|
|
Molecular simulation of the interaction mechanism between CodY protein and DNA in Lactococcus lactis |
Linchen Yuan1,2, Hao Wu1,2, Yue Zhao1,2, Xiaoyu Qin1,2, Yanni Li1,2( ) |
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China 2. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, China |
|
|
Abstract In Lactococcus lactis, the global transcriptional regulatory factor CodY can interact with the promoter DNA to regulate the growth, metabolism, environmental adaptation and other biological activities of the strains. In order to study the mechanism of interaction between CodY and its target DNA, molecular docking and molecular dynamics simulations were used to explore the binding process at molecular level. Through the calculations of the free energy of binding, hydrogen bonding and energy decomposition, nine key residues of CodY were identified, corresponding to SER184, SER186, SER208, THR217, ARG218, SER219, ASN223, LYS242 and GLY243, among which SER186, ARG218 and LYS242 play a vital role in DNA binding. Our research results provide important theoretical guidance for using wet-lab methods to study and optimize the metabolic network regulated by CodY.
|
Keywords
CodY
DNA
molecular docking
molecular dynamics
|
Corresponding Author(s):
Yanni Li
|
Just Accepted Date: 19 April 2018
Online First Date: 21 June 2018
Issue Date: 25 February 2019
|
|
1 |
JZhang, J Zhong. The journey of nisin development in China, a natural-green food preservative. Protein & Cell, 2015, 6(10): 709–711
https://doi.org/10.1007/s13238-015-0214-9
|
2 |
ASong, L In, SLim, R ARahim. A review on Lactococcus lactis: From food to factory. Microbial Cell Factories, 2017, 16(1): 55
https://doi.org/10.1186/s12934-017-0669-x
|
3 |
KPapadimitriou, A Alegria, P ABron, MAngelis, MGobbetti, MKleerebezem. Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 2016, 80(3): 837–890
https://doi.org/10.1128/MMBR.00076-15
|
4 |
D JMcMahon, C J Oberg, M A Drake, N Farkye, L VMoyes, M RArnold, BGanesan, JSteele, J RBroadbent. Effect of sodium, potassium, magnesium, and calcium salt cations on pH, proteolysis, organic acids, and microbial populations during storage of full-fat cheddar cheese. Journal of Dairy Science, 2014, 97(8): 4780–4798
https://doi.org/10.3168/jds.2014-8071
|
5 |
VLaroute, C Yasaro, WNarin, RMazzoli, EPessione, PLoubiere. GABA production in Lactococcus lactis is enhanced by arginine and co-addition of malate. Frontiers in Microbiology, 2016, 7: 1050
https://doi.org/10.3389/fmicb.2016.01050
|
6 |
JDelcour, T Ferain, MDeghorain, EPalumbo, PHols. The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek, 1999, 76(1/4): 159–184
https://doi.org/10.1023/A:1002089722581
|
7 |
AHartke, S Bouche, J CGiard, ABenachour, PBoutibonnes, YAuffray. The lactic acid stress response of Lactococcus lactis subsp. lactis. Current Microbiology, 1996, 33(3): 194–199
https://doi.org/10.1007/s002849900099
|
8 |
B RBelitsky, A L Sonenshein. Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 7026–7031
https://doi.org/10.1073/pnas.1300428110
|
9 |
TYuan, Y K Guo, J K Dong, T Y Li, T Zhou, K WSun, MZhang, Q YWu, ZXie, Y Z Cai, et al.. Construction, characterization and application of a genome-wide promoter library in Saccharomyces cerevisiae. Frontiers of Chemical Science and Engineering, 2017, 11(1): 107–116
https://doi.org/10.1007/s11705-017-1621-7
|
10 |
V MLevdikov, E Blagova, V LYoung, B RBelitsky, ALebedev, A LSonenshein, A JWilkinson. Structure of the branched-chain amino acid and GTP-sensing global regulator, CodY, from Bacillus subtilis. Journal of Biological Chemistry, 2017, 292(7): 2714–2728
https://doi.org/10.1074/jbc.M116.754309
|
11 |
MBiasini, S Bienert, AWaterhouse, KArnold, GStuder, TSchmidt, FKlefer, T GCassarino, MBertonl, LBordoli, et al.. Swiss-model: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(W1): W252–W258
https://doi.org/10.1093/nar/gku340
|
12 |
D ACase, T A Darden, T E III Cheatham. AMBER 12. 2012
|
13 |
S AAdcock, J A Mccammon. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 2006, 106(5): 1589–1615
https://doi.org/10.1021/cr040426m
|
14 |
UEssmann, L Perera, MBerkowitz, TDarden, HLee, L G Pedersen. A smooth particle mesh Ewald method. Journal of Chemical Physics, 1998, 103(19): 8577–8593
https://doi.org/10.1063/1.470117
|
15 |
CColovos, T O Yeates. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 1993, 2(9): 1511–1519
https://doi.org/10.1002/pro.5560020916
|
16 |
MWiederstein, M J Slppl. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 2007, 35(Web Server): W407–W410
https://doi.org/10.1093/nar/gkm290
|
17 |
OErcan, M Wels, E JSmid, MKleerebezem. Molecular and metabolic adaptations of Lactococcus lactis at near-zero growth rates. Applied and Environmental Microbiology, 2015, 81(1): 320–331
https://doi.org/10.1128/AEM.02484-14
|
18 |
M VDijk, A M Bonvin. 3D-DART: A DNA structure modeling server. Nucleic Acids Research, 2009, 37(Web Server): W235–W239
https://doi.org/10.1093/nar/gkp287
|
19 |
M VDijk, A D Dijk, V Hsu, RBoelens, A MBonvin. Information-driven protein-DNA docking using HADDOCK: It is a matter of flexibility. Nucleic Acids Research, 2006, 34(11): 3317–3325
https://doi.org/10.1093/nar/gkl412
|
20 |
IMassova, P A Kollman. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 2000, 18(1): 113–135
https://doi.org/10.1023/A:1008763014207
|
21 |
JKottalam, D A Case. Langevin modes of macromolecules: Applications to crambin and DNA hexamers. Biopolymers, 1990, 29(10-11): 1409–1421
https://doi.org/10.1002/bip.360291008
|
22 |
K ASharp, B Honig. Electrostatic interactions in macromolecules: Theory and applications. Annual Review of Biophysics and Biophysical Chemistry, 1990, 19(1): 301–332
https://doi.org/10.1146/annurev.bb.19.060190.001505
|
23 |
DSitkoff, K A Sharp, B Honig. Accurate calculation of hydration free energies using macroscopic solvent models. Journal of Physical Chemistry, 1994, 98(7): 1978–1988
https://doi.org/10.1021/j100058a043
|
24 |
W CStill, A Tempczyk, R CHawley, THendirckson. Semianalytical treatment of solvation for molecular mechanics and dynamics. Journal of the American Chemical Society, 1990, 112(16): 6127–6129
https://doi.org/10.1021/ja00172a038
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|