Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (6) : 1003-1016    https://doi.org/10.1007/s11705-021-2121-3
RESEARCH ARTICLE
Molecular diffusion in ternary poly(vinyl alcohol) solutions
Katarzyna Majerczak1, Ophelie Squillace1, Zhiwei Shi2, Zhanping Zhang2, Zhenyu J. Zhang1()
1. School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
2. The Procter and Gamble Company, Cincinnati, OH 45040, USA
 Download: PDF(1355 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The diffusion kinetics of a molecular probe—rhodamine B—in ternary aqueous solutions containing poly(vinyl alcohol), glycerol, and surfactants was investigated using fluorescence correlation spectroscopy and dynamic light scattering. We show that the diffusion characteristics of rhodamine B in such complex systems is determined by a synergistic effect of molecular crowding and intermolecular interactions between chemical species. The presence of glycerol has no noticeable impact on rhodamine B diffusion at low concentration, but significantly slows down the diffusion of rhodamine B above 3.9% (w/v) due to a dominating steric inhibition effect. Furthermore, introducing surfactants (cationic/nonionic/anionic) to the system results in a decreased diffusion coefficient of the molecular probe. In solutions containing nonionic surfactant, this can be explained by an increased crowding effect. For ternary poly(vinyl alcohol) solutions containing cationic or anionic surfactant, surfactant–polymer and surfactant–rhodamine B interactions alongside the crowding effect of the molecules slow down the overall diffusivity of rhodamine B. The results advance our insight of molecular migration in a broad range of industrial complex formulations that incorporate multiple compounds, and highlight the importance of selecting the appropriate additives and surfactants in formulated products.

Keywords fluorescence correlation spectroscopy      poly(vinyl alcohol)      anomalous diffusion      crowding effects      dynamic light scattering      binding effects      rhodamine B     
Corresponding Author(s): Zhenyu J. Zhang   
Online First Date: 27 December 2021    Issue Date: 28 June 2022
 Cite this article:   
Katarzyna Majerczak,Ophelie Squillace,Zhiwei Shi, et al. Molecular diffusion in ternary poly(vinyl alcohol) solutions[J]. Front. Chem. Sci. Eng., 2022, 16(6): 1003-1016.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-021-2121-3
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I6/1003
Fig.1  Chemical structures of the compounds used.
  Scheme 1 Preparation method for test solutions of various compositions: (a) PVA solutions of various concentrations, (b) PVA/glycerol solutions of various ratio of components (with changes in PVA concentration), (c) PVA/glycerol solutions of various ratio of components (with almost constant PVA concentration), (d) PVA/surfactant solutions, (e) PVA/glycerol/surfactant solutions, and (f) concentrated PVA/glycerol/surfactant solutions.
Sample PVA concentration/wt% Average ξ/nm Average η/(mPa·s) Average dH/nm
1 0.0 0.0 0.890 [74]
2 1.0 19.9 1.184 ± 0.016 12.6 ± 0.2
3 2.0 11.9 1.813 ± 0.032 8.2 ± 0.1
4 3.0 8.8 2.669 ± 0.024 6.1 ± 0.1
5 3.3 8.0 2.975 ± 0.024 6.0 ± 0.1
6 4.0 7.1 4.052 ± 0.081 3.8 ± 0.1
Tab.1  Compositions used to investigate the dependence of RhB diffusion coefficient on PVA concentration a)
Fig.2  Normalized diffusion coefficient of RhB as a function of PVA concentration without (samples 2–6) and with glycerol (samples 1a–5a). Solid lines represent fitting based on Eq. (6), with diffusion coefficient calculated using Eq. (1). Closed symbols correspond to PVA solution diluted with water, while open symbols are for PVA solution diluted with glycerol solution. Color code for each PVA concentration corresponds to DLS data (Fig. 3). Standard errors are based on 10 measurements.
Fig.3  Distribution of hydrodynamic diameter for solutions of various PVA concentration with the addition of (a) water, (b) glycerol stock solution, and (c) pure glycerol. The percentage of polymer in the graph is given in %(w/v).
Sample PVA concentration
/wt%
Glycerol concentration
/wt%
PVA/glycerol molar ratio Average η
/(mPa·s)
Average dH
/nm
Addition of glycerol solution 1a 0.0 4.0 0:1 0.971 ± 0.011
2a 1.0 3.0 1:1629 1.437 ± 0.051 10.4 ± 0.1
3a 2.0 2.0 1:543 2.136 ± 0.026 7.5 ± 0.1
4a 3.0 1.0 1:181 3.065 ± 0.060 5.2 ± 0.1
5a 3.3 0.7 1:109 3.383 ± 0.004 4.7 ± 0.1
Addition of pure glycerol 2b 3.6 10.9 1:1629 4.574 ± 0.020 5.2 ± 0.2
3b 3.9 3.9 1:543 4.020 ± 0.044 4.9 ± 0.1
4b 4.0 1.3 1:181 4.009 ± 0.049 4.4 ± 0.1
5b 4.0 0.8 1:109 4.024 ± 0.097 4.4 ± 0.1
Tab.2  Composition of PVA-based solutions with the addition of glycerol a)
Fig.4  Diffusion coefficient of RhB in PVA solution with the addition of pure glycerol. Error bars are one standard error around the mean, number of measurements equal to 10.
Sample Surfactant PVA/glycerol/surfactant
molar ratio
Average η/(mPa·s) Average dH/nm
Addition of water 4c SDS (–) 1:0:14.5 2.462 ± 0.200 5.6 ± 0.2
4d C12E10 (0) 1:0:6.7 2.122 ± 0.034 6.9 ± 0.1
4e CTAB (+) 1:0:11.4 2.877 ± 0.022 5.1 ± 0.1
Addition of glycerol solution 4f SDS (–) 1:181:14.5 2.939 ± 0.043 4.1 ± 0.1
4g C12E10 (0) 1:181:6.7 2.313 ± 0.040 6.0 ± 0.1
4h CTAB (+) 1:181:11.4 3.060 ± 0.222 4.5 ± 0.1
Addition of
pure glycerol and surfactant
4i SDS (–) 1:181:14.5 5.550 ± 0.230 2.4 ± 0.1
4j C12E10 (0) 1:181:6.7 4.315 ± 0.057 3.9 ± 0.1
4k CTAB (+) 1:181:11.4 5.658 ± 0.456 2.6 ± 0.1
Tab.3  Viscosity and average hydrodynamic diameter of PVA solutions with the addition of glycerol and surfactant of various head group chemistry
Fig.5  Average diffusion coefficient of RhB in PVA solutions with the addition of surfactant and water (samples 4c–4e) or glycerol solution (samples 4f–4h), compared against control samples with no surfactants (4, 4a). Error bars are standard error based on 10 repeats.
Fig.6  Possible interactions between (a) RhB and both cationic and anionic surfactants; (b) PVA–surfactant tail group interactions, using SDS molecule as an example.
Fig.7  Particle size distribution for (a) PVA/water/surfactant (compositions 4c–4e), (b) PVA/glycerol/surfactant solutions (compositions 4f–4h), and (c) PVA/pure glycerol/pure surfactant solutions (compositions 4i–4k). The percentages of polymer and glycerol in the graphs are given in %(w/v).
Fig.8  Average diffusion coefficients of RhB in PVA solutions with the addition of pure glycerol and surfactant (samples 4i–4k, blue columns), compared against equivalent samples with the addition of glycerol and surfactant solutions (4f–4h, green columns) and corresponding control solutions containing no surfactant (4b and 4a). Error bars are standard error based on 10 repeats.
1 I C F Moraes, R A Carvalho, A M Q B Bittante, J Solorza-Feria, P J A Sobral. Film forming solutions based on gelatin and poly(vinyl alcohol) blends: thermal and rheological characterizations. Journal of Food Engineering, 2009, 95(4): 588–596
https://doi.org/10.1016/j.jfoodeng.2009.06.023
2 A Hasimi, A Stavropoulou, K G Papadokostaki, M Sanopoulou. Transport of water in polyvinyl alcohol films: effect of thermal treatment and chemical crosslinking. European Polymer Journal, 2008, 44(12): 4114–4123
https://doi.org/10.1016/j.eurpolymj.2008.09.011
3 F Kawai, X Hu. Biochemistry of microbial polyvinyl alcohol degradation. Applied Microbiology and Biotechnology, 2009, 84(2): 227–237
https://doi.org/10.1007/s00253-009-2113-6
4 D Y Kim, Y H Rhee. Biodegradation of microbial and synthetic polyesters by fungi. Applied Microbiology and Biotechnology, 2003, 61(4): 300–308
https://doi.org/10.1007/s00253-002-1205-3
5 P Bergo, I C F Moraes, P J A Sobral. Effects of different moisture contents on physical properties of PVA–gelatin films. Food Biophysics, 2012, 7(4): 354–361
https://doi.org/10.1007/s11483-012-9273-0
6 H M El-Nasser. Effects of methyl red acidity and UV illumination on absorption coefficient of MR/PVA thin films. Physica B, Condensed Matter, 2011, 406(10): 1940–1943
https://doi.org/10.1016/j.physb.2011.02.061
7 M V Konidari, K G Papadokostaki, M Sanopoulou. Moisture-induced effects on the tensile mechanical properties and glass-transition temperature of poly(vinyl alcohol) films. Journal of Applied Polymer Science, 2011, 120(6): 3381–3386
https://doi.org/10.1002/app.33118
8 R M Hodge, T J Bastow, G H Edward, G P Simon, A J Hill. Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol). Macromolecules, 1996, 29(25): 8137–8143
https://doi.org/10.1021/ma951073j
9 A. Fick On liquid diffusion. The London, Edinburgh, and Dublin Hilosophical Magazine and Journal of Science, 1855, 10(63): 30–39
10 C C Miller. The Stokes–Einstein law for diffusion in solution. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1924, 106(740): 724–749
https://doi.org/10.1098/rspa.1924.0100
11 A Masuda, K Ushida, T Okamoto. New fluorescence correlation spectroscopy (FCS) suitable for the observation of anomalous diffusion in polymer solution: time and space dependences of diffusion coefficients. Journal of Photochemistry and Photobiology A Chemistry, 2006, 183(3): 304–308
https://doi.org/10.1016/j.jphotochem.2006.06.040
12 A Michelman-Ribeiro, F Horkay, R Nossal, H Boukari. Probe diffusion in aqueous poly(vinyl alcohol) solutions studied by fluorescence correlation spectroscopy. Biomacromolecules, 2007, 8(5): 1595–1600
https://doi.org/10.1021/bm061195r
13 Z Bu, P S Russo. Diffusion of dextran in aqueous (hydroxypropyl)cellulose. Macromolecules, 1994, 27(5): 1187–1194
https://doi.org/10.1021/ma00083a017
14 B Amsden. Solute diffusion in hydrogels: an examination of the retardation effect. Polymer Gels and Networks, 1998, 6(1): 13–43
https://doi.org/10.1016/S0966-7822(97)00012-9
15 M B Mustafa, D L Tipton, M D Barkley, P S Russo, F D Blum. Dye diffusion in isotropic and liquid crystalline aqueous (hydroxypropyl)cellulose. Macromolecules, 1993, 26(2): 370–378
https://doi.org/10.1021/ma00054a017
16 J S Vrentas, J L Duda. Diffusion in polymer-solvent systems. I. Reexamination of the free-volume theory. Journal of Polymer Science. Polymer Physics Edition, 1977, 15(12): 403–416
https://doi.org/10.1002/pol.1977.180150302
17 J S Vrentas, J L Duda. Diffusion in polymer-solvent systems. II. A predictive theory for the dependence of diffusion coefficient on temperature, concentration, and molecular weight. Journal of Polymer Science. Polymer Physics Edition, 1977, 15(12): 417–439
https://doi.org/10.1002/pol.1977.180150303
18 G D J Phillies. Universal scaling equation for self-diffusion by macromolecules in solution. Macromolecules, 1986, 19(9): 2367–2376
https://doi.org/10.1021/ma00163a006
19 I H Park, C S Johnson, C Hill, N Carolina, D A Gabriel. Probe diffusion in polyacrylamide gels as observed by means of holographic relacation methods: search for a universal equation. Macromolecules, 1990, 23(5): 1548–1553
https://doi.org/10.1021/ma00207a052
20 K K Senanayake, E A Fakhrabadi, M W Liberatore, A Mukhopadhyay. Diffusion of nanoparticles in entangled poly(vinyl alcohol) solutions and gels. Macromolecules, 2019, 52(3): 787–795
https://doi.org/10.1021/acs.macromol.8b01917
21 A H Slim, R Poling-Skutvik, J C Conrad. Local confinement controls diffusive nanoparticle dynamics in semidilute polyelectrolyte solutions. Langmuir, 2020, 36(31): 9153–9159
https://doi.org/10.1021/acs.langmuir.0c01402
22 M Gratz, A Tschöpe. Size effects in the oscillatory rotation dynamics of Ni nanorods in poly(ethylene oxide) solutions. Macromolecules, 2019, 52(17): 6600–6612
https://doi.org/10.1021/acs.macromol.9b00788
23 T Cherdhirankorn, V Harmandaris, A Juhari, P Voudouris, G Fytas, K Kremer, K Koynov. Fluorescence correlation spectroscopy study of molecular probe diffusion in polymer melts. Macromolecules, 2009, 42(13): 4858–4866
https://doi.org/10.1021/ma900605z
24 K K Senanayake, N Shokeen, E A Fakhrabadi, M W Liberatore, A Mukhopadhyay. Diffusion of nanoparticles within a semidilute polyelectrolyte solution. Soft Matter, 2019, 15(38): 7616–7622
https://doi.org/10.1039/C9SM01313J
25 W Wang, E Barkai, S Burov. Large deviations for continuous time random walks. Entropy (Basel, Switzerland), 2020, 22(6): 697–719
https://doi.org/10.3390/e22060697
26 C Xue, X Shi, Y Tian, X Zheng, G Hu. Diffusion of nanoparticles with activated hopping in crowded polymer solutions. Nano Letters, 2020, 20(5): 3895–3904
https://doi.org/10.1021/acs.nanolett.0c01058
27 D Jia, M Muthukumar. Electrostatically driven topological freezing of polymer diffusion at intermediate confinements. Physical Review Letters, 2021, 126(5): 057802
https://doi.org/10.1103/PhysRevLett.126.057802
28 D S Banks, C Tressler, R D Peters, F Höfling, C Fradin. Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy. Soft Matter, 2016, 12(18): 4190–4203
https://doi.org/10.1039/C5SM01213A
29 F Guillemet, L Piculell. Interactions in aqueous mixtures of hydrophobically modified polyelectrolyte and oppositely charged surfactant: mixed micelle formation and associative phase separation. Journal of Physical Chemistry, 1995, 99(22): 9201–9209
https://doi.org/10.1021/j100022a038
30 D Langevin. Complexation of oppositely charged polyelectrolytes and surfactants in aqueous solutions: a review. Advances in Colloid and Interface Science, 2009, 147–148: 170–177
https://doi.org/10.1016/j.cis.2008.08.013
31 K E Lewis, C P Robinson. The interaction of sodium dodecyl sulfate with methyl cellulose and polyvinyl alcohol. Journal of Colloid and Interface Science, 1970, 32(3): 539–546
https://doi.org/10.1016/0021-9797(70)90144-X
32 L Qiu, M Cheng, A Xie, Y Shen. Study on the viscosity of cationic gemini surfactant-nonionic polymer complex in water. Journal of Colloid and Interface Science, 2004, 278(1): 40–43
https://doi.org/10.1016/j.jcis.2004.05.012
33 N A Negm, A S Mohamed, S M Ahmed, M A El-Raouf. Polymer-cationic surfactant interaction. 1. Surface and physicochemical properties of polyvinyl alcohol (PVA)-S-alkyl isothiouronium bromide surfactant mixed systems. Journal of Surfactants and Detergents, 2015, 18(2): 245–250
https://doi.org/10.1007/s11743-014-1665-3
34 S Trabelsi, S Guillot, H Ritacco, F Boué, D Langevin. Nanostructures of colloidal complexes formed in oppositely charged polyelectrolyte/surfactant dilute aqueous solutions. European Physical Journal E, 2007, 23(3): 305–311
https://doi.org/10.1140/epje/i2006-10192-y
35 V G Babak, E A Merkovich, J Desbrières, M Rinaudo. Formation of an ordered nanostructure in surfactant-polyelectrolyte complexes formed by interfacial diffusion. Polymer Bulletin, 2000, 45(1): 77–81
https://doi.org/10.1007/s002890070059
36 R Zana, P Lianos, J Lang. Fluorescence probe studies of the interactions between poly(oxyethylene) and surfactant micelles and microemulsion droplets in aqueous solutions. Journal of Physical Chemistry, 1985, 89(1): 41–44
https://doi.org/10.1021/j100247a012
37 D Wöll. Fluorescence correlation spectroscopy in polymer science. RSC Advances, 2014, 4(5): 2447–2465
https://doi.org/10.1039/C3RA44909B
38 O Annunziata, D Buzatu, J G Albright. Protein diffusion coefficients determined by macroscopic-gradient rayleigh interferometry and dynamic light scattering. Langmuir, 2005, 21(26): 12085–12089
https://doi.org/10.1021/la052147f
39 D A Ivanov, T Grossmann, J Winkelmann. Comparison of ternary diffusion coefficients obtained from dynamic light scattering and Taylor dispersion. Fluid Phase Equilibria, 2005, 228–229: 283–291
https://doi.org/10.1016/j.fluid.2004.09.019
40 S Wang, P Sun, R Zhang, A Lu, M Liu, L Zhang. Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Physical Chemistry Chemical Physics, 2017, 19(11): 7486–7490
https://doi.org/10.1039/C6CP08744B
41 R L Baldwin, A G Ogston. The diffusion and sedimentation coefficients of a liquid two-component system in terms of macroscopic properties of the system. Transactions of the Faraday Society, 1954, 50: 749–755
https://doi.org/10.1039/tf9545000749
42 M Ono, T Mashim. Sedimentation process for atoms in a Bi-Sb system alloy under a strong gravitational field: a new type of diffusion of substitutional solutes. Philosophical Magazine. A. Physics of Condensed Matter. Structure, Defects and Mechanical Properties, 2002, 82(3): 591–600
https://doi.org/10.1080/01418610208239619
43 U Zettl, S T Hoffmann, F Koberling, G Krausch, J Enderlein, L Harnau, M Ballauff. Self-diffusion and cooperative diffusion in semidilute polymer solutions as measured by fluorescence correlation spectroscopy. Macromolecules, 2009, 42(24): 9537–9547
https://doi.org/10.1021/ma901404g
44 J R Giacin. Evaluation of plastics packaging materials for food packaging applications: food safety considerations. Journal of Food Safety, 1980, 2(4): 257–276
https://doi.org/10.1111/j.1745-4565.1980.tb00402.x
45 R Liu, X Gao, J Adams, W Oppermann. A fluorescence correlation spectroscopy study on the self-diffusion of polystyrene chains in dilute and semidilute solution. Macromolecules, 2005, 38(21): 8845–8849
https://doi.org/10.1021/ma0511090
46 H Zettl, U Zettl, G Krausch, J Enderlein, M Ballauff. Direct observation of single molecule mobility in semidilute polymer solutions. Physical Review. E, 2007, 75(6): 194–196
https://doi.org/10.1103/PhysRevE.75.061804
47 H Zettl, W Hafner, A Boker, H Schmalz, M Lanzendorfer, A H E Muller, G Krausch. Fluorescence correlation spectroscopy of single dye-labeled polymers in organic solvents. Macromolecules, 2004, 37(5): 1917–1920
https://doi.org/10.1021/ma035929t
48 L Cai, S Panyukov, M Rubinstein. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules, 2011, 44(19): 7853–7863
https://doi.org/10.1021/ma201583q
49 T Cherdhirankorn, A Best, K Koynov, K Peneva, K Muellen, G Fytas. Diffusion in polymer solutions studied by fluorescence correlation spectroscopy. Journal of Physical Chemistry B, 2009, 113(11): 3355–3359
https://doi.org/10.1021/jp809707y
50 H Boukari, R Nossal, D Sackett, P Schuck. Hydrodynamics of nanoscopic tubulin rings in dilute solutions. Physical Review Letters, 2004, 93(9): 098106
https://doi.org/10.1103/PhysRevLett.93.098106
51 A Michelman-Ribeiro, H Boukari, R Nossal, F Horkay. Fluorescence correlation spectroscopy study of probe diffusion in poly(vinyl alcohol) solutions and gels. Macromolecular Symposia, 2005, 227(1): 221–230
https://doi.org/10.1002/masy.200550922
52 D Pristinski, V Kozlovskaya, S A Sukhishvili. Fluorescence correlation spectroscopy studies of diffusion of a weak polyelectrolyte in aqueous solutions. Journal of Chemical Physics, 2005, 122(1): 14907–14910
https://doi.org/10.1063/1.1829255
53 J J Zhao, S C Bae, F Xie, S Granick. Diffusion of polymer-coated nanoparticles studied by fluorescence correlation spectroscopy. Macromolecules, 2001, 34(10): 3123–3126
https://doi.org/10.1021/ma0100145
54 J Enderlein, I Gregor, D Patra, T Dertinger, U B Kaupp. Performance of fluorescence correlation spectroscopy for measuring diffusion and concentration. ChemPhysChem, 2005, 6(11): 2324–2336
https://doi.org/10.1002/cphc.200500414
55 S P Zustiak, R Nossal, D L Sackett. Hindered diffusion in polymeric solutions studied by fluorescence correlation spectroscopy. Biophysical Journal, 2011, 101(1): 255–264
https://doi.org/10.1016/j.bpj.2011.05.035
56 L Rusu, D Lumma, J O Rädler. Charge and size dependence of liposome diffusion in semidilute biopolymer solutions. Macromolecular Bioscience, 2010, 10(12): 1465–1472
https://doi.org/10.1002/mabi.201000033
57 A Vagias, R Raccis, K Koynov, U Jonas, H Butt, G Fytas, P Kosovan, O Lenz, C Holm. Complex tracer diffusion dynamics in polymer solutions. Physical Review Letters, 2013, 111(8): 088301
https://doi.org/10.1103/PhysRevLett.111.088301
58 R A Omari, A M Aneese, C A Grabowski, A Mukhopadhyay. Diffusion of nanoparticles in semidilute and entangled polymer solutions. Journal of Physical Chemistry B, 2009, 113(25): 8449–8452
https://doi.org/10.1021/jp9035088
59 R Rashid, S M L Chee, M Raghunath, T Wohland. Macromolecular crowding gives rise to microviscosity, anomalous diffusion and accelerated actin polymerization. Physical Biology, 2015, 12(3): 034001
https://doi.org/10.1088/1478-3975/12/3/034001
60 A Ochab-Marcinek, R Hołyst. Scale-dependent diffusion of spheres in solutions of flexible and rigid polymers: mean square displacement and autocorrelation function for FCS and DLS measurements. Soft Matter, 2011, 7(16): 7366–7369
https://doi.org/10.1039/c1sm05217a
61 Y Dong, X Feng, N Zhao, Z Hou. Diffusion of nanoparticles in semidilute polymer solutions: a mode-coupling theory study. Journal of Chemical Physics, 2015, 143(2): 024903
https://doi.org/10.1063/1.4926412
62 N O Mchedlov-Petrossyan, N A Vodolazkaya, A O Doroshenko. Ionic equilibria of fluorophores in organized solutions: the Influence of micellar microenvironment on protolytic and photophysical properties of rhodamine B. Journal of Fluorescence, 2003, 13(3): 235–248
https://doi.org/10.1023/A:1025089916356
63 S Merouani, O Hamdaoui, F Saoudi, M Chiha. Sonochemical degradation of rhodamine B in aqueous phase: effects of additives. Chemical Engineering Journal, 2010, 158(3): 550–557
https://doi.org/10.1016/j.cej.2010.01.048
64 I L Arbeloa, P R Ojeda. Molecular forms of rhodamine B. Chemical Physics Letters, 1981, 79(2): 347–350
https://doi.org/10.1016/0009-2614(81)80219-9
65 E T Soares, M A Lansarin, C C Moro. A study of process variables for the photocatalytic degradation of rhodamine B. Brazilian Journal of Chemical Engineering, 2007, 24(1): 29–36
https://doi.org/10.1590/S0104-66322007000100003
66 A B Goins, H Sanabria, M N Waxham. Macromolecular crowding and size effects on probe microviscosity. Biophysical Journal, 2008, 95(11): 5362–5373
https://doi.org/10.1529/biophysj.108.131250
67 M Mohsin, A Hossin, Y Haik. Thermal and mechanical properties of poly(vinyl alcohol) plasticized with glycerol. Journal of Applied Polymer Science, 2011, 122(5): 3102–3109
https://doi.org/10.1002/app.34229
68 L R Dix, R Gilblas. Lyotropic and interfacial behaviour of an anionic gemini surfactant. Journal of Colloid and Interface Science, 2006, 296(2): 762–765
https://doi.org/10.1016/j.jcis.2005.09.024
69 Z Zhang, M Mosey, A Alswieleh, A J Morse, A L Lewis, M Geoghegan, A J Leggett. Effect of salt on phosphorylcholine-based zwitterionic polymer brushes. Langmuir, 2016, 32(20): 5048–5057
https://doi.org/10.1021/acs.langmuir.6b00763
70 A Shakouri, H Ahmari, M Hojjat, S Zeinali Heris. Effect of TiO2 nanoparticle on rheological behavior of poly(vinyl alcohol) solution. Journal of Vinyl and Additive Technology, 2017, 23(3): 234–240
https://doi.org/10.1002/vnl.21502
71 J Stetefeld, S A McKenna, T R Patel. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, 2016, 8(4): 409–427
https://doi.org/10.1007/s12551-016-0218-6
72 G D J Phillies. Dynamics of macromolecules in concentrated solutions: the universal scaling function derived. Macromolecules, 1987, 20(3): 558–564
https://doi.org/10.1021/ma00169a015
73 A Briddick, P Li, A Hughes, F Courchay, A Martinez, R L Thompson. Surfactant and plasticizer segregation in thin poly(vinyl alcohol) films. Langmuir, 2016, 32(3): 864–872
https://doi.org/10.1021/acs.langmuir.5b03758
74 A Korosi, B M Fabuss. Viscosity of liquid water from 25 to 150 °C: measurements in pressurized glass capillary viscometer. Analytical Chemistry, 1968, 40(1): 157–162
https://doi.org/10.1021/ac60257a011
75 K Sozański, A Wiśniewska, T Kalwarczyk, R Hołyst. Activation energy for mobility of dyes and proteins in polymer solutions: from diffusion of single particles to macroscale flow. Physical Review Letters, 2013, 111(22): 228301
https://doi.org/10.1103/PhysRevLett.111.228301
76 T Ohta, A Nakanishi. Theory of semi-dilute polymer solutions. I. Static property in a good solvent. Journal of Physics. A, Mathematical and General, 1983, 16(17): 4155–4170
https://doi.org/10.1088/0305-4470/16/17/030
77 L I Atanase, G Riess. Poly(vinyl alcohol-co-vinyl acetate) complex formation with anionic surfactants particle size of nanogels and their disaggregation with sodium dodecyl sulfate. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2010, 355(1–3): 29–36
https://doi.org/10.1016/j.colsurfa.2009.11.024
78 A L Kjøniksen, B Nyström. Dynamic light scattering of poly(vinyl alcohol) solutions and their dynamical behavior during the chemical gelation process. Macromolecules, 1996, 29(22): 7116–7123
https://doi.org/10.1021/ma960705e
79 S J Taylor, M D Haw, J Sefcik, A J Fletcher. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering. Langmuir, 2014, 30(34): 10231–10240
https://doi.org/10.1021/la502394u
80 E Tomaszewska, K Soliwoda, K Kadziola, B Tkacz-Szczesna, G Celichowski, M Cichomski, W Szmaja, J Grobelny. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials, 2013, 2013: 1–10
https://doi.org/10.1155/2013/313081
81 C M Kok, A Rudin. Relationship between the hydrodynamic radius and the radius of gyration of a polymer in solution. Die Makromolekulare Chemie. Rapid Communications, 1981, 2(11): 655–659
https://doi.org/10.1002/marc.1981.030021102
82 P Hong, C Chou, C He. Solvent effects on aggregation behavior of polyvinyl alcohol solutions. Polymer, 2001, 42(14): 6105–6112
https://doi.org/10.1016/S0032-3861(01)00056-8
83 A Briddick, R J Fong, E F D Sabattie, P Li, M W A Skoda, F Courchay, R L Thompson. Blooming of smectic surfactant/plasticizer layers on spin-cast poly(vinyl alcohol) films. Langmuir, 2018, 34(4): 1410–1418
https://doi.org/10.1021/acs.langmuir.7b04046
84 M L Sheely. Glycerol viscosity tables. Industrial & Engineering Chemistry, 1932, 24(9): 1060–1064
https://doi.org/10.1021/ie50273a022
85 H Tajalli, A Ghanadzadeh Gilani, M S Zakerhamidi, M Moghadam. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(4): 697–702
https://doi.org/10.1016/j.saa.2008.09.033
86 P Hansson, B Lindman. Surfactant-polymer interactions. Current Opinion in Colloid & Interface Science, 1996, 1(5): 604–613
https://doi.org/10.1016/S1359-0294(96)80098-7
87 N O McHedlov-Petrosyan, Y V Kholin. Aggregation of rhodamine B in water. Russian Journal of Applied Chemistry, 2004, 77(3): 414–422
https://doi.org/10.1023/B:RJAC.0000031281.69081.d0
88 B O Haglund, L Sundelöf, S M Upadrashta, D E Wurster. Effect of SDS micelles on rhodamine-B diffusion in hydrogels. Journal of Chemical Education, 1996, 73(9): 889
https://doi.org/10.1021/ed073p889
89 S Saito, M Yukawa. Interactions of polymers and cationic surfactants with thiocyanate as counterions. Journal of Colloid and Interface Science, 1969, 30(2): 211–218
https://doi.org/10.1016/S0021-9797(69)80007-X
90 S Saito, K Kitamura. Counterion effect of tetraalkylammonium and long-chain alkylammonium salts in the interaction with nonionic polymers. Journal of Colloid and Interface Science, 1971, 35(2): 346–353
https://doi.org/10.1016/0021-9797(71)90129-9
91 M Nakagaki, Y Ninomiya. Colloid chemical studies of starching materials. VI. Viscometric studies of the interaction between polyvinyl alcohol and sodium dodecyl sulfate. Bulletin of the Chemical Society of Japan, 1964, 37(6): 817–821
https://doi.org/10.1246/bcsj.37.817
92 H Arai, S Horin, H Goods. Interaction between polymer and detergent in aqueous solution. Journal of Colloid and Interface Science, 1969, 30(3): 372–377
https://doi.org/10.1016/0021-9797(69)90404-4
93 T Isemura, A Imanishi. The dissolution of water-insoluble polymers in the surfactant solution: the polyelectrolyte-like behavior of the dissolved polymers. Journal of Polymer Science, 1958, 33(126): 337–352
https://doi.org/10.1002/pol.1958.1203312632
94 L Jia, X Qin. The effect of different surfactants on the electrospinning poly(vinyl alcohol) (PVA) nanofibers. Journal of Thermal Analysis and Calorimetry, 2013, 112(2): 595–605
https://doi.org/10.1007/s10973-012-2607-9
95 T F Tadros. The interaction of cetyltrimethylammonium bromide and sodium dodecylbenzene sulfonate with polyvinyl alcohol: adsorption of the polymer-surfactant complexes on silica. Journal of Colloid and Interface Science, 1974, 46(3): 528–540
https://doi.org/10.1016/0021-9797(74)90064-2
[1] Jasmin Shah, M. Rasul Jan, Attaul Haq, Younas Khan. Removal of Rhodamine B from aqueous solutions and wastewater by walnut shells: kinetics, equilibrium and thermodynamics studies[J]. Front Chem Sci Eng, 2013, 7(4): 428-436.
[2] Weixin ZHANG, Jie XING, Zeheng YANG, Mei KONG, Hongxu YAO. A chemical etching route to controllable fabrication of TiO2 hollow nanospheres for enhancing their photocatalytic activity[J]. Front Chem Sci Eng, 2013, 7(2): 192-201.
[3] LIU Rui, QI Wei, SU Rongxin, ZHANG Yubin, JIN Fengmin, HE Zhimin. Dissolution and enzymatic hydrolysis of casein micelles studied by dynamic light scattering[J]. Front. Chem. Sci. Eng., 2007, 1(2): 123-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed