Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (10) : 1505-1513    https://doi.org/10.1007/s11705-022-2164-0
RESEARCH ARTICLE
Catalytic hydrogenation of insoluble organic matter of CS2/Acetone from coal over mesoporous HZSM-5 supported Ni and Ru
Reyila Abuduwayiti1, Feng-Yun Ma1(), Xing Fan1,2()
1. Key Laboratory of Coal Clean Conversion & Chemical Engineering Process of Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China
2. College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
 Download: PDF(3143 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Four supported catalysts, nickel and ruthenium on a HZSM-5 support, were prepared by equal volume impregnation and in-situ decomposition of carbonyl nickel. The properties of catalysts were investigated by catalytic hydro-conversion of 2,2′-dinaphthyl ether as the model compound and extraction residue of Naomaohu lignite as the sample under an initial H2 pressure of 5 MPa and temperature at 150 °C. According to the catalytic hydro-conversion results of the model compound, Ni−Ru/HZSM-5 exhibited the best catalytic performance. It not only activated H2 into H···H, but also further heterolytically split H···H into immobile H attached on the acidic centers of Ni−Ru/HZSM-5 and relatively mobile H+. Catalytic hydro-conversion of the extraction residue from Naomaohu lignite was further examined over the optimized catalyst, Ni−Ru/HZSM-5. Detailed molecular compositions of products from the extraction residue with and without hydrogenation were characterized by Fourier transform infrared spectroscopy and gas chromatography/mass spectrometry. The analytical results showed that the oxygen-containing functional groups in products of hydrogenated extraction residue were obviously reduced after the catalytic treatment. The relative content of oxygenates in the product with catalytic treatment was 18.57% lower than that in the product without catalytic treatment.

Keywords HZSM-5      Ni-based catalyst      catalytic hydrogenation      coal      model compound     
Corresponding Author(s): Feng-Yun Ma,Xing Fan   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 23 June 2022    Issue Date: 17 October 2022
 Cite this article:   
Reyila Abuduwayiti,Feng-Yun Ma,Xing Fan. Catalytic hydrogenation of insoluble organic matter of CS2/Acetone from coal over mesoporous HZSM-5 supported Ni and Ru[J]. Front. Chem. Sci. Eng., 2022, 16(10): 1505-1513.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2164-0
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I10/1505
Proximate analysis Petro-graphical analysis Ultimate analysis (daf) H/C O/C
Mad Ad Vdaf FCdaf Vitrinite Inertinite Exinite R0max/% C H Odiff N St,d
10.36 9.45 52.46 47.54 66.7 2.9 29.4 0.29 74.65 5.96 17.77 1.27 0.35 0.96 0.18
Tab.1  The proximate, petro-graphical and ultimate analyses of Naomaohu lignite a)
Fig.1  XRD patterns of HZSM-5, Ni/HZSM-5, NTC/HZSM-5, Ni−Ru/HZSM-5 and NTC−Ru/HZSM-5. Ni (PDF#04-0850) and Ru (PDF#06-0663) are the standard XRD patterns of nickel and ruthenium.
Fig.2  SEM images and EDS of (a) HZSM-5, (b) Ni/HZSM-5, (c) NTC/HZSM-5, (d) Ni−Ru/HZSM-5 and (e) NTC−Ru/HZSM-5.
Sample SBET/(m2?g?1) Smicro/(m2?g?1) Smeso/(m2?g?1) Vtotal/(cm3?g?1) Vmicro/(cm3?g?1) Vmeso/(cm3?g?1)
HZSM-5 398 215 183 0.360 0.101 0.259
Ni/HZSM-5 365 193 172 0.332 0.086 0.246
NTC/HZSM-5 233 107 126 0.247 0.053 0.194
Ni−Ru/HZSM-5 379 195 184 0.349 0.095 0.254
NTC−Ru/HZSM-5 390 205 185 0.352 0.098 0.254
Tab.2  The textural parameters of support and catalysts
Fig.3  (a) N2 adsorption/desorption isotherms and (b) pore size distributions of HZSM-5, Ni/HZSM-5, NTC/HZSM-5, Ni−Ru/HZSM-5 and NTC−Ru/HZSM-5.
Fig.4  Curve fitting for the X-ray photoelectron spectra of (a–d) Ni 2p and (e–f) Ru 3d of Ni/HZSM-5, NTC/HZSM-5, Ni−Ru/HZSM-5 and NTC−Ru/HZSM-5.
Fig.5  NH3-TPD profiles of HZSM-5, Ni/HZSM-5, NTC/HZSM-5, Ni−Ru/HZSM-5 and NTC−Ru/HZSM-5.
No. Catalyst Conversion/% Selectivity/mol%
PAHs
1 Ni−Ru/HZSM-5 100 47.0 8.0 10.0 6.0 29.0
2 NTC−Ru/HZSM-5 100 18.8 0.6 2.5 0.9 77.2
3 Ni/HZSM-5 58.6 25.7 0.7 3.4 1.3 27.5
4 NTC/HZSM-5 100 18.7 1.3 2.9 1.7 75.4
Tab.3  The selectivity of products from the CHC of DNE over catalysts a)
FGs Range of wavenumber/cm?1 Region
?N–H and –OH tensile vibration 3200–3600 I
C–H stretching vibration in aromatic ring 3000–3100
C–H stretching vibration in aliphatic groups 3000–2800 II
Aliphatic C=O stretching vibration 1770–1730 III
Aromatic ring C=O stretching vibration 1721–1695
Aromatic ring C=C stretching vibration 1635–1547
C–H deformation vibration of aliphatic 1530–1410
C–O–C stretching vibration of phenol aldehydes 1310–1180
C–OH in phenols 1180–1100
Isolated hydrogen in aromatic rings 900–880 IV
Two adjacent aromatic ring hydrogen 850–810
Three adjacent aromatic ring hydrogen 780–760
Four adjacent aromatic ring hydrogen 750–730
Five adjacent aromatic ring hydrogen 710–680
Tab.4  Functional groups assignment of FTIR absorption peaks
Fig.6  FTIR spectra of RNCHC and RCHC.
Fig.7  Distribution of group components in RNCHC and RCHC.
  Scheme1 Possible reaction pathways for the CHC of residues over Ni−Ru/HZSM-5.
1 X S Wang, Y G Tang, S Q Wang, H H Schobert. Clean coal geology in China: research advance and its future. Journal of Coal Science & Engineering, 2020, 7( 2): 299– 310
2 T Zhu, R Wang, N Yi, W Niu, L Wang, Z Xue. CO2 and SO2 emission characteristics of the whole process industry chain of coal processing and utilization in China. Journal of Coal Science & Engineering, 2020, 7( 1): 19– 25
3 K Irina, E Christian, N F Jorge, P Julian. From coal to low carbon coal region development opportunities under EU recovery programmes. CEPS, 2021, 6 : 1– 12
4 Y Y Xu, Z Q Sun, X Fan, F Y Ma, P N Kuznetsov, B Chen, J F Wang. Building methodology for evaluating the effects of direct coal liquefaction using coal structure-chemical index. Fuel, 2021, 305 : 1– 6
5 W Zhang, S L Wang. Thermal degradation and kinetic analysis of organic constituents in coal-gasification wastewater with a novel treatment. International Journal of Low Carbon Technologies, 2020, 15( 4): 620– 628
6 L Han, J Shen, J Wang, K Shabbiri. Characteristics of pore evolution and its maceral contributions in the huolinhe lignite during coal pyrolysis. Natural Resources Research, 2021, 30( 1): 1– 8
7 R P Cai, K Luo, Z W Gao, C G Zhao, J K Xing, J R Fan. Dual-scale flamelet/progress variable approach for prediction of polycyclic aromatic hydrocarbons formation under the condition of coal combustion. Energy & Fuels, 2020, 34( 8): 10010– 10018
8 Ö Sönmez, Ö Yıldız, M Ö Çakır, B Gözmen, E S Giray. Influence of the addition of various ionic liquids on coal extraction with NMP. Fuel, 2018, 212 : 12– 18
9 S Zhang, X D Zhang, Z C Hao, Z M Wang, J F Lin, M G Liu. Dissolution behavior and chemical characteristics of low molecular weight compounds from tectonically deformed coal under tetrahydrofuran extraction. Fuel, 2019, 257 : 1– 12
10 X Li, L Han, P Wang, G G Wu, X L Meng, R Z Chu, Y Z Wan, Z Q Bai, W Li. Structural changes and sodium species redistribution of a typical sodium-rich coal during thermal dissolution with aromatic solvents. Fuel, 2021, 286 : 1– 7
11 C F Wang, X Fan, X M Dong, H C Bai, P N Kuznetsov, P Liang, Z X Liu, X Y Wei. Insights into the structural characteristics of four thermal dissolution extracts of a subbituminous coal by using higher-energy collisional dissociation. Fuel, 2020, 282 : 1– 6
12 H Xu, X Fan, G S Li, Y Y Xu, W L Mo, P N Kuznetsov, F Y Ma, X Y Wei. Preparation of Co-Mo/γ-Al2O3 catalyst and the catalytic hydrogenation effects on coal-related model compounds. Journal of the Energy Institute, 2021, 96 : 52– 60
13 M L Xu, X Y Wei, D W Meng, F H Li, Y P Zhao, Y H Kang, Z M Zong, G H Liu, S Li, Y Xue. et al.. Catalytic hydroconversion of derivates from Naomaohu lignite over an active and recyclable bimetallic catalyst. Fuel Processing Technology, 2020, 204 : 1– 7
14 Y H Kang, X Y Wei, G H Liu, Y Gao, Y J Li, X R Ma, Z F Zhang, Z M Zong. Catalytic hydroconversion of soluble portion in the extraction from Hecaogou subbituminous coal to clean liquid fuel over a Y/ZSM-5 composite zeolite-supported nickel catalyst. Fuel, 2020, 269 : 1– 8
15 W T Li, X Y Wei, X X Liu, L L Guo, S C Qi, Z K Li, D D Zhang, Z M Zong. Catalytic hydroconversion of methanol-soluble portion from Xiaolongtan lignite over difunctional Ni/Z5A. Fuel Processing Technology, 2016, 148 : 146– 154
16 C Li, M Yang, Z Liu, Z Zhang, T Zhu, X Chen, Y Dong, H Cheng. Ru-Ni/Al2O3 bimetallic catalysts with high catalytic activity for N-propylcarbazole hydrogenation. Catalysis Science & Technology, 2020, 10( 7): 2268– 2276
17 F Lin, Y Ma, Y Sun, K Zhao, T Gao, Y Zhu. Heterogeneous Ni−Ru/HZSM-5 one-pot catalytic conversion of lignin into monophenols. Renewable Energy, 2021, 170 : 1070– 1080
18 Z C Luo, Z X Zheng, Y C Wang, G Sun, H Jiang, C Zhao. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water. Green Chemistry, 2016, 18( 21): 5845– 5858
19 D P Serrano, J M Escola, L Briones, S Medina, A Martínez. Hydroreforming of the oils from LDPE thermal cracking over Ni−Ru and Ru supported over hierarchical Beta zeolite. Fuel, 2015, 144 : 287– 294
20 Z Yi, D Hu, H Xu, Z Wu, M Zhang, K Yan. Metal regulating the highly selective synthesis of gamma-valerolactone and valeric biofuels from biomass-derived levulinic acid. Fuel, 2020, 259 : 1– 4
21 K Ramesh, N Sharma, N Narendra. Bakhshi. Catalytic conversion of crude tall oil to fuels and chemicals over HZSM-5: effect of co-feeding steam. Fuel Processing Technology, 1991, 27 : 113– 130
22 A T Townsend, J Abbot. Catalytic cracking of an Australian coal-derived liquid heavy feedstock on HY and HZSM-5 zeolites. Energy & Fuels, 1994, 8 : 690– 699
23 X Huang, R Wang, X Pan, C Wang, M Fan, Y Zhu, Y Wang, J Peng. Catalyst design strategies towards highly shape-selective HZSM-5 for para-xylene through toluene alkylation. Green Energy & Environment, 2020, 5( 4): 385– 393
24 Y H Kang, X Y Wei, G H Liu, X R Ma, Y Gao, X Li, Y J Li, Y J Ma, L Yan, Z M Zong. Catalytic Hydroconversion of ethanol-soluble portion from the ethanolysis of Hecaogou subbituminous coal extraction residue to clean liquid fuel over a Zeolite Y/ZSM-5 composite zeolite-supported nickel catalyst. Energy & Fuels, 2019, 34( 4): 4799– 4807
25 D D Zhang, Z M Zong, J Liu, Y H Wang, L C Yu, J H Lv, T M Wang, X Y Wei, Z H Wei, Y Li. Catalytic hydroconversion of geting bituminous coal over FeNi-S/γ-Al2O3. Fuel Processing Technology, 2015, 133 : 195– 201
26 A Guo, Y M Peng, M Y Mao, Y Wang, Y Long, Q G Li, G Y Fan. Surface property and spatial confinement engineering for achieving Ru nanoclusters on O/N-doped hollow carbon towards enhanced hydrogen production. Fuel, 2021, 306 : 1– 8
27 Z Yang, X Y Wei, M Zhang, Z M Zong. Catalytic hydroconversion of aryl ethers over a nickel catalyst supported on acid-modified zeolite 5A. Fuel Processing Technology, 2018, 177 : 345– 352
28 Z P Liu, W M Fan, J H Ma, R F Li. Adsorption, diffusion and catalysis of mesostructured zeolite HZSM-5. Adsorption, 2012, 18( 5-6): 493– 501
29 Y H Kang, X Y Wei, X Q Zhang, Y J Li, G H Liu, X R Ma, X Li, H C Bai, Z N Li, H J Yan. et al.. Deep catalytic hydroconversion of straw-derived bio-oil to alkanes over mesoporous zeolite Y supported nickel nanoparticles. Renewable Energy, 2021, 173 : 876– 885
30 X K Li, Z M Zong, Y F Chen, Z Yang, G H Liu, F J Liu, X Y Wei, B J Wang, F Y Ma, J M Liu. Catalytic hydroconversion of Yinggemajianfeng lignite over difunctional Ni-Mg2Si/γ-Al2O3. Fuel, 2019, 249 : 496– 502
31 Y S Wu, Z X Lin, X Zhu, X Hu, M Gholizadeh, H Q Sun, Y Huang, S Zhang, H Zhang. Hydrogenolysis of lignin to phenolic monomers over Ru based catalysts with different metal-support interactions: effect of partial hydrogenation of C(sp2)–O/C. Fuel, 2021, 302 : 1– 9
32 S R Wang, Q Q Yin, J F Guo, B Ru, L J Zhu. Improved Fischer-Tropsch synthesis for gasoline over Ru, Ni promoted Co/HZSM-5 catalysts. Fuel, 2013, 108 : 597– 603
33 K Chen, J C Sang, Z X Wang, U K Ibrahim, W Xia, A J Guo, J Zhang, D Hou. Production of low-oxygenated bio-fuels (hydrocarbons and polymethylphenols) from lignocellulose by a two-stage strategy with non-noble metal catalysts. Fuel, 2021, 286 : 1– 10
34 W H Geng, T Nakajima, H K Takanashi, A Ohki. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry. Fuel, 2009, 88( 1): 139– 144
35 Y Zhao, C Xing, C Y Shao, G Chen, S Z Sun, G Chen, L Zhang, J T Pei, P H Qiu, S Guo. Impacts of intrinsic alkali and alkaline earth metals on chemical structure of low-rank coal char: semi-quantitative results based on FT-IR structure parameters. Fuel, 2020, 278 : 1– 12
36 Z Q Liu, X Y Wei, H H Wu, W T Li, Y Y Zhang, Z M Zong, F Y Ma, J M Liu. Difunctional nickel/microfiber attapulgite modified with an acidic ionic liquid for catalytic hydroconversion of lignite-related model compounds. Fuel, 2017, 204 : 236– 242
[1] FCE-21098-OF-AR_suppl_1 Download
[1] Zhipeng Qie, Lijie Wang, Fei Sun, Huan Xiang, Hua Wang, Jihui Gao, Guangbo Zhao, Xiaolei Fan. Tuning porosity of coal-derived activated carbons for CO2 adsorption[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1345-1354.
[2] Juan Shen, Fang Cao, Siqi Liu, Congjun Wang, Rigui Chen, Ke Chen. Effective and selective adsorption of uranyl ions by porous polyethylenimine-functionalized carboxylated chitosan/oxidized activated charcoal composite[J]. Front. Chem. Sci. Eng., 2022, 16(3): 408-419.
[3] Ji Liu, Xinrui Fan, Wei Zhao, Shi-guan Yang, Wenluan Xie, Bin Hu, Qiang Lu. A theoretical investigation on the thermal decomposition of pyridine and the effect of H2O on the formation of NOx precursors[J]. Front. Chem. Sci. Eng., 2021, 15(5): 1217-1228.
[4] Yixin Zhang, Lu Zhou, Liqing Chen, Yang Guo, Fanhui Guo, Jianjun Wu, Baiqian Dai. Synthesis of zeolite Na-P1 from coal fly ash produced by gasification and its application as adsorbent for removal of Cr(VI) from water[J]. Front. Chem. Sci. Eng., 2021, 15(3): 518-527.
[5] Yun Liu, Jiangyuan Qu, Xuehui Wu, Kai Zhang, Yuan Zhang. Reaction kinetics and internal diffusion of Zhundong char gasification with CO2[J]. Front. Chem. Sci. Eng., 2021, 15(2): 373-383.
[6] Xiangchun Liu, Jun Hu, Ruilun Xie, Bin Fang, Ping Cui. Formation mechanism of solid product produced from co-pyrolysis of Pingdingshan lean coal with organic matter in Huadian oil shale[J]. Front. Chem. Sci. Eng., 2021, 15(2): 363-372.
[7] Xiangchun Liu, Ping Cui, Qiang Ling, Zhigang Zhao, Ruilun Xie. A review on co-pyrolysis of coal and oil shale to produce coke[J]. Front. Chem. Sci. Eng., 2020, 14(4): 504-512.
[8] Xuantao Wu, Jie Wang. Intrinsic kinetics and external diffusion of catalytic steam gasification of fine coal char particles under pressurized and fluidized conditions[J]. Front. Chem. Sci. Eng., 2019, 13(2): 415-426.
[9] Yuxia Jiang, Donge Wang, Zhendong Pan, Huaijun Ma, Min Li, Jiahe Li, Anda Zheng, Guang Lv, Zhijian Tian. Microemulsion-mediated hydrothermal synthesis of flower-like MoS2 nanomaterials with enhanced catalytic activities for anthracene hydrogenation[J]. Front. Chem. Sci. Eng., 2018, 12(1): 32-42.
[10] Xue Zou,Jin Li. On the fouling mechanism of polysulfone ultrafiltration membrane in the treatment of coal gasification wastewater[J]. Front. Chem. Sci. Eng., 2016, 10(4): 490-498.
[11] Xiaoxue SUN,Yuzhu SUN,Jianguo YU. Leaching of aluminum from coal spoil by mechanothermal activation[J]. Front. Chem. Sci. Eng., 2015, 9(2): 216-223.
[12] Ruixue GU, Guangming ZENG, Jingjing SHAO, Yuan LIU, Johannes W. Schwank, Yongdan LI. Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith[J]. Front Chem Sci Eng, 2013, 7(3): 270-278.
[13] Alireza MOHAMMADREZAEI, Sadegh PAPARI, Mousa ASADI, Abas NADERIFAR, Reza GOLHOSSEINI. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Front Chem Sci Eng, 2012, 6(3): 253-258.
[14] Zhejun PAN. Modeling of coal swelling induced by water vapor adsorption[J]. Front Chem Sci Eng, 2012, 6(1): 94-103.
[15] Geoff G.X. WANG, Xiaodong ZHANG, Xiaorong WEI, Xuehai FU, Bo JIANG, Yong QIN. A review on transport of coal seam gas and its impact on coalbed methane recovery[J]. Front Chem Sci Eng, 2011, 5(2): 139-161.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed