Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2021, Vol. 15 Issue (3) : 493-504    https://doi.org/10.1007/s11705-020-1967-0
RESEARCH ARTICLE
Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons
Yanxia Wang1, Xiude Hu1, Tuo Guo2, Jian Hao1, Chongdian Si1, Qingjie Guo1()
1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
2. College of Arts and Sciences, Ferris State University, Big Rapids, MI 49307, USA
 Download: PDF(1538 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, nitrogen-doped porous carbons (NACs) were fabricated as an adsorbent by urea modification and KOH activation. The CO2 adsorption mechanism for the NACs was then explored. The NACs are found to present a large specific surface area (1920.72– 3078.99 m2·g1) and high micropore percentage (61.60%–76.23%). Under a pressure of 1 bar, sample NAC-650-650 shows the highest CO2 adsorption capacity up to 5.96 and 3.92 mmol·g1 at 0 and 25 °C, respectively. In addition, the CO2/N2 selectivity of NAC-650-650 is 79.93, much higher than the value of 49.77 obtained for the nonnitrogen-doped carbon AC-650-650. The CO2 adsorption capacity of the NAC-650-650 sample maintains over 97% after ten cycles. Analysis of the results show that the CO2 capacity of the NACs has a linear correlation (R2 = 0.9633) with the cumulative pore volume for a pore size less than 1.02 nm. The presence of nitrogen and oxygen enhances the CO2/N2 selectivity, and pyrrole-N and hydroxy groups contribute more to the CO2 adsorption. In situ Fourier transform infrared spectra analysis indicates that CO2 is adsorbed onto the NACs as a gas. Furthermore, the physical adsorption mechanism is confirmed by adsorption kinetic models and the isosteric heat, and it is found to be controlled by CO2 diffusion. The CO2 adsorption kinetics for NACs at room temperature and in pure CO2 is in accordance with the pseudo-first-order model and Avramís fractional-order kinetic model.

Keywords porous carbon      CO2 adsorption      nitrogen-doped      adsorption mechanism      kinetics     
Corresponding Author(s): Qingjie Guo   
Online First Date: 18 September 2020    Issue Date: 10 May 2021
 Cite this article:   
Yanxia Wang,Xiude Hu,Tuo Guo, et al. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-020-1967-0
https://academic.hep.com.cn/fcse/EN/Y2021/V15/I3/493
Fig.1  SEM images of (a) coal, (b) NC-650, (c) NAC-500-650 and (d) NAC-650-650.
Fig.2  Pore size distribution curves of NACs.
Samples SBETa)
/(m2·g1)
Vtotalb)
/(cm3·g1)
Vtc)/(cm3·g1) Micropore percentaged)/% N/wt-% O/wt-% CO2 capacity/(mmol·g1)
Coal 4.92 1.47 9.03 0.43
NAC-500-650 3078.99 1.58 1.06 67.13 1.27 6.07 1.97
NAC-500-700 2812.26 1.36 1.01 73.79 1.55 6.74 2.00
NAC-500-800 3062.28 1.56 1.03 66.03 1.70 7.49 1.81
NAC-600-650 2556.32 1.26 0.91 72.18 1.63 6.07 1.96
NAC-600-700 2829.01 1.36 1.03 76.23 1.58 7.02 2.07
NAC-600-800 2700.62 1.38 0.92 66.69 1.41 7.95 1.75
NAC-650-650 2020.74 0.96 0.70 72.92 1.30 9.89 2.68
NAC-650-700 1920.72 0.89 0.67 75.28 1.62 7.71 2.62
NAC-650-800 2318.75 1.25 0.77 61.60 1.68 5.53 2.27
NAC-700-700 2716.18 1.30 0.93 71.87 1.24 5.87 2.33
NAC-700-800 2633.38 1.31 0.93 71.06 1.62 7.35 2.00
AC-650-650 2403.64 1.10 0.86 78.18 1.06 7.24 2.02
ACN-650-650 1763.49 0.93 0.57 61.29 3.30 10.00 2.11
Tab.1  Porous texture properties, elemental analysis, and CO2 capacity of samples
Fig.3  (a) XPS survey spectra and (b) C 1s, (c) N 1s, and (d) O 1s of NAC-650-650.
