Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (3) : 339-345    https://doi.org/10.1007/s11705-018-1699-6
RESEARCH ARTICLE
Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance
Huaping Zhao, Long Liu, Yaoguo Fang, Ranjith Vellacheri, Yong Lei()
Institute of Physics and IMN MacroNano®, Ilmenau University of Technology, Ilmenau 98693, Germany
 Download: PDF(333 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, nickel nanopore arrays with a highly-oriented nanoporous structure inherited from porous alumina membranes were used as nanostructured current collectors for constructing ultrahigh rate solid-state supercapacitors. A thin layer of poly(3,4-ethylenedioxythiophene) (PEDOT) as electroactive materials was conformally coated onto nickel nanopores to form heterostructured electrodes. The as-prepared electrodes have a large specific surface area to ensure a high capacity, and the highly-oriented nanoporous structure of nickel nanopores reduces the ion transport resistance, allowing the ions in the solid-state electrolytes to quickly access the PEDOT surface during the fast charge-discharge process. As a result, the assembled solid-state supercapacitor in a symmetric configuration exhibits an ideal capacitive behavior and a superior rate capability even at an ultrahigh scan rate of 50 V·s1.

Keywords supercapacitor      ultrahigh rate      metallic nanopore arrays      current collectors      PEDOT     
Corresponding Author(s): Yong Lei   
Just Accepted Date: 21 December 2017   Online First Date: 20 March 2018    Issue Date: 18 September 2018
 Cite this article:   
Huaping Zhao,Long Liu,Yaoguo Fang, et al. Nickel nanopore arrays as promising current collectors for constructing solid-state supercapacitors with ultrahigh rate performance[J]. Front. Chem. Sci. Eng., 2018, 12(3): 339-345.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1699-6
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I3/339
Fig.1  (a) Schematic illustration of the fabrication of NiNPA@PEDOT supercapacitor electrodes; (b) top-view and (c) cross-sectional view of SEM images of NiNPAs; (d) top-view and (e) cross-sectional view of SEM images of NiNPA@PEDOT electrodes
Fig.2  (a) XPS survey spectrum of NiNPA@PEDOT. The high-resolution XPS spectra of (b) C 1s, (c) O 1s, and (d) S 2p
Fig.3  (a?e) CV curves of NiNPA@PEDOT electrode based symmetric supercapacitor device measured at scan rates of 1, 5, 10, 20 and 50 V?s?1, respectively; (f) variation of the discharge current at different scan rates obtained for the device
Fig.4  (a) Charge-discharge curves and (b) the corresponding device capacitance of the symmetric device obtained at different current densities; (c) cyclic stability of the symmetric device measured at a current density of 0.2 mA?cm?2 for 45000 cycles; (d) nyquist plots obtained for the device from the impedance measurements; inset shows the high-frequency region of the Nyquist plot
1 Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou X W D. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Advanced Materials, 2012, 24(38): 5166–5180
https://doi.org/10.1002/adma.201202146
2 Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Advancement of Science, 2017, 4(10): 1700188
3 Zhi M, Xiang C, Li J, Li M, Wu N. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review. Nanoscale, 2013, 5(1): 72–88
https://doi.org/10.1039/C2NR32040A
4 Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014, 343(6176): 1210–1211
https://doi.org/10.1126/science.1249625
5 Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8: 231–237
https://doi.org/10.1016/j.nanoen.2014.06.015
6 Yan J, Wang Q, Wei T, Fan Z. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Advanced Energy Materials, 2014, 4(4): 1300816
https://doi.org/10.1002/aenm.201300816
7 Grote F, Kühnel R S, Balducci A, Lei Y. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104(5): 053904
https://doi.org/10.1063/1.4864285
8 Grote F, Zhao H, Lei Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3465–3470
https://doi.org/10.1039/C4TA05905K
9 Lu Q, Chen J G, Xiao J Q. Nanostructured electrodes for high-performance pseudocapacitors. Angewandte Chemie International Edition, 2013, 52(7): 1882–1889
https://doi.org/10.1002/anie.201203201
10 Mirvakili S M, Hunter I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors. Advanced Materials, 2017, 29(27): 1700671
https://doi.org/10.1002/adma.201700671
11 Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Materials Letters, 2001, 50(2): 53–56
https://doi.org/10.1016/S0167-577X(00)00411-0
12 Wang S, Wang M, Lei Y, Zhang L. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. Journal of Materials Science Letters, 1999, 18(24): 2009–2012
https://doi.org/10.1023/A:1006646219253
13 Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
https://doi.org/10.1039/C4EE03229B
14 Wen L, Wang Z, Mi Y, Xu R, Yu S H, Lei Y. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11(28): 3408–3428
https://doi.org/10.1002/smll.201500120
15 Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1(1): 1600012
https://doi.org/10.1002/admt.201600012
16 Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Advanced Functional Materials, 2017, 27(18): 1606696
https://doi.org/10.1002/adfm.201606696
17 Yang P, Chao D, Zhu C, Xia X, Zhang Y, Wang X, Sun P, Tay B K, Shen Z X, Mai W. Ultrafast-charging supercapacitors based on corn-like titanium nitride nanostructures. Advancement of Science, 2016, 3(6): 1500299
18 Carlberg J, Inganäs O. Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors. Journal of the Electrochemical Society, 1997, 144(4): L61–L64
https://doi.org/10.1149/1.1837553
19 Zhang H, Yu X, Braun P V. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nature Nanotechnology, 2011, 6(5): 277–281
https://doi.org/10.1038/nnano.2011.38
20 Wen L, Mi Y, Wang C, Fang Y, Grote F, Zhao H, Zhou M, Lei Y. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small, 2014, 10(15): 3162–3168
https://doi.org/10.1002/smll.201400436
21 Zhao H, Wang C, Vellacheri R, Zhou M, Xu Y, Fu Q, Wu M, Grote F, Lei Y. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Advanced Materials, 2014, 26(45): 7654–7659
https://doi.org/10.1002/adma.201402766
22 Liu L, Zhao H, Wang Y, Fang Y, Xie J, Lei Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. Advanced Functional Materials, 2018, 28(6): 1705107
https://doi.org/10.1002/adfm.201705107
23 Portet C, Taberna P, Simon P, Laberty-Robert C. Modification of Al current collector surface by sol-gel deposit for carbon–carbon supercapacitor applications. Electrochimica Acta, 2004, 49(6): 905–912
https://doi.org/10.1016/j.electacta.2003.09.043
24 Grote F, Lei Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy, 2014, 10: 63–70
https://doi.org/10.1016/j.nanoen.2014.08.019
25 Zhang J, Wang S, Zhang S, Tao Q, Pan L, Wang Z, Zhang Z, Lei Y, Yang S, Zhao H. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. Journal of Physical Chemistry C, 2011, 115(41): 20061–20066
https://doi.org/10.1021/jp202373b
26 Biswas S, Drzal L T. Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chemistry of Materials, 2010, 22(20): 5667–5671
https://doi.org/10.1021/cm101132g
27 Pang S C, Anderson M A, Chapman T W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 2000, 147(2): 444–450
https://doi.org/10.1149/1.1393216
28 Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G. Tailoring the pore alignment for rapid ion transport in microporous carbons. Journal of the American Chemical Society, 2010, 132(10): 3252–3253
https://doi.org/10.1021/ja910307x
29 Gowda S R, Leela Mohana Reddy A, Zhan X, Jafry H R, Ajayan P M. 3D nanoporous nanowire current collectors for thin film microbatteries. Nano Letters, 2012, 12(3): 1198–1202
https://doi.org/10.1021/nl2034464
30 Xu C, Li Z, Yang C, Zou P, Xie B, Lin Z, Zhang Z, Li B, Kang F, Wong C P. An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Advanced Materials, 2016, 28(21): 4105–4110
https://doi.org/10.1002/adma.201505644
31 Zhu H, Li M, Wang D, Zhou S, Peng C. Interfacial synthesis of free-standing asymmetrical PPY-PEDOT copolymer film with 3D network structure for supercapacitors. Journal of the Electrochemical Society, 2017, 164(9): A1820–A1825
https://doi.org/10.1149/2.1401707jes
32 Zhao Q, Wang G, Yan K, Yan J, Wang J. Binder-free porous PEDOT electrodes for flexible supercapacitors. Journal of Applied Polymer Science, 2015, 132(41): 42549
https://doi.org/10.1002/app.42549
33 Lei Y, Chim W, Sun H, Wilde G. Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Applied Physics Letters, 2005, 86(10): 103106
https://doi.org/10.1063/1.1869545
34 Lang X, Hirata A, Fujita T, Chen M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nature Nanotechnology, 2011, 6(4): 232–236
https://doi.org/10.1038/nnano.2011.13
35 Yang P, Xie J, Guo C, Li C M. Soft-to network hard-material for constructing both ion-and electron-conductive hierarchical porous structure to significantly boost energy density of a supercapacitor. Journal of Colloid and Interface Science, 2017, 485: 137–143
https://doi.org/10.1016/j.jcis.2016.06.060
36 Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000, 45(15): 2483–2498
https://doi.org/10.1016/S0013-4686(00)00354-6
[1] Uthen Thubsuang, Suphawadee Chotirut, Apisit Thongnok, Archw Promraksa, Mudtorlep Nisoa, Nicharat Manmuanpom, Sujitra Wongkasemjit, Thanyalak Chaisuwan. Facile preparation of polybenzoxazine-based carbon microspheres with nitrogen functionalities: effects of mixed solvents on pore structure and supercapacitive performance[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1072-1086.
[2] Evelyn Chalmers, Yi Li, Xuqing Liu. Molecular tailoring to improve polypyrrole hydrogels’ stiffness and electrochemical energy storage capacity[J]. Front. Chem. Sci. Eng., 2019, 13(4): 684-694.
[3] Anandarup Goswami, Manoj B. Gawande. Phosphorene: Current status, challenges and opportunities[J]. Front. Chem. Sci. Eng., 2019, 13(2): 296-309.
[4] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[5] Huaping Zhao, Long Liu, Yong Lei. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Front. Chem. Sci. Eng., 2018, 12(3): 481-493.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed