Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2014, Vol. 8 Issue (1) : 87-94    https://doi.org/10.1007/s11705-014-1410-5
RESEARCH ARTICLE
Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate
Zekai ZHANG(), Zhijian KONG, Huayan LIU, Yinfei CHEN
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
 Download: PDF(692 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO·7Al2O3 (M= Ca, Sr). The monoliths are characterized by means of nitrogen adsorption/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physic-chemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of La0.8Sr0.2MnO3 and also prevents the interaction between La0.8Sr0.2MnO3 and cordierite or γ-Al2O3, both crystal structure and surface morphology of La0.8Sr0.2MnO3 phase can thereby be stable on the mayenite surface even at high temperature up to 1050 oC. Under the given reaction conditions, La0.8Sr0.2MnO3 monolith washcoated with 12SrO·7Al2O3 shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.

Keywords mayenite      perovskite      catalytic combustion      methyl methacrylate      monolith     
Corresponding Author(s): ZHANG Zekai,Email:zzk@zjut.edu.cn   
Issue Date: 05 March 2014
 Cite this article:   
Zhijian KONG,Huayan LIU,Zekai ZHANG, et al. Mayenite supported perovskite monoliths for catalytic combustion of methyl methacrylate[J]. Front Chem Sci Eng, 2014, 8(1): 87-94.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-014-1410-5
https://academic.hep.com.cn/fcse/EN/Y2014/V8/I1/87
Fig.1  XRD patterns of mayenites and LaSrMnO perovskite powders
Fig.2  XRD patterns of the LaSMnO monoliths with different supports (support amount= 10 wt-% cordierite; perovskite amount=10 wt-% cordierite; the same below if not pointed out)
Fig.3  XRD patterns of LSM/CA samples calcined at different temperatures
Fig.4  XRD patterns of LSM/SA samples calcined at different temperatures
Fig.5  SEM micrographs of of LSM monoliths with different supports (a) none support; (b) AlO; (c) S/A; (d) CA
Fig.6  SEM micrographs of LSM/SA (a, c, e) and LSM/CA (b, d, f) calcined at 850°C (a, b), 1050°C (c, d), and 1200°C (e, f)
Fig.7  Influence of supports on the catalytic activity of LSM monoliths for MMA combustion
Fig.8  Catalytic combustion performance of LSM/CA at different temperatures
Fig.9  Catalytic combustion performance of LSM/SA calcined at different temperatures
Fig.10  Influence of SA amounts on the catalytic activity of LSM monoliths for MMA combustion (LSM amount= 4 wt-% cordierite)
1 Pe?a M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews , 2001, 101(7): 1981–2017
doi: 10.1021/cr980129f
2 Misono M. A view on the future of mixed oxide catalysts: The case of heteropolyacids (polyoxometalates) and perovskites. Catalysis Today , 2005, 100(1): 95–100
doi: 10.1016/j.cattod.2004.12.010
3 Dupont V, Moallemi F, Williams A, Zhang S H. Combustion of methane in catalytic honeycomb monolith burners. International Journal of Energy Research , 2000, 24(13): 1181–1201
doi: 10.1002/1099-114X(20001025)24:13<1181::AID-ER669>3.0.CO;2-Y
4 Avila P, Montes M, Miró E E. Monolithic reactors for environmental applications: A review on preparation technologies. Chemical Engineering Journal , 2005, 109(1): 11–36
doi: 10.1016/j.cej.2005.02.025
5 Cimino S, Colonna S, de Rossi S, Faticanti M, Lisi L, Pettiti I, Porta P. Methane combustion and CO oxidation on zirconia-supported La, Mn oxides and LaMnO3 Perovskite. Journal of Catalysis , 2002, 205(2): 309–317
doi: 10.1006/jcat.2001.3441
6 Cimino S, Pirone R, Russo G. Thermal stability of perovskite-based monolithic reactors in the catalytic combustion of methane. Industrial & Engineering Chemistry Research , 2001, 40(1): 80–85
doi: 10.1021/ie000392i
7 Cimino S, Lisi L, Pirone R, Russo G, Turco M. Methane combustion on perovskites-based structured catalysts. Catalysis Today , 2000, 59(1): 19–31
doi: 10.1016/S0920-5861(00)00269-8
8 Stephan K, Hackenberger M, Kie?ling D, Wendt G. Supported perovskite-type oxide catalysts for the total oxidation of chlorinated hydrocarbons. Catalysis Today , 1999, 54(1): 23–30
doi: 10.1016/S0920-5861(99)00164-9
9 Alifanti M, Florea M, Parvulescu V I. Ceria-based oxides as supports for LaCoO3 perovskite catalysts for total oxidation of VOC. Applied Catalysis B: Environmental , 2007, 70(3): 400–405
doi: 10.1016/j.apcatb.2005.10.037
10 Yin F, Ji S, Chen B, Zhao L, Liu H, Li C. Preparation and characterization of LaFe1-xMgxO3/Al2O3/FeCrAl: Catalytic properties in methane combustion. Applied Catalysis B: Environmental , 2006, 66(2): 265–273
doi: 10.1016/j.apcatb.2006.03.017
11 Fabbrini L, Rossetti I, Forni L. Effect of primer on honeycomb-supported La0.9Ce0.1CoO3 perovskite for methane catalytic flameless combustion. Applied Catalysis B: Environmental , 2003, 44(1): 107–116