Fig.4  (a) The CO2 and N2 capacity and (b) cyclic adsorption property of NACs at 25 °C.
Sorbents Adsorption temperature/°C CO2 capacity/(mmol·g1) CO2/N2
selectivity
Regenerability
(cycles, loss)
Ref.
CPTHB 25 4.00 22 [32]
NDPC-30% 0 6.14 14.9 [33]
NDPC-10% 0 6.11 20.2 [33]
NC-650-3 25 4.80 19 5, 2.50% [27]
CN-600-3 0 5.12 [28]
CN-600-3 25 3.71 13 5, 3.60% [28]
NAC 25 3.96 47.17 [30]
PAC 25 5.78 144 10, – [31]
UFA-3-700 30 1.40 4, – [24]
CSGA-K2 30 4.23 20, – [46]
NPC 0 5.45 42.6 6, – [48]
aPCTP-3c 0 6.46 23.7 [49]
NAC-650-650 0 5.96 This work
25 3.92 79.93 10, 2.61% This work
NAC-650-700 0 5.64 This work
25 3.46 78.14 10, 2.29% This work
Tab.2  Comparison of the CO2 adsorption performance between reported N-doped carbons
Fig.5  The fitting of the kinetic models to the experimental adsorption data of (a) NAC-650-650 and (b) NAC-650-700.
Fig.6  (a) CO2 adsorption isotherms and (b) isosteric heat of NAC-650-650 and NAC-650-700.
Fig.7  (a) The relationship of CO2 adsorption capacity with micropore percentage and the linear relationship between cumulative pore volume ((b) d<1.02 nm, (c) d<0.86 nm, (d) d<0.60 nm) and CO2 adsorption capacity at 25 °C and 1 bar.
Samples N-6 percentage/% N-5 percentage/% N-Q percentage/% CO2 capacity/(mmol·g1)
NAC-500-700 36.14 63.16 0.71 2.00
NAC-600-650 49.89 31.76 18.36 1.96
NAC-650-650 39.45 42.22 18.32 2.68
NAC-650-700 19.58 59.78 20.64 2.62
NAC-700-700 0.02 54.62 45.36 2.33
NAC-700-800 42.19 36.94 20.87 2.00
Tab.3  The relationship of N-containing groups and CO2 adsorption capacity
Samples −OH percentage/% −COC− percentage/% −COOH percentage/% CO2 capacity/(mmol·g1)
NAC-500-700 30.57 40.60 28.83 2.00
NAC-600-650 21.90 43.39 34.71 1.96
NAC-650-650 46.05 22.34 31.60 2.68
NAC-650-700 44.27 34.82 20.90 2.62
NAC-700-700 43.93 35.18 20.89 2.33
NAC-700-800 42.17 34.63 23.19 2.00
Tab.4  The relationship between O-containing groups and CO2 adsorption capacity
Fig.8  2D waterfall IR absorbance spectra and in situ FTIR difference spectra of CO2 adsorption.
1 B H Jian, W W Shao, L Yong, C Z Zong, Y W Xin. Debates on the causes of global warming. Advances in Climate Change Research, 2012, 3(1): 38–44
https://doi.org/10.3724/SP.J.1248.2012.00038
2 V P Oktyabrskiy. A new opinion of the greenhouse effect. St. Petersburg Polytechnical University Journal. Physics and Mathematics, 2016, 2(2): 124–126
3 J W Akitt. Some observations on the greenhouse effect at the Earth’s surface. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2018, 188: 127–134
https://doi.org/10.1016/j.saa.2017.06.051
4 S Roussanaly, M Vitvarova, R Anantharaman, D Berstad, B Hagen, J Jakobsen, V Novotny, G Skaugen. Techno-economic comparison of three technologies for precombustion CO2 capture from a lignite-fired IGCC. Frontiers of Chemical Science and Engineering, 2020, 14(3): 436–452
https://doi.org/10.1007/s11705-019-1870-8
5 C Cometto, R Kuriki, L J Chen, K Maeda, T C Lau, O Ishitani, M Robert. A carbon Nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. Journal of the American Chemical Society, 2018, 140(24): 7437–7440
https://doi.org/10.1021/jacs.8b04007
6 H Peng, J Lu, C X Wu, Z X Yang, H Chen, W J Song, P Q Li, H Z Yin. Co-doped MoS2 NPs with matched energy band and low overpotential high efficiently convert CO2 to methanol. Applied Surface Science, 2015, 353: 1003–1012
https://doi.org/10.1016/j.apsusc.2015.06.178
7 S M Wang, Y Guan, L Lu, Z Shi, S C Yan, Z G Zou. Effective separation and transfer of carriers into the redox sites on Ta3N5/Bi photocatalyst for promoting conversion of CO2 into CH4. Applied Catalysis B: Environmental, 2018, 224: 10–16
https://doi.org/10.1016/j.apcatb.2017.10.043
8 Y J Ban, M Zhao, W S Yang. Metal-organic framework-based CO2 capture: from precise material design to high-efficiency membranes. Frontiers of Chemical Science and Engineering, 2020, 14(2): 188–215
https://doi.org/10.1007/s11705-019-1872-6
9 W Li, S Li. CO2 adsorption performance of functionalized metal-organic frameworks of varying topologies by molecular simulations. Chemical Engineering Science, 2018, 189: 65–74
https://doi.org/10.1016/j.ces.2018.05.042
10 X Wang, Q J Guo, J Zhao, L L Chen. Mixed amine-modified MCM-41 sorbents for CO2 capture. International Journal of Greenhouse Gas Control, 2015, 37: 90–98
https://doi.org/10.1016/j.ijggc.2015.03.018
11 A Kongnoo, S Tontisirin, P Worathanakul, C Phalakornkule. Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel, 2017, 193: 385–394
https://doi.org/10.1016/j.fuel.2016.12.087
12 R Kishor, A K Ghoshal. Amine-modified mesoporous silica for CO2 adsorption: the role of structural parameters. Industrial & Engineering Chemistry Research, 2017, 56(20): 6078–6087
https://doi.org/10.1021/acs.iecr.7b00890
13 X Z Guo, L Ding, K Kanamori, K Nakanishi, H Yang. Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Microporous and Mesoporous Materials, 2017, 245: 51–57
https://doi.org/10.1016/j.micromeso.2017.02.076
14 Y X Wang, X D Hu, J Hao, R Ma, Q J Guo, H F Gao, H C Bai. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: a combined experimental and DFT calculation study. Industrial & Engineering Chemistry Research, 2019, 58(29): 13390–13400
https://doi.org/10.1021/acs.iecr.9b01454
15 X Hu, M Radosz, K A Cychosz, M Thommes. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology, 2011, 45(16): 7068–7074
https://doi.org/10.1021/es200782s
16 E Mehrvarz, A A Ghoreyshi, M Jahanshahi. Surface modification of broom sorghum-based activated carbon via functionalization with triethylenetetramine and urea for CO2 capture enhancement. Frontiers of Chemical Science and Engineering, 2017, 11(2): 252–265
https://doi.org/10.1007/s11705-017-1630-6
17 X Wang, Q J Guo. CO2 adsorption behavior of activated coal char modified with tetraethylenepentamine. Energy & Fuels, 2016, 30(4): 3281–3288
https://doi.org/10.1021/acs.energyfuels.5b02882
18 S Gao, L Ge, T E Rufford, Z H Zhu. The preparation of activated carbon discs from tar pitch and coal powder for adsorption of CO2, CH4 and N2. Microporous and Mesoporous Materials, 2017, 238: 19–26
https://doi.org/10.1016/j.micromeso.2016.08.004
19 X Y Ge, Z S Wu, Z L Wu, Y J Yan, G Cravotto, B C Ye. Enhanced PAHs adsorption using iron-modified coal-based activated carbon via microwave radiation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 235–243
https://doi.org/10.1016/j.jtice.2016.03.050
20 X H Wei, Z L Wu, C F Du, Z S Wu, B C Ye, G Cravotto. Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77: 257–262
https://doi.org/10.1016/j.jtice.2017.04.004
21 G Z Chang, J J Xie, Y Q Huang, H C Liu, X L Yin, C Z Wu. Gasification reactivity and pore structure development: effect of intermittent addition of steam on increasing reactivity of PKS biochar with CO2. Energy & Fuels, 2017, 31(3): 2887–2895
https://doi.org/10.1021/acs.energyfuels.6b02859
22 X J Wang, B Q Yuan, X Zhou, Q B Xia, Y W Li, D L An, Z Li. Novel glucose-based adsorbents (Glc-Cs) with high CO2 capacity and excellent CO2/CH4/N2 adsorption selectivity. Chemical Engineering Journal, 2017, 327: 51–59
https://doi.org/10.1016/j.cej.2017.06.074
23 M Nowrouzi, H Younesi, N Bahramifar. Superior CO2 capture performance on biomass-derived carbon/metal oxides nanocomposites from Persian ironwood by H3PO4 activation. Fuel, 2018, 223: 99–114
https://doi.org/10.1016/j.fuel.2018.03.035
24 D Tiwari, H Bhunia, P K Bajpai. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Applied Surface Science, 2018, 439: 760–771
https://doi.org/10.1016/j.apsusc.2017.12.203
25 F Q Liu, L L Wang, G H Li, W Li, C Q Li. Hierarchically structured graphene coupled microporous organic polymers for superior CO2 capture. ACS Applied Materials & Interfaces, 2017, 9(39): 33997–34004
https://doi.org/10.1021/acsami.7b11492
26 G Z Chang, W Wu, P C Shi, J J Ma, Q J Guo. A promising composite bimetallic catalyst for producing CH4-rich syngas from bitumite one-step gasification. Energy Conversion and Management, 2020, 205: 112408
https://doi.org/10.1016/j.enconman.2019.112408
27 J Chen, J Yang, G S Hu, X Hu, Z M Li, S W Shen, M Radosz, M H Fan. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1439–1445
https://doi.org/10.1021/acssuschemeng.5b01425
28 L M Yue, Q Z Xia, L W Wang, L L Wang, H DaCosta, J Yang, X Hu. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. Journal of Colloid and Interface Science, 2018, 511: 259–267
https://doi.org/10.1016/j.jcis.2017.09.040
29 Y C Chiang, R S Juang. Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214–234
https://doi.org/10.1016/j.jtice.2016.12.014
30 M Peyravi. Synthesis of nitrogen doped activated carbon/polyaniline material for CO2 adsorption. Polymers for Advanced Technologies, 2018, 29(1): 319–328
https://doi.org/10.1002/pat.4117
31 M Wang, X Q Fan, L X Zhang, J H Liu, B Z Wang, R L Cheng, M L Li, J J Tian, J L Shi. Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon. Nanoscale, 2017, 9(44): 17593–17600
https://doi.org/10.1039/C7NR05977A
32 Z H Tian, J J Huang, X Zhang, G L Shao, Q Y He, S K Cao, S G Yuan. Ultra-microporous N-doped carbon from polycondensed framework precursor for CO2 adsorption. Microporous and Mesoporous Materials, 2018, 257: 19–26
https://doi.org/10.1016/j.micromeso.2017.08.012
33 L S Shao, M Q Liu, J H Huang, Y N Liu. CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. Journal of Colloid and Interface Science, 2018, 513: 304–313
https://doi.org/10.1016/j.jcis.2017.11.043
34 J Serafin, U Narkiewicz, A W Morawski, R J Wróbel, B Michalkiewicz. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. Journal of CO2 Utilization, 2017, 18: 73–79
35 J Singh, H Bhunia, S Basu. CO2 adsorption on oxygen enriched porous carbon monoliths: kinetics, isotherm and thermodynamic studies. Journal of Industrial and Engineering Chemistry, 2018, 60: 321–332
https://doi.org/10.1016/j.jiec.2017.11.018
36 J P Simonin. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 2016, 300: 254–263
https://doi.org/10.1016/j.cej.2016.04.079
37 D Tiwari, H Bhunia, P K Bajpai. Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO2 adsorption: kinetics, isotherm, and thermodynamics. Journal of Environmental Management, 2018, 218: 579–592
https://doi.org/10.1016/j.jenvman.2018.04.088
38 D Tiwari, C Goel, H Bhunia, P K Bajpai. Melamine-formaldehyde derived porous carbons for adsorption of CO2 capture. Journal of Environmental Management, 2017, 197: 415–427
https://doi.org/10.1016/j.jenvman.2017.04.013
39 M Q Liu, L S Shao, J H Huang, Y N Liu. O-containing hyper-cross-linked polymers and porous carbons for CO2 capture. Microporous and Mesoporous Materials, 2018, 264: 104–111
https://doi.org/10.1016/j.micromeso.2017.12.036
40 N A Rashidi, S Yusup. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization, 2016, 13: 1–16
41 G K Parshetti, S Chowdhury, R Balasubramanian. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel, 2015, 148: 246–254
https://doi.org/10.1016/j.fuel.2015.01.032
42 Y A Alhamed, S U Rather, A H El-Shazly, S F Zaman, M A Daous, A A Al-Zahrani. Preparation of activated carbon from fly ash and its application for CO2 capture. Korean Journal of Chemical Engineering, 2015, 32(4): 723–730
https://doi.org/10.1007/s11814-014-0273-2
43 D D Liu, J H Gao, Q X Cao, S H Wu, Y K Qin. Improvement of activated carbon from Jixi bituminous coal by air preoxidation. Energy & Fuels, 2017, 31(2): 1406–1415
https://doi.org/10.1021/acs.energyfuels.6b02875
44 L Yue, L Rao, L Wang, L An, C Hou, C Ma, H DaCosta, X Hu. Efficient CO2 adsorption on nitrogen-doped porous carbons derived from D-glucose. Energy & Fuels, 2018, 32(6): 6955–6963
https://doi.org/10.1021/acs.energyfuels.8b01028
45 Á Sánchez-Sánchez, F Suárez-García, A Martínez-Alonso, J M D Tascón. Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: acidic and basic site interactions. ACS Applied Materials & Interfaces, 2014, 6(23): 21237–21247
https://doi.org/10.1021/am506176e
46 A L Yaumi, M Z A Bakar, B H Hameed. Reusable nitrogen-doped mesoporous carbon adsorbent for carbon dioxide adsorption in fixed-bed. Energy, 2017, 138: 776–784
https://doi.org/10.1016/j.energy.2017.07.130
47 K N Kudin, B Ozbas, H C Schniepp, R K Prud’Homme, I A Aksay, R Car. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Letters, 2008, 8(1): 36–41
https://doi.org/10.1021/nl071822y
48 L S Shao, S Q Wang, M Q Liu, J H Huang, Y N Liu. Triazine-based hyper-cross-linked polymers derived porous carbons for CO2 capture. Chemical Engineering Journal, 2018, 339: 509–518
https://doi.org/10.1016/j.cej.2018.01.145
49 P Puthiaraj, W S Ahn. Facile synthesis of microporous carbonaceous materials derived from a covalent triazine polymer for CO2 capture. Journal of Energy Chemistry, 2017, 26(5): 965–971
https://doi.org/10.1016/j.jechem.2017.07.012
50 G J Zhang, P Y Zhao, L X Hao, Y. Xu Amine-modified SBA-15(P): a promising adsorbent for CO2 capture. Journal of CO2 Utilization, 2018, 24: 22–33
[1] FCE-20027-OF-WY_suppl_1 Download
[1] Jun-Wei Zhang, Hang Zhang, Tie-Zhen Ren, Zhong-Yong Yuan, Teresa J. Bandosz. FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction[J]. Front. Chem. Sci. Eng., 2021, 15(2): 279-287.
[2] Jun Wei, Jianbo Zhao, Di Cai, Wenqiang Ren, Hui Cao, Tianwei Tan. Synthesis of micro/meso porous carbon for ultrahigh hydrogen adsorption using cross-linked polyaspartic acid[J]. Front. Chem. Sci. Eng., 2020, 14(5): 857-867.
[3] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[4] Fenghua Liu, Yijian Lai, Binyuan Zhao, Robert Bradley, Weiping Wu. Photothermal materials for efficient solar powered steam generation[J]. Front. Chem. Sci. Eng., 2019, 13(4): 636-653.
[5] Di Lu, Ran Tao, Zheng Wang. Carbon-based materials for photodynamic therapy: A mini-review[J]. Front. Chem. Sci. Eng., 2019, 13(2): 310-323.
[6] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[7] Tao Zhang, Tewodros Asefa. Copper nanoparticles/polyaniline-derived mesoporous carbon electrocatalysts for hydrazine oxidation[J]. Front. Chem. Sci. Eng., 2018, 12(3): 329-338.
[8] Chao Zhang, Chenbao Lu, Shuai Bi, Yang Hou, Fan Zhang, Ming Cai, Yafei He, Silvia Paasch, Xinliang Feng, Eike Brunner, Xiaodong Zhuang. S-enriched porous polymer derived N-doped porous carbons for electrochemical energy storage and conversion[J]. Front. Chem. Sci. Eng., 2018, 12(3): 346-357.
[9] Shaojie Wang,Zhihong Ma,Ting Zhang,Meidan Bao,Haijia Su. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch[J]. Front. Chem. Sci. Eng., 2017, 11(1): 100-106.
[10] Suvidha Gupta,R. A. Pandey,Sanjay B. Pawar. Microalgal bioremediation of food-processing industrial wastewater under mixotrophic conditions: Kinetics and scale-up approach[J]. Front. Chem. Sci. Eng., 2016, 10(4): 499-508.
[11] Jinbo OUYANG, Jingkang WANG, Yongli WANG, Qiuxiang YIN, Hongxun HAO. Thermodynamic study on dynamic water and organic vapor sorption on amorphous valnemulin hydrochloride[J]. Front. Chem. Sci. Eng., 2015, 9(1): 94-104.
[12] Farouq TWAIQ,M.S. NASSER,Sagheer A. ONAIZI. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution[J]. Front. Chem. Sci. Eng., 2014, 8(4): 488-497.
[13] Weixin ZHANG, Wenran ZHAO, Zaoyuan ZHOU, Zeheng YANG. Facile synthesis of α-MnO2 micronests composed of nanowires and their enhanced adsorption to Congo red[J]. Front Chem Sci Eng, 2014, 8(1): 64-72.
[14] Tiantian LIU, Yuanyuan RAN, Bochao WANG, Weibing DONG, Songgu WU, Junbo GONG. The dehydration behavior and non-isothermal dehydration kinetics of donepezil hydrochloride monohydrate (Form I)[J]. Front Chem Sci Eng, 2014, 8(1): 55-63.
[15] Jasmin Shah, M. Rasul Jan, Attaul Haq, Younas Khan. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Front Chem Sci Eng, 2013, 7(4): 428-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed