Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (9) : 1345-1354    https://doi.org/10.1007/s11705-022-2155-1
RESEARCH ARTICLE
Tuning porosity of coal-derived activated carbons for CO2 adsorption
Zhipeng Qie1,2, Lijie Wang3, Fei Sun1(), Huan Xiang4, Hua Wang1, Jihui Gao1, Guangbo Zhao1, Xiaolei Fan2
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK
3. China Datang Corporation Renewable Energy Science and Technology Research Institute, Beijing 100052, China
4. Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham B4 7ET, UK
 Download: PDF(4135 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A simple method was developed to tune the porosity of coal-derived activated carbons, which provided a model adsorbent system to investigate the volumetric CO2 adsorption performance. Specifically, the method involved the variation of the activation temperature in a K2CO3 induced chemical activation process which could yield activated carbons with defined microporous (< 2 nm, including ultra-microporous < 1 nm) and meso-micro-porous structures. CO2 adsorption isotherms revealed that the microporous activated carbon has the highest measured CO2 adsorption capacity (6.0 mmol∙g–1 at 0 °C and 4.1 mmol∙g–1 at 25 °C), whilst ultra-microporous activated carbon with a high packing density exhibited the highest normalized capacity with respect to packing volume (1.8 mmol∙cm−3 at 0 °C and 1.3 mmol∙cm–3 at 25 °C), which is significant. Both experimental correlation analysis and molecular dynamics simulation demonstrated that (i) volumetric CO2 adsorption capacity is directly proportional to the ultra-micropore volume, and (ii) an increase in micropore sizes is beneficial to improve the volumetric capacity, but may lead a low CO2 adsorption density and thus low pore space utilization efficiency. The adsorption experiments on the activated carbons established the criterion for designing CO2 adsorbents with high volumetric adsorption capacity.

Keywords coal-derived activated carbons      porosity      CO2 adsorption      molecular dynamics     
Corresponding Author(s): Fei Sun   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Online First Date: 24 April 2022    Issue Date: 20 September 2022
 Cite this article:   
Zhipeng Qie,Lijie Wang,Fei Sun, et al. Tuning porosity of coal-derived activated carbons for CO2 adsorption[J]. Front. Chem. Sci. Eng., 2022, 16(9): 1345-1354.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2155-1
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I9/1345
Fig.1  Schematic K2CO3 activation of the coal precursor to prepare ACs, and the associated pore formation process in the ACs.
Sample SBET/(m2·g–1) Vtotal/(cm3·g?1) V(≤1 nm)/(cm3·g–1) V(≤1 nm)/Vtotal
AC-600 415 0.22 0.20 0.95
AC-700 636 0.34 0.30 0.88
AC-800 941 0.50 0.40 0.82
AC-900 1592 0.95 0.46 0.48
Tab.1  Textural properties of the ACs under investigation
Fig.2  (a) N2 adsorption/desorption isotherms and (b) DFT pore size distribution of the ACs.
Fig.3  (a) SEM and (b) TEM images of AC-600; (c) SEM and (d) TEM images of AC-700; (e) SEM and (f) TEM images of AC-800; (g) SEM and (h) TEM images of AC-900; (i) Raman spectra of the ACs; (j) XRD patterns of the ACs.
Fig.4  (a) CO2 adsorption isotherms of the ACs measured at 0 °C; (b) photos of the packing patterns of the ACs at ca. 150 mg; (c) packing density (dpacking) corrected volumetric CO2 adsorption capacities (qcv,d) of the ACs at 0 °C and 1 bar; (d) qVtotal correlation of the ACs at 0 °C and 1 bar; (e) qsv,Vt–(V(≤1 nm)/Vtotal) correlation of the ACs at 0 °C; (f) comparison of qsv,Vt and qsv,BET values of different biomass/coal-derived ACs with AC-600 for CO2 adsorption at 0 °C.
Sample q a)/(mmol?g–1) qcv,d/(mmol?cm–3) qsv,BET/(mmol?cm–2) qsv,Vt/(mmol?cm–3)
AC-600 4.1 1.8 96.4 18.2
AC-700 5.3 1.2 82.6 15.4
AC-800 6.0 1.0 64.1 12.1
AC-900 5.0 0.5 31.5 5.3
Tab.2  CO2 adsorption capacities at 0 °C of the ACs under investigation
Fig.5  (a) CO2 adsorption on AC models of different effective pore sizes; (b) density profiles of CO2 molecules along the pores with pore diameters ranging from 0.2 to 3.5 nm; (c) number density and percentage of CO2 molecules adsorbed inside the slit pore; (d) self-diffusion coefficients of CO2 in pores with different effective sizes.
1 J Li, B Michalkiewicz, J Min, C Ma, X Chen, J Gong, E Mijowska, T Tang. Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture. Chemical Engineering Journal, 2019, 360 : 250– 259
https://doi.org/10.1016/j.cej.2018.11.204
2 A M Kierzkowska, R Pacciani, C R Müller. CaO-based CO2 sorbents: from fundamentals to the development of new, highly effective materials. ChemSusChem, 2013, 6( 7): 1130– 1148
https://doi.org/10.1002/cssc.201300178
3 S Wang, X Li, H Wu, Z Tian, Q Xin, G He, D Peng, S Chen, Y Yin, Z Jiang, M D Guiver. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy & Environmental Science, 2016, 9( 6): 1863– 1890
https://doi.org/10.1039/C6EE00811A
4 N Du, H B Park, M M Dal-Cin, M D Guiver. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5( 6): 7306– 7322
https://doi.org/10.1039/C1EE02668B
5 Q Yu, J P Delgado, R Veneman, D W F Brilman. Stability of a benzyl amine based CO2 capture adsorbent in view of regeneration strategies. Industrial & Engineering Chemistry Research, 2017, 56( 12): 3259– 3269
https://doi.org/10.1021/acs.iecr.6b04645
6 X Li, M Hou, Z Zhang, B Han, G Yang, X Wang, L Zou. Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters. Green Chemistry, 2008, 10( 8): 879– 884
https://doi.org/10.1039/b801948g
7 Z H Lee, K T Lee, S Bhatia, A R Mohamed. Post-combustion carbon dioxide capture: evolution towards utilization of nanomaterials. Renewable & Sustainable Energy Reviews, 2012, 16( 5): 2599– 2609
https://doi.org/10.1016/j.rser.2012.01.077
8 A L Yaumi, M Z A Bakar, B H Hameed. Recent advances in functionalized composite solid materials for carbon dioxide capture. Energy, 2017, 124 : 461– 480
https://doi.org/10.1016/j.energy.2017.02.053
9 D Li, Y Chen, M Zheng, H Zhao, Y Zhao, Z Sun. Hierarchically structured porous nitrogen-doped carbon for highly selective CO2 capture. ACS Sustainable Chemistry & Engineering, 2016, 4( 1): 298– 304
https://doi.org/10.1021/acssuschemeng.5b01230
10 Z Qie, F Sun, J Gao, X Pi, L Wang, M Liu, Z Qu, G Zhao. Enhanced SO2 fluidized adsorption dynamic by hierarchically porous activated coke. Journal of the Energy Institute, 2020, 93( 2): 802– 810
https://doi.org/10.1016/j.joei.2019.05.002
11 J Kim, L C Lin, J A Swisher, M Haranczyk, B Smit. Predicting large CO2 adsorption in aluminosilicate zeolites for postcombustion carbon dioxide capture. Journal of the American Chemical Society, 2012, 134( 46): 18940– 18943
https://doi.org/10.1021/ja309818u
12 B A Al-Maythalony, O Shekhah, R Swaidan, Y Belmabkhout, I Pinnau, M Eddaoudi. Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. Journal of the American Chemical Society, 2015, 137( 5): 1754– 1757
https://doi.org/10.1021/ja511495j
13 G Qi, Y Wang, L Estevez, X Duan, N Anako, A H A Park, W Li, C W Jones, E P Giannelis. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science, 2011, 4( 2): 444– 452
https://doi.org/10.1039/C0EE00213E
14 O Oginni, K Singh, G Oporto, B Dawson-Andoh, L McDonald, E Sabolsky. Influence of one-step and two-step KOH activation on activated carbon characteristics. Bioresource Technology Reports, 2019, 7 : 100266
https://doi.org/10.1016/j.biteb.2019.100266
15 H Deng, G Li, H Yang, J Tang, J Tang. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chemical Engineering Journal, 2010, 163( 3): 373– 381
https://doi.org/10.1016/j.cej.2010.08.019
16 O Oginni, K Singh, G Oporto, B Dawson-Andoh, L McDonald, E Sabolsky. Effect of one-step and two-step H3PO4 activation on activated carbon characteristics. Bioresource Technology Reports, 2019, 8 : 100307
https://doi.org/10.1016/j.biteb.2019.100307
17 R L Tseng. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. Journal of Hazardous Materials, 2007, 147( 3): 1020– 1027
https://doi.org/10.1016/j.jhazmat.2007.01.140
18 L Yue, Q Xia, L Wang, L Wang, H DaCosta, J Yang, X Hu. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. Journal of Colloid and Interface Science, 2018, 511 : 259– 267
https://doi.org/10.1016/j.jcis.2017.09.040
19 M J Kim, S W Choi, H Kim, S Mun, K B Lee. Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chemical Engineering Journal, 2020, 397 : 125404
https://doi.org/10.1016/j.cej.2020.125404
20 S Deng, H Wei, T Chen, B Wang, J Huang, G Yu. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures. Chemical Engineering Journal, 2014, 253 : 46– 54
https://doi.org/10.1016/j.cej.2014.04.115
21 N A Rashidi, S Yusup. An overview of activated carbons utilization for the post-combustion carbon dioxide capture. Journal of CO2 Utilization , 2016, 13 : 1– 16
22 J Jagiello, J Kenvin, A Celzard, V Fierro. Enhanced resolution of ultra micropore size determination of biochars and activated carbons by dual gas analysis using N2 and CO2 with 2D-NLDFT adsorption models. Carbon, 2019, 144 : 206– 215
https://doi.org/10.1016/j.carbon.2018.12.028
23 S Feng, W Li, Q Shi, Y Li, J Chen, Y Ling, A M Asiri, D Zhao. Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. Chemical Communications, 2014, 50( 3): 329– 331
https://doi.org/10.1039/C3CC46492J
24 J Kim, J Han, D Ha, S Kang. Synthesis of nitrogen and boron co-doped carbon (CNB) and their CO2 capture properties: from porous to hollow granule structure. Journal of Materials Chemistry A, 2014, 2( 39): 16645– 16651
https://doi.org/10.1039/C4TA03664F
25 X He, H Zhang, H Zhang, X Li, N Xiao, J Qiu. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2( 46): 19633– 19640
https://doi.org/10.1039/C4TA03323J
26 A Alabadi, S Razzaque, Y Yang, S Chen, B Tan. Highly porous activated carbon materials from carbonized biomass with high CO2 capturing capacity. Chemical Engineering Journal, 2015, 281 : 606– 612
https://doi.org/10.1016/j.cej.2015.06.032
27 Z Qie, Z Zhang, F Sun, L Wang, X Pi, J Gao, G Zhao. Effect of pore hierarchy and pore size on the combined adsorption of SO2 and toluene in activated coke. Fuel, 2019, 257 : 116090
https://doi.org/10.1016/j.fuel.2019.116090
28 S Deng, B Hu, T Chen, B Wang, J Huang, Y Wang, G Yu. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption. Adsorption, 2015, 21( 1-2): 125– 133
https://doi.org/10.1007/s10450-015-9655-y
29 D Li, J Zhou, Y Wang, Y Tian, L Wei, Z Zhang, Y Qiao, J Li. Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel, 2019, 238 : 232– 239
https://doi.org/10.1016/j.fuel.2018.10.122
30 J Liu, X Liu, Y Sun, C Sun, H Liu, L A Stevens, K Li, C E Snape. High density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO2 capture. Advanced Sustainable Systems, 2018, 2( 2): 1700115
https://doi.org/10.1002/adsu.201700115
31 E Haffner-Staton, N Balahmar, R Mokaya. High yield and high packing density porous carbon for unprecedented CO2 capture from the first attempt at activation of air-carbonized biomass. Journal of Materials Chemistry A, 2016, 4( 34): 13324– 13335
https://doi.org/10.1039/C6TA06407H
32 L Guo, J Yang, G Hu, X Hu, L Wang, Y Dong, H DaCosta, M Fan. Role of hydrogen peroxide preoxidizing on CO2 adsorption of nitrogen-doped carbons produced from coconut shell. ACS Sustainable Chemistry & Engineering, 2016, 4( 5): 2806– 2813
https://doi.org/10.1021/acssuschemeng.6b00327
33 Z Fan, Z Cheng, J Feng, Z Xie, Y Liu, Y Wang. Ultrahigh volumetric performance of a free-standing compact N-doped holey graphene/PANI slice for supercapacitors. Journal of Materials Chemistry A, 2017, 5( 32): 16689– 16701
https://doi.org/10.1039/C7TA04384H
34 L Wang, F Sun, J Gao, X Pi, T Pei, Z Qie, G Zhao, Y Qin. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91 : 588– 596
https://doi.org/10.1016/j.jtice.2018.06.014
35 A Kommu, J K Singh. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study. Journal of Physical Chemistry C, 2017, 121( 14): 7867– 7880
https://doi.org/10.1021/acs.jpcc.7b00172
36 H Zhou, J Xie, B Liu, S Ban. Molecular simulation of methane adsorption in activated carbon: the impact of pore structure and surface chemistry. Molecular Simulation, 2016, 42( 9): 776– 782
https://doi.org/10.1080/08927022.2015.1089995
37 A K Malde, L Zuo, M Breeze, M Stroet, D Poger, P C Nair, C Oostenbrink, A E Mark. An automated force field topology builder (ATB) and repository: version 1.0. Journal of Chemical Theory and Computation, 2011, 7( 12): 4026– 4037
https://doi.org/10.1021/ct200196m
38 D L Miller, K D Kubista, G M Rutter, M Ruan, W A De Heer, M Kindermann, P N First, J A Stroscio. Real-space mapping of magnetically quantized graphene states. Nature Physics, 2010, 6( 10): 811– 817
https://doi.org/10.1038/nphys1736
39 Z Qie, F Sun, Z Zhang, X Pi, Z Qu, J Gao, G Zhao. A facile trace potassium assisted catalytic activation strategy regulating pore topology of activated coke for combined removal of toluene/SO2/NO. Chemical Engineering Journal, 2020, 389 : 124262
https://doi.org/10.1016/j.cej.2020.124262
40 L Wang, F Sun, F Hao, Z Qu, J Gao, M Liu, K Wang, G Zhao, Y Qin. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors. Chemical Engineering Journal, 2020, 383 : 123205
https://doi.org/10.1016/j.cej.2019.123205
41 F Sun, J Gao, Y Yang, Y Zhu, L Wang, X Pi, X Liu, Z Qu, S Wu, Y Qin. One-step ammonia activation of Zhundong coal generating nitrogen-doped microporous carbon for gas adsorption and energy storage. Carbon, 2016, 109 : 747– 754
https://doi.org/10.1016/j.carbon.2016.08.076
42 M G Plaza, A S González, J J Pis, F Rubiera, C Pevida. Production of microporous biochars by single-step oxidation: effect of activation conditions on CO2 capture. Applied Energy, 2014, 114 : 551– 562
https://doi.org/10.1016/j.apenergy.2013.09.058
43 D P Vargas, L Giraldo, A Erto, J C Moreno-Piraján. Chemical modification of activated carbon monoliths for CO2 adsorption. Journal of Thermal Analysis and Calorimetry, 2013, 114( 3): 1039– 1047
https://doi.org/10.1007/s10973-013-3086-3
44 X L Zhu, P Y Wang, C Peng, J Yang, X B Yan. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chemical Letters, 2014, 25( 6): 929– 932
https://doi.org/10.1016/j.cclet.2014.03.039
45 M G Plaza, A S González, C Pevida, J J Pis, F Rubiera. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications. Applied Energy, 2012, 99 : 272– 279
https://doi.org/10.1016/j.apenergy.2012.05.028
46 G K Parshetti, S Chowdhury, R Balasubramanian. Biomass derived low-cost microporous adsorbents for efficient CO2 capture. Fuel, 2015, 148 : 246– 254
https://doi.org/10.1016/j.fuel.2015.01.032
47 J Wang, A Heerwig, M R Lohe, M Oschatz, L Borchardt, S Kaskel. Fungi-based porous carbons for CO2 adsorption and separation. Journal of Materials Chemistry, 2012, 22( 28): 13911– 13913
https://doi.org/10.1039/c2jm32139d
48 M Sevilla, A B Fuertes. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science, 2011, 4( 5): 1765– 1771
https://doi.org/10.1039/c0ee00784f
49 A Silvestre-Albero, J Silvestre-Albero, M Martínez-Escandell, F Rodríguez-Reinoso. Micro/mesoporous activated carbons derived from polyaniline: promising candidates for CO2 adsorption. Industrial & Engineering Chemistry Research, 2014, 53( 40): 15398– 15405
https://doi.org/10.1021/ie5013129
50 L Wang, F Sun, J Gao, Y Zhu, T Pei, L Li, G Zhao, Y Qin. Pore reorganization of porous carbon during trace calcium-catalyzed coal activation for adsorption applications. Energy & Fuels, 2018, 32( 9): 9191– 9201
https://doi.org/10.1021/acs.energyfuels.8b01974
[1] Linlin You, Yandong Guo, Yanjing He, Feng Huo, Shaojuan Zeng, Chunshan Li, Xiangping Zhang, Xiaochun Zhang. Molecular level understanding of CO2 capture in ionic liquid/polyimide composite membrane[J]. Front. Chem. Sci. Eng., 2022, 16(2): 141-151.
[2] Daohui Zhao, Huang Chen, Yuqing Wang, Bei Li, Chongxiong Duan, Zhixian Li, Libo Li. Molecular dynamics simulation on DNA translocating through MoS2 nanopores with various structures[J]. Front. Chem. Sci. Eng., 2021, 15(4): 922-934.
[3] Quan Liu, Mingqiang Chen, Yangyang Mao, Gongping Liu. Theoretical study on Janus graphene oxide membrane for water transport[J]. Front. Chem. Sci. Eng., 2021, 15(4): 913-921.
[4] Faiz Almansour, Monica Alberto, Rupesh S. Bhavsar, Xiaolei Fan, Peter M. Budd, Patricia Gorgojo. Recovery of free volume in PIM-1 membranes through alcohol vapor treatment[J]. Front. Chem. Sci. Eng., 2021, 15(4): 872-881.
[5] Yanxia Wang, Xiude Hu, Tuo Guo, Jian Hao, Chongdian Si, Qingjie Guo. Efficient CO2 adsorption and mechanism on nitrogen-doped porous carbons[J]. Front. Chem. Sci. Eng., 2021, 15(3): 493-504.
[6] Kasra Pirzadeh, Ali Asghar Ghoreyshi, Mostafa Rahimnejad, Maedeh Mohammadi. Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling[J]. Front. Chem. Sci. Eng., 2020, 14(2): 233-247.
[7] Pascal Brault, William Chamorro-Coral, Sotheara Chuon, Amaël Caillard, Jean-Marc Bauchire, Stève Baranton, Christophe Coutanceau, Erik Neyts. Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source[J]. Front. Chem. Sci. Eng., 2019, 13(2): 324-329.
[8] Linchen Yuan, Hao Wu, Yue Zhao, Xiaoyu Qin, Yanni Li. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis[J]. Front. Chem. Sci. Eng., 2019, 13(1): 133-139.
[9] Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
[10] Linghui Yu, Jiansong Miao, Yi Jin, Jerry Y.S. Lin. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Front. Chem. Sci. Eng., 2017, 11(3): 346-352.
[11] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[12] Lin ZHANG, Yan SUN. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Front Chem Sci Eng, 2013, 7(4): 456-463.
[13] C. SCHMIDT, J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
[14] LIU Xiaoye, DAI Gance. Impregnation of thermoplastic resin in jute fiber mat[J]. Front. Chem. Sci. Eng., 2008, 2(2): 145-149.
[15] GAO Jian, REN Zhongqi, ZHANG Zeting, ZHANG Weidong. Experimental studies on the influence of porosity on membrane absorption process[J]. Front. Chem. Sci. Eng., 2007, 1(4): 385-389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed