|
|
Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures |
Daohui Zhao1,2, Huang Chen1, Yuqing Wang2, Bei Li2, Chongxiong Duan3, Zhixian Li1, Libo Li1( ) |
1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China 2. School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China 3. School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528231, China |
|
|
Abstract The emergence of MoS2 nanopores has provided a new avenue for high performance DNA sequencing, which is critical for modern chemical/biological research and applications. Herein, molecular dynamics simulations were performed to design a conceptual device to sequence DNA with MoS2 nanopores of different structures (e.g., pore rim contained Mo atoms only, S atoms only, or both Mo and S atoms), where various unfolded single-stranded DNAs (ssDNAs) translocated through the nanopores driven by transmembrane bias; the sequence content was identified by the associating ionic current. All ssDNAs adsorbed onto the MoS2 surface and translocated through the nanopores by transmembrane electric field in a stepwise manner, where the pause between two permeation events was long enough for the DNA fragments in the nanopore to produce well-defined ionic blockage current to deduce the DNA’s base sequence. The transmembrane bias and DNA-MoS2 interaction could regulate the speed of the translocation process. Furthermore, the structure (atom constitution of the nanopore rim) of the nanopore considerably regulated both the translocate process and the ionic current. Thus, MoS2 nanopores could be employed to sequence DNA with the flexibility to regulate the translocation process and ionic current to yield the optimal sequencing performance.
|
Keywords
DNA sequencing
MoS2
molecular dynamics simulation
nanopore
ionic current
|
Corresponding Author(s):
Libo Li
|
Just Accepted Date: 25 August 2020
Online First Date: 18 January 2021
Issue Date: 04 June 2021
|
|
1 |
Y L Ying, Y T Long. Nanopore-based single-biomolecule interfaces: from information to knowledge. Journal of the American Chemical Society, 2019, 141(40): 15720–15729
https://doi.org/10.1021/jacs.8b11970
|
2 |
A Ameur, W P Kloosterman, M S Hestand. Single-molecule sequencing: towards clinical applications. Trends in Biotechnology, 2019, 37(1): 72–85
https://doi.org/10.1016/j.tibtech.2018.07.013
|
3 |
N Varongchayakul, J Song, A Meller, M W Grinstaff. Single-molecule protein sensing in a nanopore: a tutorial. Chemical Society Reviews, 2018, 47(23): 8512–8524
https://doi.org/10.1039/C8CS00106E
|
4 |
U F Keyser. Enhancing nanopore sensing with DNA nanotechnology. Nature Nanotechnology, 2016, 11(2): 106–108
https://doi.org/10.1038/nnano.2016.2
|
5 |
W Shi, A K Friedman, L A Baker. Nanopore sensing. Analytical Chemistry, 2017, 89(1): 157–188
https://doi.org/10.1021/acs.analchem.6b04260
|
6 |
Y Ying, R Gao, Y Hu, Y Long. Electrochemical confinement effects for innovating new nanopore sensing mechanisms. Small Methods, 2018, 2(6): 1700390
https://doi.org/10.1002/smtd.201700390
|
7 |
C Cao, Y L Ying, Z L Hu, D F Liao, H Tian, Y T Long. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nature Nanotechnology, 2016, 11(8): 713–718
https://doi.org/10.1038/nnano.2016.66
|
8 |
C Cao, D F Liao, J Yu, H Tian, Y T Long. Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nature Protocols, 2017, 12(9): 1901–1911
https://doi.org/10.1038/nprot.2017.077
|
9 |
G V Soni, C Dekker. Detection of nucleosomal substructures using solid-state nanopores. Nano Letters, 2012, 12(6): 3180–3186
https://doi.org/10.1021/nl301163m
|
10 |
J Li, Z P Tang, R Hu, Q Fu, E F Yan, S Y Wang, P X Guo, Q Zhao, D P Yu. Probing surface hydrophobicity of individual protein at single-molecule resolution using solid-state nanopores. Science China Materials, 2015, 58(6): 455–466
https://doi.org/10.1007/s40843-015-0057-y
|
11 |
K Lee, K B Park, H J Kim, J S Yu, H Chae, H M Kim, K B Kim. Recent progress in solid-state nanopores. Advanced Materials, 2018, 30(42): e1704680
https://doi.org/10.1002/adma.201704680
|
12 |
R Hu, H Zhu. Graphene-based membranes for organic solvent nanofiltration. Science China Materials, 2018, 61(3): 429–431
https://doi.org/10.1007/s40843-017-9179-x
|
13 |
Z S Siwy, M Davenport. Graphene opens up to DNA. Nature Nanotechnology, 2010, 5(10): 697–698
https://doi.org/10.1038/nnano.2010.198
|
14 |
D Branton, D W Deamer, A Marziali, H Bayley, S A Benner, T Butler, M Di Ventra, S Garaj, A Hibbs, X Huang, et al.. The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26(10): 1146–1153
https://doi.org/10.1038/nbt.1495
|
15 |
G F Schneider, S W Kowalczyk, V E Calado, G Pandraud, H W Zandbergen, L M Vandersypen, C Dekker. DNA translocation through graphene nanopores. Nano Letters, 2010, 10(8): 3163–3167
https://doi.org/10.1021/nl102069z
|
16 |
J Wilson, L Sloman, Z He, A Aksimentiev. Graphene nanopores for protein sequencing. Advanced Functional Materials, 2016, 26(27): 4830–4838
https://doi.org/10.1002/adfm.201601272
|
17 |
S J Heerema, C Dekker. Graphene nanodevices for DNA sequencing. Nature Nanotechnology, 2016, 11(2): 127–136
https://doi.org/10.1038/nnano.2015.307
|
18 |
F Traversi, C Raillon, S M Benameur, K Liu, S Khlybov, M Tosun, D Krasnozhon, A Kis, A Radenovic. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnology, 2013, 8(12): 939–945
https://doi.org/10.1038/nnano.2013.240
|
19 |
K Liu, J Feng, A Kis, A Radenovic. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano, 2014, 8(3): 2504–2511
https://doi.org/10.1021/nn406102h
|
20 |
A B Farimani, K Min, N R Aluru. DNA base detection using a single-layer MoS2. ACS Nano, 2014, 8(8): 7914–7922
https://doi.org/10.1021/nn5029295
|
21 |
J Feng, K Liu, R D Bulushev, S Khlybov, D Dumcenco, A Kis, A Radenovic. Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 2015, 10(12): 1070–1076
https://doi.org/10.1038/nnano.2015.219
|
22 |
H Arjmandi-Tash, L A Belyaeva, G F. Schneider Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chemical Society Reviews, 2016, 45(3): 476–493
https://doi.org/10.1039/C5CS00512D
|
23 |
B S Husale, S Sahoo, A Radenovic, F Traversi, P Annibale, A Kis. ssDNA binding reveals the atomic structure of graphene. Langmuir, 2010, 26(23): 18078–18082
https://doi.org/10.1021/la102518t
|
24 |
B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
https://doi.org/10.1038/nnano.2010.279
|
25 |
J Feng, K Liu, M Graf, M Lihter, R D Bulushev, D Dumcenco, D T Alexander, D Krasnozhon, T Vuletic, A Kis, A Radenovic. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Letters, 2015, 15(5): 3431–3438
https://doi.org/10.1021/acs.nanolett.5b00768
|
26 |
M Heiranian, A B Farimani, N R Aluru. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6(1): 8616
https://doi.org/10.1038/ncomms9616
|
27 |
W M Heckl, D P Smith, G Binnig, H Klagges, T W Hänsch, J Maddocks. Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(18): 8003–8005
https://doi.org/10.1073/pnas.88.18.8003
|
28 |
L Liang, J W Shen, Z Zhang, Q Wang. DNA sequencing by two-dimensional materials: as theoretical modeling meets experiments. Biosensors & Bioelectronics, 2017, 89(Pt 1): 280–292
https://doi.org/10.1016/j.bios.2015.12.037
|
29 |
C Sathe, X Q Zou, J P Leburton, K Schulten. Computational investigation of DNA detection using graphene nanopores. ACS Nano, 2011, 5(11): 8842–8851
https://doi.org/10.1021/nn202989w
|
30 |
H Chen, L Li, T Zhang, Z W Qiao, J Tang, J Zhou. Protein translocation through a MoS2 nanopore: a molecular dynamics study. Journal of Physical Chemistry C, 2018, 122(4): 2070–2080
https://doi.org/10.1021/acs.jpcc.7b07842
|
31 |
Z Xu, S Zhang, J K Weber, B Luan, R Zhou, J Li. Sequential protein unfolding through a carbon nanotube pore. Nanoscale, 2016, 8(24): 12143–12151
https://doi.org/10.1039/C6NR00410E
|
32 |
B Luan, R Zhou. Spontaneous transport of single-stranded DNA through graphene-MoS2 heterostructure nanopores. ACS Nano, 2018, 12(4): 3886–3891
https://doi.org/10.1021/acsnano.8b01297
|
33 |
S J Heerema, G F Schneider, M Rozemuller, L Vicarelli, H W Zandbergen, C Dekker. 1/f noise in graphene nanopores. Nanotechnology, 2015, 26(7): 074001
https://doi.org/10.1088/0957-4484/26/7/074001
|
34 |
W Q Zhou, H Qiu, Y F Guo, W L Guo. Molecular insights into distinct detection properties of a-hemolysin, MspA, CsgG, and aerolysin nanopore sensors. Journal of Physical Chemistry B, 2020, 124(9): 1611–1618
https://doi.org/10.1021/acs.jpcb.9b10702
|
35 |
Z Lin, H Chen, J Dong, D Zhao, L Li. Nanopore-based biomolecular detection. Progress in Chemistry, 2020, 32(5): 562–580 (in Chinese)
|
36 |
S Deng, H Hu, G Zhuang, X Zhong, J Wang. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441: 408–414
https://doi.org/10.1016/j.apsusc.2018.02.042
|
37 |
L Cao, H Ren, J Miao, W Guo, Y Li, G Li. Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions. Frontiers of Chemical Science and Engineering, 2016, 10(2): 203–212
https://doi.org/10.1007/s11705-016-1572-4
|
38 |
L Yuan, H Wu, Y Zhao, X Qin, Y Li. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis. Frontiers of Chemical Science and Engineering, 2019, 13(1): 133–139
https://doi.org/10.1007/s11705-018-1737-4
|
39 |
L J Liang, P Cui, Q Wang, T Wu, H Agren, Y Q Tu. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances, 2013, 3(7): 2445–2453
https://doi.org/10.1039/c2ra22109h
|
40 |
M D Hanwell, D E Curtis, D C Lonie, T Vandermeersch, E Zurek, G R Hutchison. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 2012, 4(1): 17
https://doi.org/10.1186/1758-2946-4-17
|
41 |
L Liang, W Hu, Z Xue, J Shen. Theoretical study on the interaction of nucleotides on two-dimensional atomically thin graphene and molybdenum disulfide. FlatChem, 2017, 2: 8–14
https://doi.org/10.1016/j.flatc.2017.02.001
|
42 |
W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, M L Klein. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935
https://doi.org/10.1063/1.445869
|
43 |
B Hess, C Kutzner, D Van Der Spoel, E Lindahl. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447
https://doi.org/10.1021/ct700301q
|
44 |
A D MacKerell Jr, D Bashford, M Bellott, R L Dunbrack Jr, J D Evanseck, M J Field, S Fischer, J Gao, H Guo, S Ha, et al.. All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 1998, 102(18): 3586–3616
https://doi.org/10.1021/jp973084f
|
45 |
W Humphrey, A Dalke, K Schulten. VMD: visual molecular dynamics. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33–38
https://doi.org/10.1016/0263-7855(96)00018-5
|
46 |
J Feng, M Graf, K Liu, D Ovchinnikov, D Dumcenco, M Heiranian, V Nandigana, N R Aluru, A Kis, A Radenovic. Single-layer MoS2 nanopores as nanopower generators. Nature, 2016, 536(7615): 197–200
https://doi.org/10.1038/nature18593
|
47 |
B Hess, H Bekker, H J Berendsen, J G Fraaije. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997, 18(12): 1463–1472
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
|
48 |
S Miyamoto, P A Kollman. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 1992, 13(8): 952–962
https://doi.org/10.1002/jcc.540130805
|
49 |
H Qiu, A Sarathy, K Schulten, J P Leburton. Detection and mapping of DNA methylation with 2D material nanopores. npj 2D Materials and Applications, 2017, 1(3): 1–8
|
50 |
M P Allen, D J Tildesley. Computer Simulation of Liquids. 1st ed. Oxford, UK: Clarendon Press, 1987, 385–386
|
51 |
T Darden, D York, L Pedersen. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 1993, 98(12): 10089–10092
https://doi.org/10.1063/1.464397
|
52 |
G Bussi, D Donadio, M Parrinello. Canonical sampling through velocity rescaling. Journal of Chemical Physics, 2007, 126(1): 014101
https://doi.org/10.1063/1.2408420
|
53 |
H J C Berendsen, J P M Postma, W F Van Gunsteren, A DiNola, J R Haak. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 1984, 81(8): 3684–3690
https://doi.org/10.1063/1.448118
|
54 |
A Cheng, K M Merz. Application of the NoséHoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937
https://doi.org/10.1021/jp951968y
|
55 |
L B Li, Y F Duan, S W Liao, Q Ke, Z W Qiao, Y Y Wei. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386: 123945
https://doi.org/10.1016/j.cej.2019.123945
|
56 |
L Li, I Vorobyov, T W Allen. Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain. Journal of Physical Chemistry B, 2008, 112(32): 9574–9587
https://doi.org/10.1021/jp7114912
|
57 |
L B Li, T Zhang, Y F Duan, Y Y Wei, C J Dong, L Ding, Z W Qiao, H H Wang. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
https://doi.org/10.1039/C8TA03701A
|
58 |
D Zhao, L Li, D He, J Zhou. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene. Applied Surface Science, 2016, 377: 324–334
https://doi.org/10.1016/j.apsusc.2016.03.177
|
59 |
A Barati Farimani, P Dibaeinia, N R Aluru. DNA origami-graphene hybrid nanopore for DNA detection. ACS Applied Materials & Interfaces, 2017, 9(1): 92–100
https://doi.org/10.1021/acsami.6b11001
|
60 |
R Balasubramanian, S Pal, H Joshi, A Rao, A Naik, M Varma, B Chakraborty, P K Maiti. DNA translocation through hybrid bilayer nanopores. Journal of Physical Chemistry C, 2019, 123(18): 11908–11916
https://doi.org/10.1021/acs.jpcc.9b00399
|
61 |
H Qiu, A Sarathy, J P Leburton, K Schulten. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores. Nano Letters, 2015, 15(12): 8322–8330
https://doi.org/10.1021/acs.nanolett.5b03963
|
62 |
J Chu, M Gonzalez Lopez, S L Cockroft, M Amorin, M R Ghadiri. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angewandte Chemie International Edition, 2010, 49(52): 10106–10109
https://doi.org/10.1002/anie.201005460
|
63 |
Y Ling, Z Gu, S Kang, J Luo, R Zhou. Structural damage of a b-sheet protein upon adsorption onto molybdenum disulfide nanotubes. Journal of Physical Chemistry C, 2016, 120(12): 6796–6803
https://doi.org/10.1021/acs.jpcc.5b11236
|
64 |
J Zhang, S Wu, L Ma, P Wu, J Liu. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13(2): 455–460
https://doi.org/10.1007/s12274-020-2629-8
|
65 |
Y Xu, H Wang, B Chen, H Liu, Y Zhao. Emerging barcode particles for multiplex bioassays. Science China Materials, 2019, 62(3): 289–324
https://doi.org/10.1007/s40843-018-9330-5
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|