. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157–1174
https://doi.org/10.1002/jcc.20035
32 L Martínez, R Andrade, E G Birgin, J M Martínez. PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009, 30(13): 2157–2164
https://doi.org/10.1002/jcc.21224
33 U Essmann, L Perera, M L Berkowitz, T Darden, H Lee, L G Pedersen. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1995, 103(19): 8577–8593
https://doi.org/10.1063/1.470117
34 B Hess, H Bekker, H J C Berendsen, J G E M Fraaije. LINCS: a linear constraint solver for molecular simulations. Journal of Chemical Theory and Computation, 1997, 18(12): 1463–1472
35 M Parrinello, A Rahman. Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 1981, 52(12): 7182–7190
https://doi.org/10.1063/1.328693
36 C Braga, K P Travis. A configurational temperature Nosé-Hoover thermostat. Journal of Computational Physics, 2005, 123(13): 134101–134116
37 W Shi, E J Maginn. Atomistic simulation of the absorption of carbon dioxide and water in the ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [hmim] [Tf2N]. Journal of Physical Chemistry B, 2008, 112(7): 2045–2055
https://doi.org/10.1021/jp077223x
38 G M Torrie, J P Valleau. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. Journal of Computational Physics, 1977, 23(2): 187–199
https://doi.org/10.1016/0021-9991(77)90121-8
39 S Kumar, J M Rosenberg, D Bouzida, R H Swendsen, P A Kollman. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. Journal of Computational Chemistry, 1992, 13(8): 1011–1021
https://doi.org/10.1002/jcc.540130812
40 Y Wang, C Wang, Y Zhang, F Huo, H He, S Zhang. Molecular insights into the regulatable interfacial property and flow behavior of confined ionic liquids in graphene nanochannels. Small, 2019, 15(29): 1804508–1804518
https://doi.org/10.1002/smll.201804508
41 D L Sun, J Zhou. Ionic liquid confined in nafion: toward molecular-level understanding. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(7): 2630–2639
https://doi.org/10.1002/aic.14009
42 T Song, X Zhang, Y Li, K Jiang, S Zhang, X Cui, L Bai. Separation efficiency of CO2 in ionic liquids/poly(vinylidene fluoride) composite membrane: a molecular dynamics study. Industrial & Engineering Chemistry Research, 2019, 58(16): 6887–6898
https://doi.org/10.1021/acs.iecr.8b06100
43 X Zhang, F Huo, X Liu, K Dong, H He, X Yao, S Zhang. Influence of microstructure and interaction on viscosity of ionic liquids. Industrial & Engineering Chemistry Research, 2015, 54(13): 3505–3514
https://doi.org/10.1021/acs.iecr.5b00415
44 K Dong, X Liu, H Dong, X Zhang, S Zhang. Multiscale studies on ionic liquids. Chemical Reviews, 2017, 117(10): 6636–6695
https://doi.org/10.1021/acs.chemrev.6b00776
45 A Bondi. Van der Waals volumes and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451
https://doi.org/10.1021/j100785a001
46 W M Lee. Selection of barrier materials from molecular-structure. Polymer Engineering and Science, 1980, 20(1): 65–69
https://doi.org/10.1002/pen.760200111
47 K Tanaka, H Kita, M Okano, K Okamoto. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer, 1992, 33(3): 585–592
https://doi.org/10.1016/0032-3861(92)90736-G
48 H Cheng, J Zhang, Z Qi. Effects of interaction with sulphur compounds and free volume in imidazolium-based ionic liquid on desulphurisation: a molecular dynamics study. Molecular Simulation, 2018, 44(1): 55–62
https://doi.org/10.1080/08927022.2017.1337273
49 L Cantley, J L Swett, D Lloyd, D A Cullen, K Zhou, P V Bedworth, S Heise, A J Rondinone, Z P Xu, S Sinton, J S Bunch. Voltage gated inter-cation selective ion channels from graphene nanopores. Nanoscale, 2019, 11(20): 9856–9861
https://doi.org/10.1039/C8NR10360G
50 K Zhou, Z P Xu. Ion permeability and selectivity in composite nanochannels: engineering through the end effects. Journal of Physical Chemistry C, 2020, 124(8): 4890–4898
https://doi.org/10.1021/acs.jpcc.9b11750
[1] FCE-20068-OF-YL_suppl_1 Download
[1] Daohui Zhao, Huang Chen, Yuqing Wang, Bei Li, Chongxiong Duan, Zhixian Li, Libo Li. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures[J]. Front. Chem. Sci. Eng., 2021, 15(4): 922-934.
[2] Quan Liu, Mingqiang Chen, Yangyang Mao, Gongping Liu. Theoretical study on Janus graphene oxide membrane for water transport[J]. Front. Chem. Sci. Eng., 2021, 15(4): 913-921.
[3] Jie Liu, Jiahao Shen, Jingjing Wang, Yuan Liang, Routeng Wu, Wenwen Zhang, Delin Shi, Saixiang Shi, Yanping Wang, Yimin Wang, Yumin Xia. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
[4] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[5] Tingting Zhao, Niamat Ullah, Yajun Hui, Zhenhua Li. Review of plasma-assisted reactions and potential applications for modification of metal–organic frameworks[J]. Front. Chem. Sci. Eng., 2019, 13(3): 444-457.
[6] Muhammad Faisal, Azeem Haider, Quret ul Aein, Aamer Saeed, Fayaz Ali Larik. Deep eutectic ionic liquids based on DABCO-derived quaternary ammonium salts: A promising reaction medium in gaining access to terpyridines[J]. Front. Chem. Sci. Eng., 2019, 13(3): 586-598.
[7] Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
[8] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[9] Atanu Biswas, Carlucio R. Alves, Maria T. S. Trevisan, Roseane L. E. da Silva, Roselayne F. Furtado, Zengshe Liu, H. N. Cheng. Synthesis of a cardanol-amine derivative using an ionic liquid catalyst[J]. Front. Chem. Sci. Eng., 2016, 10(3): 425-431.
[10] Hua Zhao,Gary A. Baker. Oxidative desulfurization of fuels using ionic liquids: A review? ?[J]. Front. Chem. Sci. Eng., 2015, 9(3): 262-279.
[11] Kathryn A. MUMFORD,Yue WU,Kathryn H. SMITH,Geoffrey W. STEVENS. Review of solvent based carbon-dioxide capture technologies[J]. Front. Chem. Sci. Eng., 2015, 9(2): 125-141.
[12] Zimeng HE,Ling YUE,Meng LI,Yazhuo SHANG,Honglai LIU. Rheological behavior of mixed system of ionic liquid [C8mim]Br and sodium oleate in water[J]. Front. Chem. Sci. Eng., 2015, 9(2): 232-241.
[13] Jing WANG, Hua WANG, Zhenzhen HAN, Jinyu HAN. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid[J]. Front. Chem. Sci. Eng., 2015, 9(1): 57-63.
[14] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[15] Mo LI,Xiaobin JIANG,Gaohong HE. Application of membrane separation technology in post-combustion carbon dioxide capture process[J]. Front. Chem. Sci. Eng., 2014, 8(2): 233-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed