Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2018, Vol. 12 Issue (1) : 162-173    https://doi.org/10.1007/s11705-017-1642-2
RESEARCH ARTICLE
Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials
Muhammad I. Asghar(), Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund
New Energy Technologies Group, Department of Applied Physics, Aalto University, P.O. BOX 15100, FI-00076 Aalto, Finland
 Download: PDF(701 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω·cm2) followed by LSF (15.23 Ω·cm2), LSCF (19.38 Ω·cm2) and LSM (>300 Ω·cm2). In addition, low frequency EIS measurements (down to 50 µHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.

Keywords electrode      fuel cell      low-temperature      nanocomposite      perovskite     
Corresponding Author(s): Muhammad I. Asghar   
Just Accepted Date: 07 April 2017   Online First Date: 07 June 2017    Issue Date: 26 February 2018
 Cite this article:   
Muhammad I. Asghar,Sakari Lepikko,Janne Patakangas, et al. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials[J]. Front. Chem. Sci. Eng., 2018, 12(1): 162-173.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-017-1642-2
https://academic.hep.com.cn/fcse/EN/Y2018/V12/I1/162
No. Symmetric cells
1. (LSM+ NLC) / (GDC+ NLC) / (LSM+ NLC)
2. (LSC+ NL) / (GDC+ NLC) / (LSC+ NLC)
3. (LSF+ NLC) / (GDC+ NLC) / (LSF+ NLC)
4. (LSCF+ NLC) / (GDC+ NLC) / (LSCF+ NLC)
Tab.1  The structure of the symmetric cells prepared by the co-pressing method
Fig.1  A setup for aging the electrode samples
Cathode materials BET surface area
/(m2?g?1)
BJH pore volume
/(mm3?g?1)
Porosity
/%
LSM+ NLC 0.568 4.387 0.48
LSC+ NLC 0.431 2.301 0.28
LSF+ NLC 0.428 2.791 0.34
LSCF+ NLC 0.426 2.217 0.27
Tab.2  The surface area and the pore volume of the electrodes of symmetric cellsa)
Fig.2  Powder X-ray diffraction patterns of the four nanocomposite electrode materials. Prior to the measurement, the samples were kept in an oven at 550 °C for 5 h under air, CO2 and air (50 vol-%) + CO2 (50 vol-%) atmospheres. The symbols used in the figure represent following materials: n LiNaCO3, ??Li2CO3, ??SrCO3
Fig.3  SEM images of symmetric cells with (a) LSM+ NLC, (b) LSC+ NLC, (c) LSF+ NLC and (d) LSCF+ NLC
Fig.4  TEM images of (a) the LSM+ NLC, and (b) the LSC+ NLC powder, (c) the LSF+ NLC powder and (d) the LSCF+ NLC powder. All aged under CO2 atmosphere at 550 °C for 5 h. EDS was conducted on the marked areas in the images
Fig.5  EDS analysis on (a) area marked with “eds1”, (b) area marked with “ed4” in aged LSM+ NLC sample image shown in Fig. 4(a)
Fig.6  (a) An equivalent circuit model, (b) and (c) EIS of all the symmetric cells measured at 550 °C in air using a frequency range of 100 mHz to 100 kHz
Samples L1
/µH
Relectrolyte /(W·cm2) R1
/(W·cm2)
R2
/(W·cm2)
R1+R2
/(W·cm2)
R3
/(W·cm2)
R1+R2+R3 / (W·cm2)
LSC 0.49 0.78 0.26 0.25 0.51 13.61 14.12
LSF 0.44 0.82 0.46 0.13 0.59 14.64 15.23
LSCF 0.37 0.99 0.30 0.05 0.35 19.03 19.38
Tab.3  Resistance values corresponding to electrode reactions using the equivalent circuit shown in Fig. 6(b) and a frequency range of 100 mHz to 100 kHz
Fig.7  (a) An equivalent circuit used to fit the data corresponding to low frequency measurements. Impedance data of the LSF cell measured at 550 °C in air, using a frequency range of (b) 0.2 mHz?100 kHz (after ageing the cell for 24 h at 550 °C) and c) 50 µHz?100 kHz (after ageing the cell for 280 h at 550 °C)
Frequency range Exposure time in air at 550 °C Relectrolyte /(W·cm2) R1
/(W·cm2)
R2
/(W·cm2)
R1+R2
/(W·cm2)
R3
/(W·cm2)
R4
/(W·cm2)
Sum of the resistances
/(W·cm2)
100 mHz–100 kHz 0 h 0.82 0.46 0.13 0.59 14.64 ? ?
0.2 mHz–100 kHz 2 h 1.00 0.52 0.08 0.60 18.67 19.51 40.38
Cyclic voltammetry studies 200 h ? ? ? ? ? ? 39.45
(IV from Fig. 8)
50 µHz–100 kHz 280 h 0.87 0.44 0.09 0.53 8.08 23.13 33.14
Tab.4  Resistance values corresponding to electrode reactions of LSF cell shown in Figs. 7(b) and 7(c) using the equivalent circuita)
Fig.8  A cyclic voltammetry measurement for a LSF cell
Fig.9  Cell voltage and power density versus current density under operating conditions, H2 at anode and air+ CO2 at cathode, at 550 °C
Fig.10  (a) EIS response of the cell measured at 550 °C using a frequency range of 100 mHz to 100 kHz, and (b) An equivalent circuit model to fit the EIS response of the cell
L1 /µH Relectrolyte /(W·cm2) R1/(W·cm2) R2 /(W·cm2) R3 /(W?cm2)
0.57 0.18 0.15 0.13 0.44
Tab.5  Resistance values corresponding to fuel cell processes using the equivalent circuit shown in Fig. 10(b)
1 Rajesh S, Maccedo  D A, Nascimento  R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center, 2013, 485–494
2 Park S Y, Ahn  J H, Jeong  C W, Na  C W, Song  R H, Lee  J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy, 2014, 39(24): 12894–12903
https://doi.org/10.1016/j.ijhydene.2014.06.103
3 Kakac S, Pramuanjaroenkij  A, Zhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32(7): 761–786
https://doi.org/10.1016/j.ijhydene.2006.11.028
4 Ho T X, Kosinski  P, Hoffmann A C,  Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35(9): 4276–4284
https://doi.org/10.1016/j.ijhydene.2010.02.016
5 Asghar M I, Lund  P D. Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today, 2015, 259: 259–265
https://doi.org/10.1016/j.cattod.2015.05.010
6 Yokokawa H, Tu  H, Iwanschitz B,  Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412
https://doi.org/10.1016/j.jpowsour.2008.02.016
7 O’Hayre R, Cha  S W, Colella  W, Prinz F B. Fuel cell fundamentals.New Jersey: Wiley, 2006, 245–246
8 Patakangas J, Ma  Y, Jing Y,  Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263: 315–331
https://doi.org/10.1016/j.jpowsour.2014.04.008
9 Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 2006, 162(1): 30–40
https://doi.org/10.1016/j.jpowsour.2006.06.062
10 Ivers-Tiffee E, Weber  A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001, 21(10-11): 1805–1811
https://doi.org/10.1016/S0955-2219(01)00120-0
11 Kilner J A, Burriel  M. Materials for intermediate-temperature solid-oxide fuel cells. Annual Review of Materials Research, 2014, 44(1): 365–393
https://doi.org/10.1146/annurev-matsci-070813-113426
12 Fergus J, Hui  R, Li X,  Wilkinson D P,  Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37
13 Lee J G, Park  J H, Shul  Y G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W∙cm‒2 at 550 °C. Nature Communications, 2014, 5: 4045
14 Pereira J R S,  Rajesh S,  Figueiredo F M L,  Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta, 2013, 90: 71–79
https://doi.org/10.1016/j.electacta.2012.12.035
15 Rajesh S, Pereira  J R S, Figueiredo  F M L, Marques  F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta, 2014, 125: 435–442
https://doi.org/10.1016/j.electacta.2014.01.157
16 Loureiro F J A,  Rajesh S,  Figueiredo F M L,  Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances, 2014, 4: 59943–59952
17 Chockalingam R, Jain  S, Basu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics, 2010, 116(1): 23–34
https://doi.org/10.1080/10584587.2010.503517
18 Tan W, Fan  L, Raza R,  Khan M A,  Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy, 2013, 38(1): 370–376
https://doi.org/10.1016/j.ijhydene.2012.09.160
19 Di J, Chen  M, Wang C,  Zheng J,  Fan L, Zhu  B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195(15): 4695–4699
https://doi.org/10.1016/j.jpowsour.2010.02.066
20 Richter J, Holtappelsm  P, Graule T,  Nakamura T,  Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie, 2009, 140(9): 985–999
https://doi.org/10.1007/s00706-009-0153-3
21 Ota K, Mitsushima  S, Kato S,  Asano S,  Yoshitake H,  Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society, 1992, 139(3): 667–671
https://doi.org/10.1149/1.2069282
22 Doyon J, Gilbert  T, Davies G,  Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society, 1987, 134(12): 3035–3038
https://doi.org/10.1149/1.2100335
23 Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics, 2002, 146(1-2): 1–22
https://doi.org/10.1016/S0167-2738(01)00997-3
24 Petric A, Huang  P, Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2002, 135(1-4): 719–725
https://doi.org/10.1016/S0167-2738(00)00394-5
25 Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000
https://doi.org/10.1016/j.actamat.2003.08.004
26 Teraoka Y, Nobunaga  T, Okamoto K,  Miura N,  Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212
https://doi.org/10.1016/0167-2738(91)90034-9
27 Wiemhofer H D,  Bremes H G,  Nigge U,  Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics, 2002, 150(1-2): 63–77
https://doi.org/10.1016/S0167-2738(02)00264-3
28 Seo E S M,  Yoshito W K,  Ussui V,  Lazar D R R,  Castanho S R H M,  Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research, 2004, 7(1): 215–220
https://doi.org/10.1590/S1516-14392004000100029
29 Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4843
https://doi.org/10.1021/cr020724o
30 Fu Y, Poizeau  S, Bertei A,  Qi C, Mohanram  A, Pietras J D,  Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159: 71–80
https://doi.org/10.1016/j.electacta.2015.01.120
31 Maguire E, Gharbage  B, Margues F M B,  Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics, 2000, 127(3-4): 329–335
https://doi.org/10.1016/S0167-2738(99)00286-6
32 Evans A, Martynczuk  J, Stender D,  Schneider C W,  Lippert T,  Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-s cathodes. Advanced Energy Materials, 2015, 5(1): 1400747
https://doi.org/10.1002/aenm.201400747
33 Evans A, Karalic  S, Martynczuk J,  Prestat M,  Tolke R,  Yang Z, Gauckler  L J. La0.6Sr0.4CoO3-s thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions, 2012, 45(1): 333–336
https://doi.org/10.1149/1.3701323
34 Gao Z, Mogni  L V, Miller  E C, Railsback  J G, Barnett  S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644
https://doi.org/10.1039/C5EE03858H
35 Lee C. Analysis of impedance in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry, 2016, 776: 162–169
https://doi.org/10.1016/j.jelechem.2016.07.005
36 Nguyen H V P,  Kang M G,  Ham H C,  Choi S H,  Han J, Nam  S W, Hong  S A, Yoon  S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society, 2014, 161(14): F1458–F1467
https://doi.org/10.1149/2.0741414jes
[1] FCE-16068-of-AM_suppl_1 Download
[1] Yonghyun Kim, Huiwen Liu, Yi Liu, Boa Jin, Hao Zhang, Wenjing Tian, Chan Im. Long-lasting photoluminescence quantum yield of cesium lead halide perovskite-type quantum dots[J]. Front. Chem. Sci. Eng., 2021, 15(1): 187-197.
[2] Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding. Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts[J]. Front. Chem. Sci. Eng., 2021, 15(1): 138-147.
[3] Jinhua Zhang, Yuanbin She. Mechanism of methanol decomposition on the Pd/WC(0001) surface unveiled by first-principles calculations[J]. Front. Chem. Sci. Eng., 2020, 14(6): 1052-1064.
[4] Simon Roussanaly, Monika Vitvarova, Rahul Anantharaman, David Berstad, Brede Hagen, Jana Jakobsen, Vaclav Novotny, Geir Skaugen. Techno-economic comparison of three technologies for pre-combustion CO2 capture from a lignite-fired IGCC[J]. Front. Chem. Sci. Eng., 2020, 14(3): 436-452.
[5] Huixin Zhang, Jinying Liang, Bangwang Xia, Yang Li, Shangfeng Du. Ionic liquid modified Pt/C electrocatalysts for cathode application in proton exchange membrane fuel cells[J]. Front. Chem. Sci. Eng., 2019, 13(4): 695-701.
[6] Dongjie Yang, Shengyu Wang, Ruisheng Zhong, Weifeng Liu, Xueqing Qiu. Preparation of lignin/TiO2 nanocomposites and their application in aqueous polyurethane coatings[J]. Front. Chem. Sci. Eng., 2019, 13(1): 59-69.
[7] Mostafa R. Shirdar, Nasim Farajpour, Reza Shahbazian-Yassar, Tolou Shokuhfar. Nanocomposite materials in orthopedic applications[J]. Front. Chem. Sci. Eng., 2019, 13(1): 1-13.
[8] Walter Kaminsky. Polyolefin-nanocomposites with special properties by in-situ polymerization[J]. Front. Chem. Sci. Eng., 2018, 12(3): 555-563.
[9] Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes[J]. Front. Chem. Sci. Eng., 2018, 12(3): 494-508.
[10] Mingyu Pi, Xiaodeng Wang, Dingke Zhang, Shuxia Wang, Shijian Chen. A 3D porous WP2 nanosheets@carbon cloth flexible electrode for efficient electrocatalytic hydrogen evolution[J]. Front. Chem. Sci. Eng., 2018, 12(3): 425-432.
[11] Erigene Bakangura, Yubin He, Xiaolin Ge, Yuan Zhu, Liang Wu, Jin Ran, Congliang Cheng, Kamana Emmanuel, Zhengjin Yang, Tongwen Xu. Tetrazole tethered polymers for alkaline anion exchange membranes[J]. Front. Chem. Sci. Eng., 2018, 12(2): 306-310.
[12] Giorgia De Guido, Matteo Compagnoni, Laura A. Pellegrini, Ilenia Rossetti. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion[J]. Front. Chem. Sci. Eng., 2018, 12(2): 315-325.
[13] Hanbin Zheng, Christine Picard, Serge Ravaine. Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths[J]. Front. Chem. Sci. Eng., 2018, 12(2): 247-251.
[14] Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions[J]. Front. Chem. Sci. Eng., 2017, 11(3): 308-316.
[15] You Han, Dandan Jiang, Jinli Zhang, Wei Li, Zhongxue Gan, Junjie Gu. Development, applications and challenges of ReaxFF reactive force field in molecular simulations[J]. Front. Chem. Sci. Eng., 2016, 10(1): 16-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed