Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front Chem Sci Eng    2012, Vol. 6 Issue (3) : 259-269    https://doi.org/10.1007/s11705-012-1212-6
RESEARCH ARTICLE
Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure
Shengping WANG, Xin ZHANG, Yujun ZHAO, Yadong GE, Jing LV, Baowei WANG, Xinbin MA()
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
 Download: PDF(604 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cordierite monoliths coated with Pd-Fe/α-Al2O3 catalysts were prepared at various calcination temperatures and characterized by thermogravimetry, temperature-programmed reduction, transmission electron microscopy, diffuse reflectance infrared Fourier transformation spectroscopy and X-ray diffraction. The performance of the catalytic monoliths for the synthesis of dimethyl oxalate (DMO) through a CO coupling reaction was evaluated. Monolithic catalysts with calcination temperatures ranging from 473 K to 673 K exhibited excellent dispersion of Pd, good CO adsorption properties, and excellent performance for the coupling reaction. The optimized monolithic catalyst exhibited a much higher Pd efficiency (denoted as DMO (g)·Pd (g)-1·h-1) (733 h-1) than that of the granular catalyst (60.2 h-1), which can be attributed to its honeycomb structure and the large pore sizes in the α-Al2O3 washcoat which was accompanied with an even distribution of the active component in the coating layer along the monoliths channels.

Keywords dimethyl oxalate      coupling      Pd      cordierite      monolith      calcination      structure     
Corresponding Author(s): MA Xinbin,Email:xbma@tju.edu.cn   
Issue Date: 05 September 2012
 Cite this article:   
Yujun ZHAO,Yadong GE,Jing LV, et al. Pd-Fe/α-Al2O3/cordierite monolithic catalysts for the synthesis of dimethyl oxalate: effects of calcination and structure[J]. Front Chem Sci Eng, 2012, 6(3): 259-269.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-012-1212-6
https://academic.hep.com.cn/fcse/EN/Y2012/V6/I3/259
Fig.1  Thermal decompositions of (a) PdCl, (b) PdCl-FeCl/α-AlO, (c) FeCl?6HO
Fig.2  TPR tests of Pd/α-AlO, Fe/α-AlO and Pd-Fe/α-AlO calcined at 473 K
Fig.3  TPR tests of Pd-Fe/α-AlO catalysts calcined at (a) 393 K, (b) 473 K, (c) 573 K, (d) 673 K, (e) 773 K, and (f) 873 K
Fig.4  TEM images of Pd-Fe/α-AlO/cordierite monolithic catalyst calcined at (a) 393 K, (b) 473 K, (c) 573 K, (d) 673 K, (e) 773 K, and (f) 873 K
Fig.5  Particle size distribution of Pd-Fe/α-AlO/cordierite monolithic catalyst calcined at (a) 393 K, (b) 473 K, (c) 573 K, (d) 673 K, (e) 773 K, and (f) 873 K
CatalystsD /nm c)B/LConversion of CO /%Selectivity of DMO /%STY of DMO /(g·L-1·h-1)
PF393b)3.52.24197.7425
PF4733.32.060.495.9612
PF5733.62.958.895.9590
PF6734.22.657.694.9584
PF7735.64.63599.0355
PF8736.45.52099.3200
Tab.1  Performance of the catalysts calcined at different temperatures for CO coupling to dimethyl oxalate
Fig.6  DRIFT spectra of CO adsorbed on Pd-Fe/α-AlO/cordierite monolithic catalysts calcined at (a) 393 K, (b) 473 K, (c) 573 K, (d) 673 K, (e) 773 K, and (f) 873 K
SupportBET surface area /(m2·g-1)Pore volume /(cm3·g-1)Pore diameter /nmPore diameter distribution /%
0-1010-3030-100100-150
M-α-Al2O37.50.067362.513.5786
G-α-Al2O38.30.026151130.450.54.7
Tab.2  Pore-structure properties of different α-AlO support samples
Fig.7  SEM images and element profiles in cross-section of the monolithic catalyst (a, b) and the granule catalyst (c, d)
Fig.8  TEM images of the monolithic and granule Pd-Fe/α-AlO catalysts obtained after calcination at 473 K
Fig.9  XRD patterns of the monolithic and granule Pd-Fe/α-AlO catalysts
CatalystConversion of CO /%Selectivity of DMO /%STY of DMO /(g·L-1·h-1)Pd efficiency/(g·g-1·h-1)
M-Pd-Fe/α-Al2O3b)4698.1600733
G-Pd-Fe/α-Al2O3b)5098.165060.2
Tab.3  Comparison of the catalytic performance of the monolithic and granule catalysts
1 Zhao T J, Chen D, Dai Y C, Yuan W K, Holmen A. Synthesis of dimethyl oxalate from CO and CH3ONO on carbon nanofiber supported palladium catalysts. Industrial & Engineering Chemistry Research , 2004, 43(16): 4595–4601
doi: 10.1021/ie030728z
2 Zhao X G, Lv X L, Zhao H G, Zhu Y Q, Xiao W D. Study on Pd/α-Al2O3 catalyst for vapor-phase coupling reaction of CO with CH3ONO to (CH3OOC)2. Chinese Journal of Catalysis , 2004, 25(2): 125–128
3 Jiang X Z, Su Y H, Lee B J, Chien S H. A study on the synthesis of diethyl oxalate over Pd/α-Al2O3 catalysts. Applied Catalysis A: General , 2001, 211(1): 47–51
4 Lin Q, Ji Y, Jiang Z D, Xiao W D. Effects of precursors on preparation of Pd/α-alumina catalyst for synthesis of dimethyl oxalate. Industrial & Engineering Chemistry Research , 2007, 46(24): 7950–7954
doi: 10.1021/ie070640b
5 Zhao X G, Lin Q, Xiao W D.Characterization of Pd-CeO2/α-alumina catalyst for synthesis of dimethyl oxalate. Applied Catalysis A: General , 2005, 284(1-2): 253–257
6 Ji Y, Liu G, Li W, Xiao W. The mechanism of CO coupling reaction to form dimethyl oxalate over Pd/α-Al2O3. Journal of Molecular Catalysis A: Chemical , 2009, 314(1-2): 63–70
doi: 10.1016/j.molcata.2009.08.018
7 Uchiumi S I, Ataka K, Matsuzaki T. Oxidative reactions by a palladium-alkyl nitrite system. Journal of Organometallic Chemistry , 1999, 576(1-2): 279–289
doi: 10.1016/S0022-328X(98)01064-X
8 Gao Z H, Liu Z C, He F, Xu G H. Combined XPS and in situ DRIRS study of mechanism of Pd-Fe/α-Al2O3 catalyzed CO coupling reaction to diethyl oxalate. Journal of Molecular Catalysis A: Chemical , 2005, 235(1): 143–149
doi: 10.1016/j.molcata.2005.03.003
9 Ma X B, Xu G H, Chen J W, Chen H F. Kinetics of carbon monoxide catalytic coupling to diethyl oxalate in gaseous phase. Journal of Chemical Industry and Engineering (China) , 1995, 46(1): 50–56 (In Chinese)
10 Meng F D, Xu G H, Guo Q R. Kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate over Pd-Fe/α-Al2O3 catalyst. Journal of Molecular Catalysis A: Chemical , 2003, 201(1-2): 283–288
doi: 10.1016/S1381-1169(03)00182-1
11 Meng F D, Xu G H, Guo R Q, Yan H F, Chen M Q. Kinetic study of carbon monoxide coupling reaction over supported palladium catalyst. Chemical Engineering and Processing , 2004, 43(6): 785–790
doi: 10.1016/S0255-2701(03)00082-5
12 Xu G H, Ma X B, He F, Chen H F. Characteristics of catalyst for carbon monoxide coupling reaction. Industrial & Engineering Chemistry Research , 1995, 34(7): 2379–2382
doi: 10.1021/ie00046a021
13 Wu D F, Jiang W, Zhou J C. Effect of drying and calcination on the toluene combustion activity of a monolithic CuMnAg/γ-Al2O3/cordierite catalyst. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire) , 2010, 85(4): 569–576
14 Tsubota S, Nakamura T, Tanaka K, Haruta M. Effect of calcination temperature on the catalytic activity of Au colloids mechanically mixed with TiO2 powder for CO oxidation. Catalysis Letters , 1998, 56(2): 131–135
doi: 10.1023/A:1019069315071
15 Agostini G, Pellegrini R, Leofanti G, Bertinetti L, Bertarione S, Groppo E, Zecchina A, Lamberti C. Determination of the particle size, available surface area, and nature of exposed sites for silica-alumina-supported Pd nanoparticles: a multitechnical approach. Journal of Physical Chemistry C , 2009, 113(24): 10485–10492
doi: 10.1021/jp9023712
16 Nijhuis T A, Kreutzer M T, Romijn A C J, Kapteijn F, Moulijn J A. Monolithic catalysts as efficient three-phase reactors. Chemical Engineering Science , 2001, 56(3): 823–829
doi: 10.1016/S0009-2509(00)00294-3
17 Nijhuis T A, Beers A E W, Vergunst T, Hoek I, Kapteijn F, Moulijn J A. Preparation of monolithic catalysts. Catalysis Reviews , 2001, 43(4): 345–380
doi: 10.1081/CR-120001807
18 Heck R M, Gulati S, Farrauto R J. The application of monoliths for gas phase catalytic reactions. Chemical Engineering Journal , 2001, 82(1-3): 149–156
doi: 10.1016/S1385-8947(00)00365-X
19 Casanovas A, De Leitenburg C, Trovarelli A, Llorca J. Catalytic monoliths for ethanol steam reforming. Catalysis Today , 2008, 138(3-4): 187–192
doi: 10.1016/j.cattod.2008.05.028
20 Zhao Y J, Zhou J, Zhang J G, Wang S D. Monolithic Ru-based catalyst for selective hydrogenation of benzene to cyclohexene. Catalysis Communications , 2008, 9(3): 459–464
doi: 10.1016/j.catcom.2007.07.037
21 Zhao Y J, Zhou J, Zhang J G, Li D, Wang S D. Selective hydrogenation of benzene to cyclohexene on a Ru/Al2O3/cordierite monolithic catalyst: effect of mass transfer on the catalytic performance. Industrial & Engineering Chemistry Research , 2008, 47(14): 4641–4647
doi: 10.1021/ie071574g
22 Zhang J G, Li D F, Zhao Y J, Kong Q D, Wang S D A. Pd/Al2O3/cordierite monolithic catalyst for hydrogenation of 2-ethylanthraquinone. Catalysis Communications , 2008, 9(15): 2565–2569
doi: 10.1016/j.catcom.2008.07.012
23 Neri G, Rizzo G, Corigliano F, Arrigo I, Caprì M, De Luca L, Modafferi V, Donato A. A novel Pt/zeolite-based honeycomb catalyst for selective CO oxidation in a H2-rich mixture. Catalysis Today , 2009, 147S: S210–S214
doi: 10.1016/j.cattod.2009.07.049
24 Yue H R, Zhao Y J, Zhao L, Lv J, Wang S P, Gong J L, Ma X B.Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: enhanced internal mass transfer and stability. AIChE Journal , 2011,
doi: 10.1002/aic.12785
25 Gao X C, Zhao Y J, Wang S P, Yin Y L, Wang B W, Ma X B A. Pd-Fe/α-Al2O3/cordierite monolithic catalyst for CO coupling to oxalate. Chemical Engineering Science , 2011, 66(15): 3513–3522
doi: 10.1016/j.ces.2011.04.012
26 Leofanti G, Padovan M, Garilli M, Carmello D, Marra G L, Zecchina A, Spoto G, Bordiga S, Lamberti C. Alumina-supported copper chloride. 2 . Effect of aging and thermal treatments. Journal of Catalysis , 2000, 189(1): 105–116
doi: 10.1006/jcat.1999.2688
27 Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Berlier G, Prestipino C, Casali G, Lamberti C. Alumina-supported copper chloride. 3. Effect of exposure to ethylene. Journal of Catalysis , 2001, 202(2): 279–295
doi: 10.1006/jcat.2001.3304
28 Leofanti G, Marsella A, Cremaschi B, Garilli M, Zecchina A, Spoto G, Bordiga S, Fisicaro P, Prestipino C, Villain F, Lamberti C. Alumina-supported copper chloride. 4.Effect of exposure to O2 and HCl. Journal of Catalysis , 2002, 205(2): 375–381
doi: 10.1006/jcat.2001.3460
29 Prestipino C, Bordiga S, Lamberti C, Vidotto S, Garilli M, Cremaschi B, Marsella A, Leofanti G, Fisicaro P, Spoto G, Zecchina A. Structural determination of copper species on the alumina-supported copper chloride catalyst: a detailed EXAFS study. Journal of Physical Chemistry B , 2003, 107(21): 5022–5030
doi: 10.1021/jp027507b
30 Bartholomew C H. Mechanisms of catalyst deactivation. Applied Catalysis A: General, 2001, 212(1-2): 17–60
31 Seshu Babu N, Lingaiah N, Vinod Kumar J, Sai Prasad P S. Studies on alumina supported Pd-Fe bimetallic catalysts prepared by deposition-precipitation method for hydrodechlorination of chlorobenzene. Applied Catalysis A: General , 2009, 367(1-2): 70–76
32 Yue B H, Zhou R X, Wang Y J, Zheng X M. Study of the methane combustion and TPR/TPO properties of Pd/Ce-Zr-M/Al2O3 catalysts with M= Mg, Ca, Sr, Ba. Journal of Molecular Catalysis A: Chemical , 2005, 238(1-2): 241–249
doi: 10.1016/j.molcata.2005.05.027
33 Wang C B, Lin H K, Ho C M. Effects of the addition of titania on the thermal characterization of alumina-supported palladium. Journal of Molecular Catalysis A: Chemical , 2002, 180(1-2): 285–291
doi: 10.1016/S1381-1169(01)00450-2
34 Bertarione S, Scarano D, Zecchina A, Johánek V, Hoffmann J, Schauermann S, Frank M M, Libuda J, Rupprechter G, Freund H J. Surface reactivity of Pd nanoparticles supported on polycrystalline substrates as compared to thin film model catalysts: infrared study of CO adsorption. Journal of Physical Chemistry B , 2004, 108(11): 3603–3613
doi: 10.1021/jp036718t
35 van der Eerden A M J, Visser T, Nijhuis T A, Ikeda Y, Lepage M, Koningsberger D C, Weckhuysen B M. Atomic XAFS as a tool to probe the electronic properties of supported noble metal nanoclusters. Journal of the American Chemical Society , 2005, 127(10): 3272–3273
doi: 10.1021/ja043107l pmid:15755132
36 Groppo E, Bertarione S, Rotunno F, Agostini G, Scarano D, Pellegrini R, Leofanti G, Zecchina A, Lamberti C. Role of the support in determining the vibrational properties of carbonyls formed on Pd supported on SiO2-Al2O3, Al2O3, and MgO. Journal of Physical Chemistry C , 2007, 111(19): 7021–7028
doi: 10.1021/jp0666434
37 Tüshaus M, Berndt W, Conrad H, Bradshaw A, Persson B. Understanding the structure of high coverage CO adlayers. Applied Physics A: Materials Science & Processing , 1990, 51(2): 91–98
doi: 10.1007/BF00324270
38 Szanyi J, Kuhn W K, Goodman D W. CO adsorption on Pd (111) and Pd (100): low and high pressure correlations. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films , 1993, 11(4): 1969–1974
doi: 10.1116/1.578532
39 Fukui K, Miyauchi H, Iwasawa Y. CO adsorption and oxidation on Pd (110)-c (2 × 4)-O by reflection-absorption infrared spectroscopy. Journal of Physical Chemistry , 1996, 100(48): 18795–18801
doi: 10.1021/jp961414a
40 Cook J C, Clowes S K, Mccash E M. Reflection absorption IR studies of vibrational energytransfer processes and adsorptionenergetics. Journal of the Chemical Society, Faraday Transactions , 1997, 93(13): 2315–2322
doi: 10.1039/a700208d
41 Bourguignon B, Carrez S, Dragnea B, Dubost H. Vibrational spectroscopy of imperfect CO/Pd (111) surfaces obtained by adsorption between 150 and 230 K. Surface Science , 1998, 418(1): 171–180
doi: 10.1016/S0039-6028(98)00714-6
42 Giorgi J B, Schroeder T, B?umer M, Freund H J. Study of CO adsorption on crystalline-silica-supported palladium particles. Surface Science , 2002, 498(1): L71–L77
doi: 10.1016/S0039-6028(01)01756-3
43 Sanchez-Escribano V, Arrighi L, Riani P, Marazza R, Busca G. Characterization of Pd-Cu alloy nanoparticles on γ-Al2O3-supported catalysts. Langmuir , 2006, 22(22): 9214–9219
doi: 10.1021/la0616101 pmid:17042532
44 Sheu L L, Karpinski Z, Sachtler W M H. Effects of palladium particle size and palladium silicide formation on Fourier transform infrared spectra and carbon monoxide adsorbed on palladium/silicon dioxide catalysts. Journal of Physical Chemistry , 1989, 93(12): 4890–4894
doi: 10.1021/j100349a042
[1] Tong Zhang, Shan-Jiang Wang, Xiao-Yang Zhang, Ming Fu, Yi Yang, Wen Chen, Dan Su. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization[J]. Front. Chem. Sci. Eng., 2021, 15(1): 35-48.
[2] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[3] Kai Li, Tengteng Lyu, Junyi He, Ben W. L. Jang. Selective hydrogenation of acetylene over Pd/CeO2[J]. Front. Chem. Sci. Eng., 2020, 14(6): 929-936.
[4] Jie Gao, Zhikai Li, Mei Dong, Weibin Fan, Jianguo Wang. Thermodynamic analysis of ethanol synthesis from hydration of ethylene coupled with a sequential reaction[J]. Front. Chem. Sci. Eng., 2020, 14(5): 847-856.
[5] Mengyun Wang, Shengbo Zhang, Mei Li, Aiguo Han, Xinli Zhu, Qingfeng Ge, Jinyu Han, Hua Wang. Facile synthesis of hierarchical flower-like Ag/Cu2O and Au/Cu2O nanostructures and enhanced catalytic performance in electrochemical reduction of CO2[J]. Front. Chem. Sci. Eng., 2020, 14(5): 813-823.
[6] Mahboube Ghahramaninezhad, Fatemeh Mohajer, Mahdi Niknam Shahrak. Improved CO2 capture performances of ZIF-90 through sequential reduction and lithiation reactions to form a hard/hard structure[J]. Front. Chem. Sci. Eng., 2020, 14(3): 425-435.
[7] Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Front. Chem. Sci. Eng., 2020, 14(3): 405-414.
[8] Ying Yan, Peng Huang, Huiping Zhang. Preparation and characterization of novel carbon molecular sieve membrane/PSSF composite by pyrolysis method for toluene adsorption[J]. Front. Chem. Sci. Eng., 2019, 13(4): 772-783.
[9] Longli Bo, Shaoyuan Sun. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Front. Chem. Sci. Eng., 2019, 13(2): 385-392.
[10] Ana Mora-Boza, Francisco J. Aparicio, María Alcaire, Carmen López-Santos, Juan P. Espinós, Daniel Torres-Lagares, Ana Borrás, Angel Barranco. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition[J]. Front. Chem. Sci. Eng., 2019, 13(2): 330-339.
[11] Yueqing Wang, Jintao Zhang. Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water splitting[J]. Front. Chem. Sci. Eng., 2018, 12(4): 838-854.
[12] Alberto T. Penteado, Mijin Kim, Hamid R. Godini, Erik Esche, Jens-Uwe Repke. Techno-economic evaluation of a biogas-based oxidative coupling of methane process for ethylene production[J]. Front. Chem. Sci. Eng., 2018, 12(4): 598-618.
[13] Raquel Portela, Susana Perez-Ferreras, Ana Serrano-Lotina, Miguel A. Bañares. Engineering operando methodology: Understanding catalysis in time and space[J]. Front. Chem. Sci. Eng., 2018, 12(3): 509-536.
[14] Wolfgang Bauer, Tanja Ossiander, Birgit Weber. Synthesis of iron(II) complexes with asymmetric N2O2 coordinating Schiff base-like ligands and their spin crossover properties[J]. Front. Chem. Sci. Eng., 2018, 12(3): 400-408.
[15] Dongxu Han, Zhiguo Zhang, Zongbi Bao, Huabin Xing, Qilong Ren. Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions[J]. Front. Chem. Sci. Eng., 2018, 12(1): 24-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed