Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (4) : 922-934    https://doi.org/10.1007/s11705-020-2004-z
RESEARCH ARTICLE
Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures
Daohui Zhao1,2, Huang Chen1, Yuqing Wang2, Bei Li2, Chongxiong Duan3, Zhixian Li1, Libo Li1()
1. School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
2. School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
3. School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528231, China
 Download: PDF(2577 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The emergence of MoS2 nanopores has provided a new avenue for high performance DNA sequencing, which is critical for modern chemical/biological research and applications. Herein, molecular dynamics simulations were performed to design a conceptual device to sequence DNA with MoS2 nanopores of different structures (e.g., pore rim contained Mo atoms only, S atoms only, or both Mo and S atoms), where various unfolded single-stranded DNAs (ssDNAs) translocated through the nanopores driven by transmembrane bias; the sequence content was identified by the associating ionic current. All ssDNAs adsorbed onto the MoS2 surface and translocated through the nanopores by transmembrane electric field in a stepwise manner, where the pause between two permeation events was long enough for the DNA fragments in the nanopore to produce well-defined ionic blockage current to deduce the DNA’s base sequence. The transmembrane bias and DNA-MoS2 interaction could regulate the speed of the translocation process. Furthermore, the structure (atom constitution of the nanopore rim) of the nanopore considerably regulated both the translocate process and the ionic current. Thus, MoS2 nanopores could be employed to sequence DNA with the flexibility to regulate the translocation process and ionic current to yield the optimal sequencing performance.

Keywords DNA sequencing      MoS2      molecular dynamics simulation      nanopore      ionic current     
Corresponding Author(s): Libo Li   
Just Accepted Date: 25 August 2020   Online First Date: 18 January 2021    Issue Date: 04 June 2021
 Cite this article:   
Daohui Zhao,Huang Chen,Yuqing Wang, et al. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures[J]. Front. Chem. Sci. Eng., 2021, 15(4): 922-934.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-2004-z
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I4/922
Fig.1  The schematic diagrams of (a) initial configuration of the simulation system and (b) a poly(A)20 translocating through the MoS2 nanopore. The Mo atoms are colored in cyan, and the sulfur atoms are in yellow. The bases of poly(A)20 are assigned different colors, and the ions are omitted for the sake of clarity.
Fig.2  (a) I–V profiles of three MoS2 nanopores: Mo only, S only and Mixed; (b) electrostatic potential map for three MoS2 nanopores under an external bias of 1.2 V (All point charges were approximated by Gaussian spheres with an inverse width b = 0.25 Å–1. The charge of Mo or S only nanopore rim may change the electrical potential in the nanopore; thus, the nanopore size in the electrostatic potential map may be different from the actual physical size); (c) the average electrostatic potential profile across the pore along the z axis for three MoS2 nanopores at 1.2 V bias.
Fig.3  ssDNA interacts with MoS2 surface. (a) The snapshot of poly(C)20 adsorbed onto MoS2 surface (The MoS2 is represented by van der Waals spheres: yellow (S) and cyan (Mo). The bases are represented by the NewRibbons model); (b) the adhesion number between ssDNA and the MoS2 surface; (c) the number of contacts between ssDNA and the MoS2 surface; (d) time series for the interaction energies between ssDNA and MoS2 surface.
Fig.4  The translocation traces of ssDNA driven through Mo only nanopore by different voltages of 0.5 V, 0.8 V and 1.2 V: (a) poly(A)20, (b) poly(C)20, (c) poly(G)20 and (d) poly(T)20.
Fig.5  The translocation speeds of ssDNA (poly(A)20, poly(C)20, poly(G)20 and poly(T)20) driven through Mo only nanopore by different voltages.
Fig.6  The changes in translocation base number and ionic current of ssDNA over time driven through Mo only nanopore at a 0.8 V bias: (a) poly(A)20, (b) poly(C)20, (c) poly(G)20 and (d) poly(T)20. The insets show the instantaneous conformation corresponding to the ionic current values.
Fig.7  The translocation traces of ssDNA driven through S only nanopore by different voltages: (a) poly(A)20, (b) poly(C)20, (c) poly(G)20 and (d) poly(T)20 .
Fig.8  The translocation speeds of ssDNA driven through S only nanopore by different voltages: poly(A)20, poly(C)20, poly(G)20 and poly(T)20.
Fig.9  The translocation traces and ionic current blockages of ssDNA driven through S only nanopore at a 2.4 V bias: (a) poly(A)20, (b) poly(C)20, (c) poly(G)20 and (d) poly(T)20.
Fig.10  The translocation traces of ssDNA driven through Mixed nanopore by different voltages: (a) poly(A)20, (b) poly(C)20, (c) poly(G)20 and (d) poly(T)20.
Fig.11  The translocation speeds of ssDNA driven through the Mixed nanopore by different voltages: poly(A)20, poly(C)20, poly(G)20 and poly(T)20.
Fig.12  The translocation traces and ionic current blockages of ssDNA driven through a Mixed nanopore at a 1.2 V bias: (a) poly(A)20, (b) poly(C)20, (c) poly(G)20 (2.4 V) and (d) poly(T)20.
1 Y L Ying, Y T Long. Nanopore-based single-biomolecule interfaces: from information to knowledge. Journal of the American Chemical Society, 2019, 141(40): 15720–15729
https://doi.org/10.1021/jacs.8b11970
2 A Ameur, W P Kloosterman, M S Hestand. Single-molecule sequencing: towards clinical applications. Trends in Biotechnology, 2019, 37(1): 72–85
https://doi.org/10.1016/j.tibtech.2018.07.013
3 N Varongchayakul, J Song, A Meller, M W Grinstaff. Single-molecule protein sensing in a nanopore: a tutorial. Chemical Society Reviews, 2018, 47(23): 8512–8524
https://doi.org/10.1039/C8CS00106E
4 U F Keyser. Enhancing nanopore sensing with DNA nanotechnology. Nature Nanotechnology, 2016, 11(2): 106–108
https://doi.org/10.1038/nnano.2016.2
5 W Shi, A K Friedman, L A Baker. Nanopore sensing. Analytical Chemistry, 2017, 89(1): 157–188
https://doi.org/10.1021/acs.analchem.6b04260
6 Y Ying, R Gao, Y Hu, Y Long. Electrochemical confinement effects for innovating new nanopore sensing mechanisms. Small Methods, 2018, 2(6): 1700390
https://doi.org/10.1002/smtd.201700390
7 C Cao, Y L Ying, Z L Hu, D F Liao, H Tian, Y T Long. Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. Nature Nanotechnology, 2016, 11(8): 713–718
https://doi.org/10.1038/nnano.2016.66
8 C Cao, D F Liao, J Yu, H Tian, Y T Long. Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis. Nature Protocols, 2017, 12(9): 1901–1911
https://doi.org/10.1038/nprot.2017.077
9 G V Soni, C Dekker. Detection of nucleosomal substructures using solid-state nanopores. Nano Letters, 2012, 12(6): 3180–3186
https://doi.org/10.1021/nl301163m
10 J Li, Z P Tang, R Hu, Q Fu, E F Yan, S Y Wang, P X Guo, Q Zhao, D P Yu. Probing surface hydrophobicity of individual protein at single-molecule resolution using solid-state nanopores. Science China Materials, 2015, 58(6): 455–466
https://doi.org/10.1007/s40843-015-0057-y
11 K Lee, K B Park, H J Kim, J S Yu, H Chae, H M Kim, K B Kim. Recent progress in solid-state nanopores. Advanced Materials, 2018, 30(42): e1704680
https://doi.org/10.1002/adma.201704680
12 R Hu, H Zhu. Graphene-based membranes for organic solvent nanofiltration. Science China Materials, 2018, 61(3): 429–431
https://doi.org/10.1007/s40843-017-9179-x
13 Z S Siwy, M Davenport. Graphene opens up to DNA. Nature Nanotechnology, 2010, 5(10): 697–698
https://doi.org/10.1038/nnano.2010.198
14 D Branton, D W Deamer, A Marziali, H Bayley, S A Benner, T Butler, M Di Ventra, S Garaj, A Hibbs, X Huang, et al.. The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26(10): 1146–1153
https://doi.org/10.1038/nbt.1495
15 G F Schneider, S W Kowalczyk, V E Calado, G Pandraud, H W Zandbergen, L M Vandersypen, C Dekker. DNA translocation through graphene nanopores. Nano Letters, 2010, 10(8): 3163–3167
https://doi.org/10.1021/nl102069z
16 J Wilson, L Sloman, Z He, A Aksimentiev. Graphene nanopores for protein sequencing. Advanced Functional Materials, 2016, 26(27): 4830–4838
https://doi.org/10.1002/adfm.201601272
17 S J Heerema, C Dekker. Graphene nanodevices for DNA sequencing. Nature Nanotechnology, 2016, 11(2): 127–136
https://doi.org/10.1038/nnano.2015.307
18 F Traversi, C Raillon, S M Benameur, K Liu, S Khlybov, M Tosun, D Krasnozhon, A Kis, A Radenovic. Detecting the translocation of DNA through a nanopore using graphene nanoribbons. Nature Nanotechnology, 2013, 8(12): 939–945
https://doi.org/10.1038/nnano.2013.240
19 K Liu, J Feng, A Kis, A Radenovic. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. ACS Nano, 2014, 8(3): 2504–2511
https://doi.org/10.1021/nn406102h
20 A B Farimani, K Min, N R Aluru. DNA base detection using a single-layer MoS2. ACS Nano, 2014, 8(8): 7914–7922
https://doi.org/10.1021/nn5029295
21 J Feng, K Liu, R D Bulushev, S Khlybov, D Dumcenco, A Kis, A Radenovic. Identification of single nucleotides in MoS2 nanopores. Nature Nanotechnology, 2015, 10(12): 1070–1076
https://doi.org/10.1038/nnano.2015.219
22 H Arjmandi-Tash, L A Belyaeva, G F. Schneider Single molecule detection with graphene and other two-dimensional materials: nanopores and beyond. Chemical Society Reviews, 2016, 45(3): 476–493
https://doi.org/10.1039/C5CS00512D
23 B S Husale, S Sahoo, A Radenovic, F Traversi, P Annibale, A Kis. ssDNA binding reveals the atomic structure of graphene. Langmuir, 2010, 26(23): 18078–18082
https://doi.org/10.1021/la102518t
24 B Radisavljevic, A Radenovic, J Brivio, V Giacometti, A Kis. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
https://doi.org/10.1038/nnano.2010.279
25 J Feng, K Liu, M Graf, M Lihter, R D Bulushev, D Dumcenco, D T Alexander, D Krasnozhon, T Vuletic, A Kis, A Radenovic. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom. Nano Letters, 2015, 15(5): 3431–3438
https://doi.org/10.1021/acs.nanolett.5b00768
26 M Heiranian, A B Farimani, N R Aluru. Water desalination with a single-layer MoS2 nanopore. Nature Communications, 2015, 6(1): 8616
https://doi.org/10.1038/ncomms9616
27 W M Heckl, D P Smith, G Binnig, H Klagges, T W Hänsch, J Maddocks. Two-dimensional ordering of the DNA base guanine observed by scanning tunneling microscopy. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(18): 8003–8005
https://doi.org/10.1073/pnas.88.18.8003
28 L Liang, J W Shen, Z Zhang, Q Wang. DNA sequencing by two-dimensional materials: as theoretical modeling meets experiments. Biosensors & Bioelectronics, 2017, 89(Pt 1): 280–292
https://doi.org/10.1016/j.bios.2015.12.037
29 C Sathe, X Q Zou, J P Leburton, K Schulten. Computational investigation of DNA detection using graphene nanopores. ACS Nano, 2011, 5(11): 8842–8851
https://doi.org/10.1021/nn202989w
30 H Chen, L Li, T Zhang, Z W Qiao, J Tang, J Zhou. Protein translocation through a MoS2 nanopore: a molecular dynamics study. Journal of Physical Chemistry C, 2018, 122(4): 2070–2080
https://doi.org/10.1021/acs.jpcc.7b07842
31 Z Xu, S Zhang, J K Weber, B Luan, R Zhou, J Li. Sequential protein unfolding through a carbon nanotube pore. Nanoscale, 2016, 8(24): 12143–12151
https://doi.org/10.1039/C6NR00410E
32 B Luan, R Zhou. Spontaneous transport of single-stranded DNA through graphene-MoS2 heterostructure nanopores. ACS Nano, 2018, 12(4): 3886–3891
https://doi.org/10.1021/acsnano.8b01297
33 S J Heerema, G F Schneider, M Rozemuller, L Vicarelli, H W Zandbergen, C Dekker. 1/f noise in graphene nanopores. Nanotechnology, 2015, 26(7): 074001
https://doi.org/10.1088/0957-4484/26/7/074001
34 W Q Zhou, H Qiu, Y F Guo, W L Guo. Molecular insights into distinct detection properties of a-hemolysin, MspA, CsgG, and aerolysin nanopore sensors. Journal of Physical Chemistry B, 2020, 124(9): 1611–1618
https://doi.org/10.1021/acs.jpcb.9b10702
35 Z Lin, H Chen, J Dong, D Zhao, L Li. Nanopore-based biomolecular detection. Progress in Chemistry, 2020, 32(5): 562–580 (in Chinese)
36 S Deng, H Hu, G Zhuang, X Zhong, J Wang. A strain-controlled C2N monolayer membrane for gas separation in PEMFC application. Applied Surface Science, 2018, 441: 408–414
https://doi.org/10.1016/j.apsusc.2018.02.042
37 L Cao, H Ren, J Miao, W Guo, Y Li, G Li. Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions. Frontiers of Chemical Science and Engineering, 2016, 10(2): 203–212
https://doi.org/10.1007/s11705-016-1572-4
38 L Yuan, H Wu, Y Zhao, X Qin, Y Li. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis. Frontiers of Chemical Science and Engineering, 2019, 13(1): 133–139
https://doi.org/10.1007/s11705-018-1737-4
39 L J Liang, P Cui, Q Wang, T Wu, H Agren, Y Q Tu. Theoretical study on key factors in DNA sequencing with graphene nanopores. RSC Advances, 2013, 3(7): 2445–2453
https://doi.org/10.1039/c2ra22109h
40 M D Hanwell, D E Curtis, D C Lonie, T Vandermeersch, E Zurek, G R Hutchison. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 2012, 4(1): 17
https://doi.org/10.1186/1758-2946-4-17
41 L Liang, W Hu, Z Xue, J Shen. Theoretical study on the interaction of nucleotides on two-dimensional atomically thin graphene and molybdenum disulfide. FlatChem, 2017, 2: 8–14
https://doi.org/10.1016/j.flatc.2017.02.001
42 W L Jorgensen, J Chandrasekhar, J D Madura, R W Impey, M L Klein. Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics, 1983, 79(2): 926–935
https://doi.org/10.1063/1.445869
43 B Hess, C Kutzner, D Van Der Spoel, E Lindahl. Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447
https://doi.org/10.1021/ct700301q
44 A D MacKerell Jr, D Bashford, M Bellott, R L Dunbrack Jr, J D Evanseck, M J Field, S Fischer, J Gao, H Guo, S Ha, et al.. All-atom empirical potential for molecular modeling and dynamics studies of proteins. Journal of Physical Chemistry B, 1998, 102(18): 3586–3616
https://doi.org/10.1021/jp973084f
45 W Humphrey, A Dalke, K Schulten. VMD: visual molecular dynamics. Journal of Molecular Graphics & Modelling, 1996, 14(1): 33–38
https://doi.org/10.1016/0263-7855(96)00018-5
46 J Feng, M Graf, K Liu, D Ovchinnikov, D Dumcenco, M Heiranian, V Nandigana, N R Aluru, A Kis, A Radenovic. Single-layer MoS2 nanopores as nanopower generators. Nature, 2016, 536(7615): 197–200
https://doi.org/10.1038/nature18593
47 B Hess, H Bekker, H J Berendsen, J G Fraaije. LINCS: a linear constraint solver for molecular simulations. Journal of Computational Chemistry, 1997, 18(12): 1463–1472
https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
48 S Miyamoto, P A Kollman. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 1992, 13(8): 952–962
https://doi.org/10.1002/jcc.540130805
49 H Qiu, A Sarathy, K Schulten, J P Leburton. Detection and mapping of DNA methylation with 2D material nanopores. npj 2D Materials and Applications, 2017, 1(3): 1–8
50 M P Allen, D J Tildesley. Computer Simulation of Liquids. 1st ed. Oxford, UK: Clarendon Press, 1987, 385–386
51 T Darden, D York, L Pedersen. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 1993, 98(12): 10089–10092
https://doi.org/10.1063/1.464397
52 G Bussi, D Donadio, M Parrinello. Canonical sampling through velocity rescaling. Journal of Chemical Physics, 2007, 126(1): 014101
https://doi.org/10.1063/1.2408420
53 H J C Berendsen, J P M Postma, W F Van Gunsteren, A DiNola, J R Haak. Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 1984, 81(8): 3684–3690
https://doi.org/10.1063/1.448118
54 A Cheng, K M Merz. Application of the NoséHoover chain algorithm to the study of protein dynamics. Journal of Physical Chemistry, 1996, 100(5): 1927–1937
https://doi.org/10.1021/jp951968y
55 L B Li, Y F Duan, S W Liao, Q Ke, Z W Qiao, Y Y Wei. Adsorption and separation of propane/propylene on various ZIF-8 polymorphs: insights from GCMC simulations and the ideal adsorbed solution theory (IAST). Chemical Engineering Journal, 2020, 386: 123945
https://doi.org/10.1016/j.cej.2019.123945
56 L Li, I Vorobyov, T W Allen. Potential of mean force and pKa profile calculation for a lipid membrane-exposed arginine side chain. Journal of Physical Chemistry B, 2008, 112(32): 9574–9587
https://doi.org/10.1021/jp7114912
57 L B Li, T Zhang, Y F Duan, Y Y Wei, C J Dong, L Ding, Z W Qiao, H H Wang. Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(25): 11734–11742
https://doi.org/10.1039/C8TA03701A
58 D Zhao, L Li, D He, J Zhou. Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene. Applied Surface Science, 2016, 377: 324–334
https://doi.org/10.1016/j.apsusc.2016.03.177
59 A Barati Farimani, P Dibaeinia, N R Aluru. DNA origami-graphene hybrid nanopore for DNA detection. ACS Applied Materials & Interfaces, 2017, 9(1): 92–100
https://doi.org/10.1021/acsami.6b11001
60 R Balasubramanian, S Pal, H Joshi, A Rao, A Naik, M Varma, B Chakraborty, P K Maiti. DNA translocation through hybrid bilayer nanopores. Journal of Physical Chemistry C, 2019, 123(18): 11908–11916
https://doi.org/10.1021/acs.jpcc.9b00399
61 H Qiu, A Sarathy, J P Leburton, K Schulten. Intrinsic stepwise translocation of stretched ssDNA in graphene nanopores. Nano Letters, 2015, 15(12): 8322–8330
https://doi.org/10.1021/acs.nanolett.5b03963
62 J Chu, M Gonzalez Lopez, S L Cockroft, M Amorin, M R Ghadiri. Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore. Angewandte Chemie International Edition, 2010, 49(52): 10106–10109
https://doi.org/10.1002/anie.201005460
63 Y Ling, Z Gu, S Kang, J Luo, R Zhou. Structural damage of a b-sheet protein upon adsorption onto molybdenum disulfide nanotubes. Journal of Physical Chemistry C, 2016, 120(12): 6796–6803
https://doi.org/10.1021/acs.jpcc.5b11236
64 J Zhang, S Wu, L Ma, P Wu, J Liu. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Research, 2020, 13(2): 455–460
https://doi.org/10.1007/s12274-020-2629-8
65 Y Xu, H Wang, B Chen, H Liu, Y Zhao. Emerging barcode particles for multiplex bioassays. Science China Materials, 2019, 62(3): 289–324
https://doi.org/10.1007/s40843-018-9330-5
[1] Quan Liu, Mingqiang Chen, Yangyang Mao, Gongping Liu. Theoretical study on Janus graphene oxide membrane for water transport[J]. Front. Chem. Sci. Eng., 2021, 15(4): 913-921.
[2] Huaping Zhao, Long Liu, Yaoguo Fang, Ranjith Vellacheri, Yong Lei. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance[J]. Front. Chem. Sci. Eng., 2018, 12(3): 339-345.
[3] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[4] Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
[5] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[6] Lin ZHANG, Yan SUN. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Front Chem Sci Eng, 2013, 7(4): 456-463.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed