Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (1) : 118-126    https://doi.org/10.1007/s11705-020-1916-y
RESEARCH ARTICLE
Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers
Jie Liu1, Jiahao Shen1, Jingjing Wang1, Yuan Liang1, Routeng Wu1, Wenwen Zhang1, Delin Shi2, Saixiang Shi2, Yanping Wang1, Yimin Wang1, Yumin Xia1()
1. Key Laboratory of High Performance Fibers & Products (Ministry of Education), State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Science, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
2. Hunan Changsha Aiwanting Home Texitle Products Co. Ltd, Changsha 410600, China
 Download: PDF(2137 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To enhance the solubility of polyanilines (PANI), polymeric ionic liquid (PIL) was introduced into the polymerization synthesis of PANI with various proportions. The structure and properties of the modified PANIs were characterized by 1H NMR, Fourier transform infrared spectroscopy, thermogravimetric analysis, ultraviolet-visible spectrum, etc. It was found that the obtained PANIs doped with PILs were soluble in various organic solvents such as N,N-dimethyl formamide and acetonitrile. Compared with the pure PANI, the PANIs doped by PILs showed remarkable solubility and their chemical structure and conductivity kept integrated.

Keywords polyaniline      polymeric ionic liquid      doping      solubility     
Corresponding Author(s): Yumin Xia   
Just Accepted Date: 17 February 2020   Online First Date: 13 March 2020    Issue Date: 12 January 2021
 Cite this article:   
Jie Liu,Jiahao Shen,Jingjing Wang, et al. Polymeric ionic liquid—assisted polymerization for soluble polyaniline nanofibers[J]. Front. Chem. Sci. Eng., 2021, 15(1): 118-126.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1916-y
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I1/118
Sample Sample 1 Sample 2 Sample 3 Sample 4
Weight of PIL-Cl/g 0 0.93 1.24 1.86
Weight ratio of PIL-Cl to ANI 0 1:4 1:3 1:2
Tab.1  Weight ratio for polymerization of PANI doped by PIL-Cl
Materials ratio Weight loss/% Complex ratio Sample name
PIL-Cl/% PANI/%
1:0 85.4 ? ? PIL-Cl
1:2 46.5 46.5 53.5 PANIPIL3
1:3 25.3 17.4 82.6 PANIPIL1
1:4 34.1 29.5 70.5 PANIPIL2
0:1 12.6 ? ? PANI
Tab.2  The complex information of each samples under different reaction ratios
Fig.1  Scheme 1 Comparison of the sample (a) doping PIL-Cl after the polymerization of PANI and (b) doping PIL-Cl during the polymerization of PANI.
Fig.2  SEM image of (a) the pure PANI, (b) PANI-PIL1, (c) PANI-PIL2, (d) PANI-PIL3 and TEM image of (e) PANI-PIL1, (f) PANI-PIL3.
Fig.3  Solubility experiments of (a) the pure PANI, (b) PANI-PIL1, (c) PANI-PIL2 and (d) PANI-PIL3 dispersed in water, DMSO, DMAc and DMF.
Fig.4  1HNMR and FTIR spectra of the pure PANI, PANIPIL1, PANIPIL2, PANIPIL3 and PIL-Cl.
Fig.5  N 1s region in XPS spectra of the (a) pure PANI and (b) PANIPIL1.
Fig.6  (A) Raman spectroscopy of (a) the pure PANI and (b) PANIPIL1; (B) UV spectroscopy of (a) the pure PANI, (b) PANIPIL1, (c) PANIPIL2 and (d) PANIPIL3.
Fig.7  TGA curves of pure (a) PANI, (b) PANIPIL1, (c) PANIPIL2 and (d) PANIPIL3.
Fig.8  XRD spectra of pure (a) PANI, (b) PANIPIL1, (c) PANIPIL2 and (d) PANIPIL3.
Samples Resistivity/(W·mm)
PANI 134
PANIPIL1 136
PANIPIL2 697
PANIPIL3 3002
Tab.3  Resistivity of the pure PANI and PANIs doped by PIL-Cl
Fig.9  TEM image of (a) the pure grapheme and (b) the graphene/PANI composites.
Samples Resistivity/(W·mm)
PANI 134
PANIPIL1 136
PANIPIL-G 17
Tab.4  Resistivity of the PANI, PANIPIL1 and PANIPIL-G
Fig.10  Solubility experiments of PANIPILG dispersed in (a) H2O, (b) DMSO, (c) DMAc and (d) DMF.
1 S E Jacobo, J C Aphesteguy, R L Anton, N N Schegoleva, G V Kurlyandskaya. Influence of the preparation procedure on the properties of polyaniline based magnetic composites. European Polymer Journal, 2007, 43(4): 1333–1346
https://doi.org/10.1016/j.eurpolymj.2007.01.024
2 S L Bai, Y B Zhao, J H Sun, Y Tian, R X Luo, D Q Li, A F Chen. Ultrasensitive room temperature NH3 sensor based on a graphene-polyaniline hybrid loaded on PET thin film. Chemical Communications, 2015, 51(35): 7524–7527
https://doi.org/10.1039/C5CC01241D
3 L L Wang, H Huang, S H Xiao, D P Cai, Y Liu, B Liu, D D Wang, C X Wang, H Li, Y R Wang, Q Li, T Wang. Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p-n heterojunctions. ACS Applied Materials & Interfaces, 2014, 6(16): 14131–14140
https://doi.org/10.1021/am503286h
4 T Hino, T Namiki, N Kuramoto. Synthesis and characterization of novel conducting composites of polyaniline prepared in the presence of sodium dodecylsulfonate. Synthetic Metals, 2006, 156(21): 1327–1332
https://doi.org/10.1016/j.synthmet.2006.10.001
5 A Fahmy, W H Eisa, M Yosef, A Hassan. Ultra-thin films of poly(acrylic acid)/silver nanocomposite coatings for antimicrobial applications. Journal of Spectroscopy, 2016, 5: 1–11
https://doi.org/10.1155/2016/7489536
6 B S Anisha, R Biswas, K P Chennazhi, R Jayakumar. Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds. International Journal of Biological Macromolecules, 2013, 62(11): 310–320
https://doi.org/10.1016/j.ijbiomac.2013.09.011
7 M R Nateghi, M Shateri-Khalilabad. Silver nanowire-functionalized cotton fabric. Carbohydrate Polymers, 2015, 117(1): 160–168
https://doi.org/10.1016/j.carbpol.2014.09.057
8 S Palaniappan, A John. Polyaniline materials by emulsion polymerization pathway. Progress in Polymer Science, 2008, 33(7): 732–758
https://doi.org/10.1016/j.progpolymsci.2008.02.002
9 A O Patil, A J Heeger, F Wudl. Optical properties of conducting polymers. Chemical Reviews, 1988, 88(1): 183–200
https://doi.org/10.1021/cr00083a009
10 S Bilal, S Gul, R Holze, A H A Shah. Shah. An impressive emulsion polymerization route for the synthesis of highly soluble and conducting polyaniline salts. Synthetic Metals, 2015, 206: 131–144
https://doi.org/10.1016/j.synthmet.2015.05.015
11 Z F Cao, Y Q Xia, C Chen. Fabrication of novel ionic liquids-doped polyaniline as lubricant additive for anti-corrosion and tribological properties. Tribology International, 2018, 120: 446–454
https://doi.org/10.1016/j.triboint.2018.01.009
12 B Urbach, N Korbakov, Y Bar-David, S Yitzchaik, A Sa’Ar. Composite structures of polyaniline and mesoporous silicon: Electrochemistry, optical and transport properties. Journal of Physical Chemistry C, 2007, 111(44): 16586–16592
https://doi.org/10.1021/jp073647f
13 E Harlev, T Gulakhmedova, I Rubinovich, G Aizenshtein. A new method for the preparation of conductive polyaniline solutions: Application to liquid crystal devices. Advanced Materials, 1996, 8(12): 994–997
https://doi.org/10.1002/adma.19960081211
14 J Q Dong, Q Shen. Enhancement in solubility and conductivity of polyaniline with lignosulfonate modified carbon nanotube. Journal of Polymer Science. Part B, Polymer Physics, 2010, 47(20): 2036–2046
https://doi.org/10.1002/polb.21802
15 M Ayad, G El-Hefnawy, S Zaghlol. Facile synthesis of polyaniline nanoparticles; its adsorption behavior. Chemical Engineering Journal, 2013, 217(2): 460–465
https://doi.org/10.1016/j.cej.2012.11.099
16 P J Kinlen, B G Frushour, Y Ding, V Menon. Synthesis and characterization of organically soluble polyaniline and polyaniline block copolymers. Synthetic Metals, 1999, 101(1): 758–761
https://doi.org/10.1016/S0379-6779(98)00280-X
17 Y Wang, K Chen, T Li, H M Li, R C Zeng, R L Zhang, Y J Gu, J X Ding, H Q Liu. Soluble polyaniline nanofibers prepared via surfactant-free emulsion polymerization. Synthetic Metals, 2014, 198: 293–299
https://doi.org/10.1016/j.synthmet.2014.10.038
18 L F Calheiros, B G Soares, G M O Barra, S Livi. Ionic liquid—assisted emulsion polymerization of aniline in organic medium. Materials Chemistry and Physics, 2016, 179: 194–203
https://doi.org/10.1016/j.matchemphys.2016.05.028
19 Y Cao, P Smith, A J Heeger. Counter-ion induced processibility of conducting polyaniline and of conducting polyblends of polyaniline in bulk polymers. Synthetic Metals, 1992, 48(1): 91–97
https://doi.org/10.1016/0379-6779(92)90053-L
20 K Ho. Effect of phenolic based polymeric secondary dopants on polyaniline. Synthetic Metals, 2002, 126(2): 151–158
https://doi.org/10.1016/S0379-6779(01)00499-4
21 J Ouyang. Recent advances of intrinsically conductive polymers. Acta Physico-Chimica Sinica, 2018, 34(11): 1211–1220
22 K Deb, K Sarkar, A Bera, A Debnath, B Saha. Coupled polaron-electron charge transport in graphite functionalized polyaniline on cellulose: Metal free flexible p-type semiconductor. Synthetic Metals, 2018, 245: 96–101
https://doi.org/10.1016/j.synthmet.2018.08.011
23 J Yuan, M Antonietti. Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer, 2011, 52(7): 1469–1482
https://doi.org/10.1016/j.polymer.2011.01.043
24 J Yuan, D Mecerreyes, M Antonietti. Poly(ionic liquid)s: An update. Progress in Polymer Science, 2013, 38(7): 1009–1036
https://doi.org/10.1016/j.progpolymsci.2013.04.002
25 R Marcilla, M L Curri, P D Cozzoli, M T Martínez, I Loinaz, H Grande, J A Pomposo, D Mecerreyes. Nano-objects on a round trip from water to organics in a polymeric ionic liquid vehicle. Small, 2006, 2(4): 507–512
https://doi.org/10.1002/smll.200500373
26 D Schüler, B Kerscher, F Beckert, R Thomann, R Mülhaupt. Hyperbranched polymeric ionic liquids with onion-like topology as transporters and compartmentalized systems. Angewandte Chemie International Edition, 2013, 52(1): 455–458
https://doi.org/10.1002/anie.201205130
27 S Bellayer, J W Gilman, N Eidelman, S Bourbigot, X Flambard, D M Fox, H C Long, P C Trulove. Preparation of homogeneously dispersed multiwalled carbon nanotube/polystyrene nanocomposites via melt extrusion using trialkyl imidazolium compatibilizer. Advanced Functional Materials, 2010, 15(6): 910–916
https://doi.org/10.1002/adfm.200400441
28 T Y Kim, H W Lee, J E Kim, K S Suh. Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano, 2010, 4(3): 1612–1618
https://doi.org/10.1021/nn901525e
29 H L Zhao, Y T Yu, Z H Li, B Luo, X H Wang, Y P Wang, Y M Xia. Linear polymeric ionic liquids as phase-transporters for both cationic and anionic dyes with synergic effects. Polymer Chemistry, 2015, 6(39): 7060–7068
https://doi.org/10.1039/C5PY01123J
30 R Fabio, N G M Do, P S Santos. Dissolution and doping of polyaniline emeraldine base in imidazolium ionic liquids investigated by spectroscopic techniques. Macromolecular Rapid Communications, 2010, 28(5): 666–669
31 L F Calheiros, B G Soares, G M O Barra, S Livi. Ionic liquid-assisted emulsion polymerization of aniline in organic medium. Materials Chemistry and Physics, 2016, 179: 194–203
https://doi.org/10.1016/j.matchemphys.2016.05.028
32 K Zhang, L L Zhang, X S Zhao, J Wu. Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chemistry of Materials, 2010, 22(4): 1392–1401
https://doi.org/10.1021/cm902876u
33 J Pernak, M Smiglak, S T Griffin, W L Hough, T B Wilson, A Pernak, J Zabielska-Matejuk, A Fojutowski, K Kitad, R D Rogers. Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chemistry, 2006, 8(9): 798–806
https://doi.org/10.1039/b604353d
34 S G Vaidya, S Rastogi, A Aguirre. Surfactant assisted processable organic nanocomposite dispersions of polyaniline-single wall carbon nanotubes. Synthetic Metals, 2010, 160(1): 134–138
https://doi.org/10.1016/j.synthmet.2009.10.020
35 J P Pouget, M E Jozefowicz, A J Epstein, X Tang, A G MacDiarmid. X-ray structure of polyaniline. Macromolecules, 1991, 24(3): 779–789
https://doi.org/10.1021/ma00003a022
36 Z Zhang, M Wan, Y Wei. Highly crystalline polyaniline nanostructures doped with dicarboxylic acids. Advanced Functional Materials, 2010, 16(8): 1100–1104
https://doi.org/10.1002/adfm.200500636
37 X Z Fu, Y Liang, R T Wu, J H Shen, Z D Chen, Y W Chen, Y P Wang, Y M Xia. Conductive core-sheath calcium alginate/graphene composite fibers with polymeric ionic liquids as an intermediate. Carbohydrate Polymers, 2019, 206: 328–335
https://doi.org/10.1016/j.carbpol.2018.11.021
[1] FCE-19067-OF-LJ_suppl_1 Download
[1] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[2] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[3] Dong Yang, Xiaoyan Zou, Yuanyuan Sun, Zhenwei Tong, Zhongyi Jiang. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction[J]. Front. Chem. Sci. Eng., 2018, 12(3): 440-449.
[4] Zhao Peng, Li-Hua Chen, Ming-Hui Sun, Pan Wu, Chang Cai, Zhao Deng, Yu Li, Wei-Hong Zheng, Bao-Lian Su. Template-free synthesis of hierarchically macro-mesoporous Mn-TiO2 catalysts for selective reduction of NO with NH3[J]. Front. Chem. Sci. Eng., 2018, 12(1): 43-49.
[5] Matteo Minelli, Maria Grazia De Angelis, Giulio C. Sarti. Predictive calculations of gas solubility and permeability in glassy polymeric membranes: An overview[J]. Front. Chem. Sci. Eng., 2017, 11(3): 405-413.
[6] Zijian Cui, Kaiyue Zhang, Guangyu Xing, Yaqing Feng, Shuxian Meng. Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells[J]. Front. Chem. Sci. Eng., 2017, 11(3): 395-404.
[7] Guilan Chen, Xingfu Song, Shuying Sun, Yanxia Xu, Jianguo Yu. Solubility and diffusivity of CO2 in n-butanol+ N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process[J]. Front. Chem. Sci. Eng., 2016, 10(4): 480-489.
[8] Rongbao Qi,Jingkang Wang,Junxiao Ye,Hongxun Hao,Ying Bao. The solubility of cefquinome sulfate in pure and mixed solvents[J]. Front. Chem. Sci. Eng., 2016, 10(2): 245-254.
[9] Ming TAN,Gaohong HE,Yan DAI,Rujie WANG,Wenhua SHI. Calculation on phase diagrams of polyetherimide/ N,N-dimethylacetamide/H2O-BuOH casting system and their relevance to membrane performances[J]. Front. Chem. Sci. Eng., 2014, 8(3): 312-319.
[10] Li XU, Zhi GUO, Lishun DU. Anodic oxidation of azo dye C.I. Acid Red 73 by the yttrium-doped Ti/SnO2-Sb electrodes[J]. Front Chem Sci Eng, 2013, 7(3): 338-346.
[11] Chandrakant R. MALWADE, Haiyan QU, Ben-Guang RONG, Lars P. CHRISTENSEN. Purification of artemisinin from quercetin by anti-solvent crystallization[J]. Front Chem Sci Eng, 2013, 7(1): 72-78.
[12] Tianlong DENG, Baojun ZHANG, Dongchan LI, Yafei GUO. Simulation studies on metastable phase equilibria in the aqueous ternary systems (NaCl-MgCl2-H2O) and (KCl-MgCl2-H2O) at 308.15 K[J]. Front Chem Eng Chin, 2009, 3(2): 172-175.
[13] WU Yusong, LI Jiang, PAN Yubai, LIU Wenbin, AN Liqiong, WANG Shiwei, GUO Jingkun. Solid-state-reaction fabrication and properties of a high-doping Nd:YAG transparent laser ceramic[J]. Front. Chem. Sci. Eng., 2008, 2(3): 248-252.
[14] CHEN Miaocan, ZHAO Ling, LIU Tao, WU Jiangwei, YUAN Weikang. Solubility of CO in solid-state PET measured by pressure-decay method[J]. Front. Chem. Sci. Eng., 2008, 2(2): 214-219.
[15] WU Guangwen, JIN Fang, WU Yuxin, ZHANG Guangxu, LI Dinghuo, WANG Cunwen, MA Peisheng. Direct synthesis of diphenyl carbonate over heterogeneous catalyst: effects of structure of substituted perovskite carrier on the catalyst activities[J]. Front. Chem. Sci. Eng., 2007, 1(1): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed