Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2019, Vol. 13 Issue (1) : 133-139    https://doi.org/10.1007/s11705-018-1737-4
RESEARCH ARTICLE
Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis
Linchen Yuan1,2, Hao Wu1,2, Yue Zhao1,2, Xiaoyu Qin1,2, Yanni Li1,2()
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
2. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China
 Download: PDF(895 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In Lactococcus lactis, the global transcriptional regulatory factor CodY can interact with the promoter DNA to regulate the growth, metabolism, environmental adaptation and other biological activities of the strains. In order to study the mechanism of interaction between CodY and its target DNA, molecular docking and molecular dynamics simulations were used to explore the binding process at molecular level. Through the calculations of the free energy of binding, hydrogen bonding and energy decomposition, nine key residues of CodY were identified, corresponding to SER184, SER186, SER208, THR217, ARG218, SER219, ASN223, LYS242 and GLY243, among which SER186, ARG218 and LYS242 play a vital role in DNA binding. Our research results provide important theoretical guidance for using wet-lab methods to study and optimize the metabolic network regulated by CodY.

Keywords CodY      DNA      molecular docking      molecular dynamics     
Corresponding Author(s): Yanni Li   
Just Accepted Date: 19 April 2018   Online First Date: 21 June 2018    Issue Date: 25 February 2019
 Cite this article:   
Linchen Yuan,Hao Wu,Yue Zhao, et al. Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis[J]. Front. Chem. Sci. Eng., 2019, 13(1): 133-139.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-018-1737-4
https://academic.hep.com.cn/fcse/EN/Y2019/V13/I1/133
Fig.1  CodY dimer structure
Fig.2  The Z-score value of CodY
Parameter 1 2 3 4
Z-Score −1.3 −1.0 −0.9 −0.5
Haddock score −134.1±16.7 −126.4± 8.9 −123.2±11.0 −112.5±3.3
Cluster size 61 21 28 15
Van der Waals energy −74.5±11.4 −72.1±9.8 −71.9±2.2 −66.8±2.7
Electrostatic energy −513.9±44.7 −460.3±1.6 −432.0±48.3 −443.9±17.9
RMSD 6.9± 0.1 4.5±0.5 7.4±0.5 11.8±0.3
Buried surface area 1815.5 1845.6 1744.3 1796.7
Tab.1  Molecular Docking Results of HADDOCK
Fig.3  (a) The RMSD of CodY-DNA complexes; (b) the RMSF values of CodY-DNA (red) and CodY (blue)
Donor Acceptor Occupancy/%
SER219′-Side-OG DA16-Side-N3 99.75
ARG218′-Side-NH1 DT18-Side-OP1 99.53
GLY243-Main-N DC6-Side-OP1 99.00
ARG218-Side-NH2 DA5-Side-OP2 98.40
ARG218-Side-NE DA5-Side-OP2 95.85
SER186′-Main-N DC24-Side-OP1 94.51
LYS242-Side-NZ DA5-Side-OP1 91.52
SER184′-Side-OG DA24-Side-OP1 88.62
SER186′-Side-OG DC23-Side-O3′ 67.31
SER208-Side-OG DA5-Side-OP2 63.32
THR217′-Side-OG1 DT21-Side-O2 58.91
SER219-Side-OG DA7-Side-OP2 58.85
Tab.2  The hydrogen bonds between CodY and DNA
Fig.4  The hydrogen bonds between CodY and DNA. (a) SER208 and DA5, ARG218 and DA5; (b) SER219 and DA7; (c) LYS242 and DA5; (d) GLY243 and DC6; (e) SER184′ and DC24, SER186′ and DA23、DC24; (f) THR217′ and DT21; (g) ARG218′ and DT18; (h) SER219′ and DA16
DGVDW DGELE DGPB DGSA DGMM DGSOL DGTOT TDS DGbind
−96.15±1.93 −259.15±31.54 291.63±30.54 −19.78±0.13 −355.30±31.74 271.85±30.51 −83.45±2.33 −43.90±3.21 −39.55
Tab.3  Binding free energy of CodY-DNA complex/(kcal·mol1)
Fig.5  Energetic contributions of key residues in CodY-DNA complex
1 JZhang, J Zhong. The journey of nisin development in China, a natural-green food preservative. Protein & Cell, 2015, 6(10): 709–711
https://doi.org/10.1007/s13238-015-0214-9
2 ASong, L In, SLim, R ARahim. A review on  Lactococcus lactis: From food to factory. Microbial Cell Factories, 2017, 16(1): 55
https://doi.org/10.1186/s12934-017-0669-x
3 KPapadimitriou, A Alegria, P ABron, MAngelis, MGobbetti, MKleerebezem. Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 2016, 80(3): 837–890
https://doi.org/10.1128/MMBR.00076-15
4 D JMcMahon, C J Oberg, M A Drake, N Farkye, L VMoyes, M RArnold, BGanesan, JSteele, J RBroadbent. Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full-fat cheddar cheese. Journal of Dairy Science, 2014, 97(8): 4780–4798
https://doi.org/10.3168/jds.2014-8071
5 VLaroute, C Yasaro, WNarin, RMazzoli, EPessione, PLoubiere. GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. Frontiers in Microbiology, 2016, 7: 1050
https://doi.org/10.3389/fmicb.2016.01050
6 JDelcour, T Ferain, MDeghorain, EPalumbo, PHols. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76(1/4): 159–184
https://doi.org/10.1023/A:1002089722581
7 AHartke, S Bouche, J CGiard, ABenachour, PBoutibonnes, YAuffray. The lactic acid stress response of Lactococcus lactis subsp. lactis. Current Microbiology, 1996, 33(3): 194–199
https://doi.org/10.1007/s002849900099
8 B RBelitsky, A L Sonenshein. Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7026–7031
https://doi.org/10.1073/pnas.1300428110
9 TYuan, Y K Guo, J K Dong, T Y Li, T Zhou, K WSun, MZhang, Q YWu, ZXie, Y Z Cai, et al.. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 107–116
https://doi.org/10.1007/s11705-017-1621-7
10 V MLevdikov, E Blagova, V LYoung, B RBelitsky, ALebedev, A LSonenshein, A JWilkinson. Structure of the branched-chain amino acid and GTP-sensing global regulator, CodY, from Bacillus subtilis. Journal of Biological Chemistry, 2017, 292(7): 2714–2728
https://doi.org/10.1074/jbc.M116.754309
11 MBiasini, S Bienert, AWaterhouse, KArnold, GStuder, TSchmidt, FKlefer, T GCassarino, MBertonl, LBordoli, et al.. Swiss-model: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(W1): W252–W258
https://doi.org/10.1093/nar/gku340
12 D ACase, T A Darden, T E III Cheatham. AMBER 12. 2012
13 S AAdcock, J A Mccammon. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 2006, 106(5): 1589–1615
https://doi.org/10.1021/cr040426m
14 UEssmann, L Perera, MBerkowitz, TDarden, HLee, L G Pedersen. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1998, 103(19): 8577–8593
https://doi.org/10.1063/1.470117
15 CColovos, T O Yeates. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 1993, 2(9): 1511–1519
https://doi.org/10.1002/pro.5560020916
16 MWiederstein, M J Slppl. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 2007, 35(Web Server): W407–W410
https://doi.org/10.1093/nar/gkm290
17 OErcan, M Wels, E JSmid, MKleerebezem. Molecular and metabolic adaptations of  Lactococcus lactisat near-zero growth rates. Applied and Environmental Microbiology, 2015, 81(1): 320–331
https://doi.org/10.1128/AEM.02484-14
18 M VDijk, A M Bonvin. 3D-DART: A DNA structure modeling server. Nucleic Acids Research, 2009, 37(Web Server): W235–W239
https://doi.org/10.1093/nar/gkp287
19 M VDijk, A D Dijk, V Hsu, RBoelens, A MBonvin. Information-driven protein-DNA docking using HADDOCK: It is a matter of flexibility. Nucleic Acids Research, 2006, 34(11): 3317–3325
https://doi.org/10.1093/nar/gkl412
20 IMassova, P A Kollman. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 2000, 18(1): 113–135
https://doi.org/10.1023/A:1008763014207
21 JKottalam, D A Case. Langevin modes of macromolecules: Applications to crambin and DNA hexamers. Biopolymers, 1990, 29(10-11): 1409–1421
https://doi.org/10.1002/bip.360291008
22 K ASharp, B Honig. Electrostatic interactions in macromolecules: Theory and applications. Annual Review of Biophysics and Biophysical Chemistry, 1990, 19(1): 301–332
https://doi.org/10.1146/annurev.bb.19.060190.001505
23 DSitkoff, K A Sharp, B Honig. Accurate calculation of hydration free energies using macroscopic solvent models. Journal of Physical Chemistry, 1994, 98(7): 1978–1988
https://doi.org/10.1021/j100058a043
24 W CStill, A Tempczyk, R CHawley, THendirckson. Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 1990, 112(16): 6127–6129
https://doi.org/10.1021/ja00172a038
[1] Pascal Brault, William Chamorro-Coral, Sotheara Chuon, Amaël Caillard, Jean-Marc Bauchire, Stève Baranton, Christophe Coutanceau, Erik Neyts. Molecular dynamics simulations of initial Pd and PdO nanocluster growth in a magnetron gas aggregation source[J]. Front. Chem. Sci. Eng., 2019, 13(2): 324-329.
[2] Pengwei Zhang, Junxiao Ye, Ergang Liu, Lu Sun, Jiacheng Zhang, Seung Jin Lee, Junbo Gong, Huining He, Victor C. Yang. Aptamer-coded DNA nanoparticles for targeted doxorubicin delivery using pH-sensitive spacer[J]. Front. Chem. Sci. Eng., 2017, 11(4): 529-536.
[3] Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures[J]. Front. Chem. Sci. Eng., 2017, 11(3): 440-447.
[4] Duo Liu,Bingzhi Li,Hong Liu,Xuejiao Guo,Yingjin Yuan. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae[J]. Front. Chem. Sci. Eng., 2017, 11(1): 117-125.
[5] Chengyun Huang,Steven E. Rokita. DNA alkylation promoted by an electron-rich quinone methide intermediate[J]. Front. Chem. Sci. Eng., 2016, 10(2): 213-221.
[6] Wen Zhang,Jack W. Szostak,Zhen Huang. Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom[J]. Front. Chem. Sci. Eng., 2016, 10(2): 196-202.
[7] Andrew Best,Katherine James,Gerald Hysenaj,Alison Tyson-Capper,David J. Elliott. Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1[J]. Front. Chem. Sci. Eng., 2016, 10(2): 186-195.
[8] Fufeng LIU,Wenjie DU,Yan SUN,Jie ZHENG,Xiaoyan DONG. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein[J]. Front. Chem. Sci. Eng., 2014, 8(4): 433-444.
[9] Lin ZHANG, Yan SUN. Effect of ligand chain length on hydrophobic charge induction chromatography revealed by molecular dynamics simulations[J]. Front Chem Sci Eng, 2013, 7(4): 456-463.
[10] C. SCHMIDT, J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
[11] Ulrich L?CHELT, Ernst WAGNER. Invading target cells: multifunctional polymer conjugates as therapeutic nucleic acid carriers[J]. Front Chem Sci Eng, 2011, 5(3): 275-286.
[12] Ming LIU, Wenxiang HU. Functional role of ATM in the cellular response to DNA damage[J]. Front Chem Sci Eng, 2011, 5(2): 179-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed