|
|
Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith |
Ruixue GU1, Guangming ZENG1, Jingjing SHAO1, Yuan LIU1, Johannes W. Schwank2, Yongdan LI( ) |
1. Tianjin Key Laboratory of Applied Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072, China; 2. Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136, USA |
|
|
Abstract A macro-meso-porous monolithic Ni-based catalyst was prepared via an impregnation route using polystyrene foam as the template and then used in the steam reforming of ethanol to produce a H2-rich gas. The Ni/Mg-Al catalyst has a hierarchically macro-meso-porous structure as indicated by photographs and scanning electron microscopy (SEM). The surface area of the catalyst was 230 m2?g-1 and the Ni dispersion was 5.62%. Compared to the pelletized sample that was prepared without a template, the macro-meso-porous Ni/Mg-Al monolith exhibited superior reactivity in terms of H2 production and also had lower CH4 yields at 700oC and 800oC. Furthermore, the monolithic catalyst maintained excellent activity and H2 selectivity after 100-h on-stream at 700oC, as well as good resistance to coking and metal sintering.
|
Keywords
macroporous Ni-based catalyst
monolith
hydrogen production
ethanol steam reforming
|
Corresponding Author(s):
LI Yongdan,Email:ydli@tju.edu.cn
|
Issue Date: 05 September 2013
|
|
1 |
Breen J P, Ross J R H. Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu–Zn–Al catalysts. Catalysis Today , 1999, 51(3-4): 521-533 doi: 10.1016/S0920-5861(99)00038-3
|
2 |
Li Y D, Rui Z B, Xia C, Anderson M, Lin Y S. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO2 permeation membrane. Catalysis Today , 2009, 148(3-4): 303-309 doi: 10.1016/j.cattod.2009.08.009
|
3 |
Xia C, Li Y, Tian Y, Liu Q H, Wang Z M, Jia L J, Zhao Y C, Li Y D. Intermediate temperature fuel cell with a doped ceria-carbonate composite electrolyte. Journal of Power Sources , 2010, 195(10): 3149-3154 doi: 10.1016/j.jpowsour.2009.11.104
|
4 |
Cribb P H, Dove J E, Yamazaki S. A kinetic study of the oxidation of methanol using shock tube and computer simulation techniques. Combustion and Flame , 1992, 88(2): 186-200 doi: 10.1016/0010-2180(92)90051-P
|
5 |
Armor J N. The multiple roles for catalysis in the production of H2. Applied Catalysis A, General , 1999, 176(2): 159-176 doi: 10.1016/S0926-860X(98)00244-0
|
6 |
Vaidya P D, Rodrigues A E. Insight into steam reforming of ethanol to produce hydrogen for fuel cells. Chemical Engineering Journal , 2006, 117(1): 39-49 doi: 10.1016/j.cej.2005.12.008
|
7 |
Barroso M N, Galetti A E, Abello M C. Ni catalysts supported over MgAl2O4 modified with Pr for hydrogen production from ethanol steam reforming. Applied Catalysis A: General , 2011, 394(1-2): 124-131
|
8 |
Barroso M N, Gomez M E, Arrua L A, Abello M C. Hydrogen production by ethanol reforming over NiZnAl catalysts. Applied Catalysis A, General , 2006, 304: 116-123 doi: 10.1016/j.apcata.2006.02.033
|
9 |
Sehested J. Four challenges for nickel steam-reforming catalysts. Catalysis Today , 2006, 111(1-2): 103-110 doi: 10.1016/j.cattod.2005.10.002
|
10 |
Sun J, Qui X P, Wu F, Zhu W T. H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. International Journal of Hydrogen Energy , 2005, 30(4): 437-445 doi: 10.1016/j.ijhydene.2004.11.005
|
11 |
Fatsikostas A N, Kondarides D I, Verykios X E. Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today , 2002, 75(1-4): 145-155 doi: 10.1016/S0920-5861(02)00057-3
|
12 |
Yang G H, Tsubaki N, Shamoto J, Yoneyama Y, Zhang Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. Journal of the American Chemical Society , 2010, 132(23): 8129-8136 doi: 10.1021/ja101882a
|
13 |
Guliants V V, Carreon M A, Lin Y S. Ordered mesoporous and macroporous inorganic films and membranes. Journal of Membrane Science , 2004, 235(1-2): 53-72 doi: 10.1016/j.memsci.2004.01.019
|
14 |
Kucharczyk B, Tylus W, Kepiński L. Pd-based monolithic catalysts on metal supports for catalytic combustion of methane. Applied Catalysis B: Environmental , 2004, 49(1): 27-37 doi: 10.1016/j.apcatb.2003.11.006
|
15 |
Giroux T, Hwang S, Liu Y, Ruettinger W, Shore L. Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation. Applied Catalysis B: Environmental , 2005, 56(1-2): 95-110 doi: 10.1016/j.apcatb.2004.07.013
|
16 |
Ryu J H, Lee K Y, La H, Kim H J, Yang J, Jung H. Ni catalyst wash-coated on metal monolith with enhanced heat-transfer capability for steam reforming. Journal of Power Sources , 2007, 171(2): 499-505 doi: 10.1016/j.jpowsour.2007.05.107
|
17 |
Wu P Y, Li X J, Ji S F, Lang B, Habimana F, Li C Y. Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts. Catalysis Today , 2009, 146(1-2): 82-86 doi: 10.1016/j.cattod.2009.01.031
|
18 |
Imhof A, Pine D J. Ordered macroporous materials by emulsion templating. Nature , 1997, 389(6654): 948-951 doi: 10.1038/40105
|
19 |
Imhof A, Pine D J. Uniform macroporous ceramics and plastics by emulsion templating. Advanced Materials , 1998, 10(9): 697-700 doi: 10.1002/(SICI)1521-4095(199806)10:9<697::AID-ADMA697>3.0.CO;2-M
|
20 |
Holland B T, Blanford C F, Stein A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science , 1998, 281(5376): 538-540 doi: 10.1126/science.281.5376.538
|
21 |
Stein A, Schroden R C. Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond. Current Opinion in Solid State and Materials Science , 2001, 5(6): 553-564 doi: 10.1016/S1359-0286(01)00022-5
|
22 |
Maekawa H, Esquena J, Bishop S, Solans C, Chmelka B F. Meso/macroporous inorganic oxide monoliths from polymer foams. Advanced Materials , 2003, 15(78): 591-596 doi: 10.1002/adma.200304248
|
23 |
Li F, Wang Z, Ergang N S, Fyfe C A, Stein A. Controlling the shape and alignment of mesopores by confinement in colloidal crystals: Designer pathways to silica monoliths with hierarchical porosity. Langmuir , 2007, 23(7): 3996-4004 doi: 10.1021/la062969s
|
24 |
Chen S L, Dong P, Xu K, Qi Y, Wang D. Large pore heavy oil processing catalysts prepared using colloidal particles as templates. Catalysis Today , 2007, 125(3-4): 143-148 doi: 10.1016/j.cattod.2007.02.026
|
25 |
Zhang Y, Zhao C Y, Liang H, Liu Y. Macroporous monolithic Pt/g-Al2O3 and K-Pt/g-Al2O3 catalysts used for preferential oxidation of CO. Catalysis Letters , 2009, 127(3-4): 339-347 doi: 10.1007/s10562-008-9686-z
|
26 |
Ren J, Du Z J, Zhang C, Li H Q. Macroporous titania monolith prepared via sol-gel process with polymer foam as the template. Chinese Journal of Chemistry , 2006, 24(7): 955-960 doi: 10.1002/cjoc.200690181
|
27 |
Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F. Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC. Journal of Power Sources , 2002, 108(1-2): 53-57 doi: 10.1016/S0378-7753(02)00004-6
|
28 |
Liang H, Zhang Y, Liu Y. Monolithic macroporous catalysts—A new route for miniaturization of water-gas shift reactor. Journal of Natural Gas Chemistry , 2009, 18(4): 436-440 doi: 10.1016/S1003-9953(08)60138-3
|
29 |
He L, Berntsen H, Ferna’ndez E O, Walmsley J C, Blekkan E A, Chen D. pmid:Co-Ni catalysts derived from hydrotalcite-like materials for hydrogen production by ethanol steam reforming. Topics in Catalysis , 2009, 52(3): 206-217 doi: 10.1007/s11244-008-9157-1 pmid:Co-Ni catalysts derived from hydrotalcite-like materials for hydrogen production by ethanol steam reforming
|
30 |
Wang C G, Wang T J, Ma L L, Gao Y, Wu C Z. Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst. Energy Conversion and Management , 2010, 51(3): 446-450 doi: 10.1016/j.enconman.2009.10.006
|
31 |
Hwang C P, Ye C Y. Platinum-oxide species formed by oxidation of platinum crystallites supported on alumina. Journal of Molecular Catalysis A Chemical , 1996, 112(2): 295-302 doi: 10.1016/1381-1169(96)00127-6
|
32 |
Yang J, Ryu J H, Lee K Y, Jung N J, Park J C, Chun D H, Kim H J, Yang J H, Lee H T, Cho I, Jung H. Combined pre-reformer/reformer system utilizing monolith catalysts for hydrogen production. International Journal of Hydrogen Energy , 2011, 36(15): 8850-8856 doi: 10.1016/j.ijhydene.2011.04.130
|
33 |
Coleman L J I, Epling W, Hudgins R R, Croset E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A, General , 2009, 363(1-2): 52-63 doi: 10.1016/j.apcata.2009.04.032
|
34 |
Flytzani-Stephanopoulos M, Voecks G E, Charng T. Modelling of heat transfer in non-adiabatic monolith reactors and experimental comparisons of metal monoliths with packed beds. Chemical Engineering Science , 1986, 41(5): 1203-1212 doi: 10.1016/0009-2509(86)87093-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|