doi: 10.1016/S0926-3373(03)00025-0
12 Arendt E, Maione A, Klisinska A, Sanz O, Montes M, Suarez S, Blanco J, Ruiz P. Structuration of LaMnO3 perovskite catalysts on ceramic and metallic monoliths: Physico-chemical characterisation and catalytic activity in methane combustion. Applied Catalysis A, General , 2008, 339(1): 1–14
doi: 10.1016/j.apcata.2008.01.016
13 Zou H, Ge X, Shen J. Preparation and catalytic properties of solid base catalysts I. Metal Oxides. Thermochimica Acta , 2003, 397(1): 81–86
doi: 10.1016/S0040-6031(02)00329-5
14 Yamamoto T, Hatsui T, Matsuyama T, Tanaka T, Funabiki T. Structures and acid-base properties of La/Al2O3 role of La addition to enhance thermal stability of γ-Al2O3. Chemistry of Materials , 2003, 15(25): 4830–4840
doi: 10.1021/cm034732c
15 Yamamoto T, Tanaka T, Matsuyama T, Funabiki T, Yoshida S. Structural analysis of La/Al2O3 catalysts by La K-edge XAFS. Journal of Synchrotron Radiation , 2001, 8(2): 634–636
doi: 10.1107/S0909049500017106
16 Zwinkels M F M, Haussner O, Menon P G, J?r?s S. Preparation and characterization of LaCrO3 and Cr2O3 methane combustion catalysts supported on LaAl11O18 and Al2O3-coated monoliths. Catalysis Today , 1999, 47(1): 73–82
doi: 10.1016/S0920-5861(98)00284-3
17 Hayashi K, Matsuishi S, Hirano M, Hosono H. Formation of oxygen radicals in 12CaO·7Al2O3: Instability of extraframework oxide ions and uptake of oxygen gas. Journal of Physical Chemistry B , 2004, 108(26): 8920–8925
doi: 10.1021/jp037916n
18 Li C, Hirabayashi D, Suzuki K. A crucial role of O2- and O22- on mayenite structure for biomass tar steam reforming over Ni/Ca12Al14O33. Applied Catalysis B: Environmental , 2009, 88(3): 351–360
doi: 10.1016/j.apcatb.2008.11.004
19 Yang S, Kondo J, Hayashi K, Hirano M, Domen K, Hosono H. Formation and desorption of oxygen species in nanoporous crystal 12CaO·7Al2O3. Chemistry of Materials , 2004, 16(1): 104–110
doi: 10.1021/cm034755r
20 Hayashi K, Ueda N, Matsuishi S, Hirano M, Kamiya T, Hosono H. Solid state syntheses of 12SrO·7Al2O3 and formation of high density oxygen radical anions, O- and O2-. Chemistry of Materials , 2008, 20(19): 5987–5996
doi: 10.1021/cm800666p
21 Banús E D, Milt V G, Miró E E, Ulla M A. Structured catalyst for the catalytic combustion of soot: Co, Ba, K/ZrO2 supported on Al2O3 foam. Applied Catalysis A, General , 2009, 362(1): 129–138
doi: 10.1016/j.apcata.2009.04.035
22 Stutz M J, Poulikakos D. Optimum washcoat thickness of a monolith reactor for syngas production by partial oxidation of methane. Chemical Engineering Science , 2008, 63(7): 1761–1770
doi: 10.1016/j.ces.2007.11.032
[1] Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im. Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots[J]. Front. Chem. Sci. Eng., 2021, 15(1): 187-197.
[2] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[3] Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials[J]. Front. Chem. Sci. Eng., 2018, 12(1): 162-173.
[4] Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs[J]. Front. Chem. Sci. Eng., 2018, 12(1): 50-58.
[5] Ruixue GU, Guangming ZENG, Jingjing SHAO, Yuan LIU, Johannes W. Schwank, Yongdan LI. Sustainable H2 production from ethanol steam reforming over a macro-mesoporous Ni/Mg-Al-O catalytic monolith[J]. Front Chem Sci Eng, 2013, 7(3): 270-278.
[6] Elena Yu. KONYSHEVA. Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity[J]. Front Chem Sci Eng, 2013, 7(3): 249-261.
[7] Shengping WANG, Xin ZHANG, Yujun ZHAO, Yadong GE, Jing LV, Baowei WANG, Xinbin MA. Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure[J]. Front Chem Sci Eng, 2012, 6(3): 259-269.
[8] Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA. Morphological and mechanical characterization of a PMMA/CdS nanocomposite[J]. Front Chem Sci Eng, 2011, 5(2): 258-263.
[9] Jihong LU, Danfeng ZHANG, Qian CHEN, Buwei YU. Polymerization of methyl methacrylate catalyzed by mono-/bis-salicylaldiminato nickel(II) complexes and methylaluminoxane[J]. Front Chem Sci Eng, 2011, 5(1): 19-25.
[10] ZENG Lingke, LIU Yanchun, LIU Ping′an, WANG Hui, SHUI Anze, DUAN Bilin. Preparation and catalytic performance of La0.8Sr0.2CoO3 supported on the mullite fiber ceramic[J]. Front. Chem. Sci. Eng., 2007, 1(4): 372-376.
[11] GONG Cairong, FAN Guoliang, HOU Yanfeng, ZHANG Zhongrong, SONG Chonglin, HUANG Qifei. Properties of La1-xCexCoO3 system perovskite-type catalysts for diesel engine exhaust removal[J]. Front. Chem. Sci. Eng., 2007, 1(1): 6-10.
[12] WU Guangwen, JIN Fang, WU Yuxin, ZHANG Guangxu, LI Dinghuo, WANG Cunwen, MA Peisheng. Direct synthesis of diphenyl carbonate over heterogeneous catalyst: effects of structure of substituted perovskite carrier on the catalyst activities[J]. Front. Chem. Sci. Eng., 2007, 1(1): 59-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed