Please wait a minute...
Frontiers of Chemical Science and Engineering

ISSN 2095-0179

ISSN 2095-0187(Online)

CN 11-5981/TQ

Postal Subscription Code 80-969

2018 Impact Factor: 2.809

Front. Chem. Sci. Eng.    2022, Vol. 16 Issue (8) : 1224-1236    https://doi.org/10.1007/s11705-022-2139-1
RESEARCH ARTICLE
The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts
Xin Li1,2,3, Meng Su1,2, Yao Chen1,2, Mehar U. Nisa1,2, Ning Zhao1,2, Xiangning Jiang1,2, Zhenhua Li1,2()
1. Key Lab for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
3. Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
 Download: PDF(8725 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Ordered SBA-15 mesoporous silica with incorporated titanium was successfully synthesized via a one-pot hydrothermal crystallization method. The characterization including powder X-ray diffraction, Brunauer–Emmett–Teller, transmission electron microscope, temperature-programmed reduction, temperature-programmed desorption, Fourier transform infrared and ultraviolet-visible-near infrared spectrometer was performed to explore the physical and chemical structures of both the supports and the catalysts. The results showed that titanium was successfully incorporated into the mesoporous silica framework with a limited amount of titanium (Si/Ti > 20), and the mesoporous structure was retained. However, the increased titanium content inevitably resulted in the formation of anatase TiO 2 particles on the support surface. The increased incorporated titanium strengthened the interactions between cobalt species and supports, which was favorable for the cobalt species dispersion, despite the limited cobalt oxide reducibility. The enhanced metal-support interactions were beneficial for the CO/H2 ratio at the active cobalt sites, which facilitated the formation of more C5+ hydrocarbons. This study provides a promising method for support modification with incorporated-heteroatoms for the rational development of Fischer–Tropsch catalysts.

Keywords Fischer–Tropsch synthesis      titanium incorporation      mesoporous silica      metal-support interactions      C5+ selectivity     
Corresponding Author(s): Zhenhua Li   
Online First Date: 19 April 2022    Issue Date: 02 August 2022
 Cite this article:   
Xin Li,Meng Su,Yao Chen, et al. The modification of titanium in mesoporous silica for Co-based Fischer–Tropsch catalysts[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1224-1236.
 URL:  
https://academic.hep.com.cn/fcse/EN/10.1007/s11705-022-2139-1
https://academic.hep.com.cn/fcse/EN/Y2022/V16/I8/1224
Fig.1  SXRD patterns of (a) supports and (b) fresh catalysts.
Sample Si/Ti ratio SBET/(m2·g−1) a) Vt/(cm3·g−1) b) DP/nm c)
SBA-15 +∞ 815 1.12 6.72
OMST80 80 556 0.73 6.54
OMST60 60 491 0.72 6.31
OMST40 40 452 0.67 6.30
OMST20 20 494 0.78 6.20
OMST10 10 470 0.87 6.25
Co/SBA-15 +∞ 472 0.61 6.28
Co/OMST80 80 462 0.55 6.29
Co/OMST60 60 464 0.64 6.30
Co/OMST40 40 411 0.60 5.98
Co/OMST20 20 425 0.60 5.73
Tab.1  Textural properties of the prepared samples
Fig.2  Textural properties of supports and catalysts: N2 adsorption-desorption isotherms of (a) supports and (b) catalysts; mesopore size distribution of (c) supports and (d) catalysts.
Sample SBA-15 OMST80 OMST60 OMST40 OMST20 OMST10
Si/Ti +∞ 80 60 40 20 10
Theoretical Ti/wt% 0 0.98 1.30 1.93 3.73 7.03
Actual Ti/wt% 0 0.95 1.26 1.86 3.60 6.86
Loss ratio/wt% 0 3.01 3.00 3.50 3.61 2.44
Tab.2  Theoretical and experimentally obtained Ti content in OMSTx
Fig.3  FTIR spectra of SBA-15 and OMSTx supports.
Fig.4  UV-visible absorption spectra of SBA-15 and OMSTx supports.
Fig.5  TEM images of SBA-15 and OMSTx supports.
Fig.6  EDX-mapping images of OMST80 and OMST10 supports.
Fig.7  Wide-angle XRD patterns of (a) SBA-15 and OMSTx and (b) Co/SBA-15 and Co/OMSTx.
Catalyst Co/SBA-15 Co/OMST80 Co/OMST60 Co/OMST40 Co/OMST20 Co/OMST10
Co3O4 size from XRD a)/nm 15.3 11.7 11.7 11.7 11.3 11.2
Co3O4 size from TEM b)/nm 11.94 10.81 10.46 10.57 10.38 9.98
Tab.3  Co3O4 particle size obtained from XRD results and TEM images
Fig.8  TEM images of fresh Co/SBA-15 and Co/OMSTx catalysts.
Fig.9  H2-TPR profiles of Co/SBA-15 and Co/OMSTx catalysts.
Fig.10  (a) H2-TPD and (b) CO-TPD profiles for Co/SBA-15 and Co/OMSTx catalysts.
Catalyst Adsorbed CO/(mmol·gCo−1) Adsorbed H2/(mmol·gCo−1) CO/H2 ratio
Co/SBA-15 0.28 0.14 2.00
Co/OMST80 0.25 0.11 2.27
Co/OMST60 0.20 0.09 2.22
Co/OMST40 0.19 0.09 2.11
Co/OMST20 0.01 0.01 1.00
Co/OMST10 0.01 0.01 1.00
Tab.4  Quantitative CO-TPD and H2-TPD data of Co/SBA-15 and Co/OMSTx a)
Catalyst a) XCO/% CTYc)/(10−4 molCO·gCo−1·s−1) CO2 selectivity/% Hydrocarbon selectivity/% C=/C(C2−4)
CH4 C2 C3 C4 C5+
Co/SBA-15 b) 69.0 1.02 1.2 20.6 2.2 4.6 3.9 68.8 0.23
Co/OMST80 47.28 0.70 1.3 13.91 1.21 3.43 3.59 77.66 0.50
Co/OMST60 42.91 0.63 1.2 14.94 1.42 4.02 4.23 75.39 0.52
Co/OMST40 40.05 0.59 1.1 15.25 1.47 4.05 4.15 75.09 0.52
Co/OMST20 25.32 0.38 1.0 17.40 2.33 6.55 6.31 67.42 0.99
Co/OMST10 23.29 0.34 1.0 18.47 2.35 6.71 6.95 65.52 0.80
Tab.5  FTS results of Co/SBA-15 and CO/OMSTx
1 P M Maitlis, V Zanotti. The role of electrophilic species in the Fischer–Tropsch reaction. Chemical Communications, 2009, 220( 2): 1619– 1634
https://doi.org/10.1039/b822320n
2 N Abas, A Kalair, N Khan. Review of fossil fuels and future energy technologies. Futures, 2015, 69 : 31– 49
https://doi.org/10.1016/j.futures.2015.03.003
3 Y An, T Lin, F Yu, Y Yang, L Zhong, M Wu, Y Sun. Advances in direct production of value-added chemicals via syngas conversion. Science China. Chemistry, 2017, 60( 7): 887– 903
https://doi.org/10.1007/s11426-016-0464-1
4 K Silas, W A W A K Ghani, T S Y Choong, U Rashid. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: a review. Catalysis Reviews, 2019, 61( 1): 134– 161
https://doi.org/10.1080/01614940.2018.1482641
5 A Martínez, C López, F Márquez, I Díaz. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor and promoters. Journal of Catalysis, 2003, 220( 2): 486– 499
https://doi.org/10.1016/S0021-9517(03)00289-6
6 M E F T Dry. Catalysts. 1st ed. Besloten Vennootschap: Elsevier, 2004: 533– 600
7 A Behroozsarand, A Zamaniyan. Simulation and optimization of an integrated GTL process. Journal of Cleaner Production, 2017, 142 : 2315– 2327
https://doi.org/10.1016/j.jclepro.2016.11.045
8 A Gual, C Godard, S Castillón, D Curulla-Ferré, C Claver. Colloidal Ru, Co and Fe-nanoparticles. Synthesis and application as nanocatalysts in the Fischer–Tropsch process. Catalysis Today, 2012, 183( 1): 154– 171
https://doi.org/10.1016/j.cattod.2011.11.025
9 de Loosdrecht J Van, I M Ciobîcă, P Gibson, N S Govender, D J Moodley, A M Saib, C J Weststrate, J W Niemantsverdriet. Providing fundamental and applied insights into Fischer–Tropsch catalysis. ACS Catalysis, 2016, 6( 6): 3840– 3855
https://doi.org/10.1021/acscatal.6b00595
10 H Jahangiri, J Bennett, P Mahjoubi, K Wilson, S Gu. A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catalysis Science & Technology, 2014, 4( 8): 2210– 2229
https://doi.org/10.1039/C4CY00327F
11 K Okabe, K Murata, M Nakanishi, T Ogi, M Nurunnabi, Y Liu. Fischer–Tropsch synthesis over Ru catalysts by using syngas derived from woody biomass. Catalysis Letters, 2008, 128( 1-2): 171– 176
https://doi.org/10.1007/s10562-008-9722-z
12 Q Zhang, J Kang, Y Wang. Development of novel catalysts for Fischer–Tropsch synthesis: turning the product selectivity. ChemCatChem, 2010, 2( 9): 1030– 1058
https://doi.org/10.1002/cctc.201000071
13 R J Liu, Y Xu, Y Qiao, Z H Li, X B Ma. Factors influencing the Fischer–Tropsch synthesis performance of iron-based catalyst: iron oxide dispersion, distribution and reducibility. Fuel Processing Technology, 2015, 139 : 25– 32
https://doi.org/10.1016/j.fuproc.2015.08.019
14 N Moazami, M L Wyszynski, K Rahbar, A Tsolakis, H Mahmoudi. A comprehensive study of kinetics mechanism of Fischer–Tropsch synthesis over cobalt-based catalyst. Chemical Engineering Science, 2017, 171 : 32– 60
https://doi.org/10.1016/j.ces.2017.05.022
15 A Y Khodakov, W Chu, P Fongarland. Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chemical Reviews, 2007, 107( 5): 1692– 1744
https://doi.org/10.1021/cr050972v
16 Y Gao, J Wang, Y Q Lyu, K Lam, F Ciucci. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2017, 5( 14): 6399– 6404
https://doi.org/10.1039/C7TA00349H
17 Y Liu, K Murata, K Okabe, T Hanaoka, K Sakanishi. Synthesis of Zr-grafted SBA-15 as an effective support for cobalt catalyst in Fischer–Tropsch synthesis. Chemistry Letters, 2008, 37( 9): 984– 985
https://doi.org/10.1246/cl.2008.984
18 J Gong, X Bao. Fundamental insights into interfacial catalysis. Chemical Society Reviews, 2017, 46( 7): 1770– 1771
https://doi.org/10.1039/C7CS90022H
19 S Penner, M Armbrüster. Formation of intermetallic compounds by reactive metal-support interaction: a frequently encountered phenomenon in catalysis. ChemCatChem, 2015, 7( 3): 374– 392
https://doi.org/10.1002/cctc.201402635
20 P A U Aldana, F Ocampo, K Kobl, B Louis, F Thibault-Starzyk, M Daturi, P Bazin, S Thomas, A C Roger. Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy. Catalysis Today, 2013, 215 : 201– 207
https://doi.org/10.1016/j.cattod.2013.02.019
21 S Storsæter, B Tøtdal, J C Walmsley, B S Tanem, A Holmen. Characterization of alumina-, silica- and titania-supported cobalt Fischer–Tropsch catalysts. Journal of Catalysis, 2005, 236( 1): 139– 152
https://doi.org/10.1016/j.jcat.2005.09.021
22 F M T Mendes, C A C Perez, F B Noronha, C D D Souza, D V Cesar, H J Freund, M Schmal. Fischer–Tropsch synthesis on anchored Co/Nb2O5/Al2O3 catalysts: the nature of the surface and the effect on chain growth. Journal of Physical Chemistry B, 2006, 110( 18): 9155– 9163
https://doi.org/10.1021/jp060175g
23 C H Mejía, der Hoeven J E S van, Jongh P E de, Jong K P De. Cobalt-nickel nanoparticles supported on reducible oxides as Fischer–Tropsch catalysts. ACS Catalysis, 2020, 10( 13): 7343– 7354
https://doi.org/10.1021/acscatal.0c00777
24 G Prieto, Mello M De, P Concepción, R Murciano, S B C Pergher, A Martínez. Cobalt-catalyzed Fischer–Tropsch synthesis: chemical nature of the oxide support as a performance descriptor. ACS Catalysis, 2015, 5( 6): 3323– 3335
https://doi.org/10.1021/acscatal.5b00057
25 M C Hernandez, T W van Deelen, K P de Jong. Activity enhancement of cobalt catalysts by tuning metal-support interactions. Nature Communications, 2018, 9( 1): 4459
https://doi.org/10.1038/s41467-018-06903-w
26 Y Liu, T B De, F Vigneron, I Florea, O Ersen, C Meny, P Nguyen, C Pham, F Luck, C Pham-Huu. Titania-decorated silicon carbide-containing cobalt catalyst for Fischer–Tropsch synthesis. ACS Catalysis, 2013, 3( 3): 393– 404
https://doi.org/10.1021/cs300729p
27 Y Liu, J Luo, M Girleanu, O Ersen, C Pham-Huu, C Meny. Efficient hierarchically structured composites containing cobalt catalyst for clean synthetic fuel production from Fischer–Tropsch synthesis. Journal of Catalysis, 2014, 318 : 179– 192
https://doi.org/10.1016/j.jcat.2014.08.006
28 Y R Zhang, X L Yang, X Y Yang, H M Duan, H F Qi, Y Su, B L Liang, H B Tao, B Liu, D Chen. et al.. Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nature Communications, 2020, 11( 1): 3185
https://doi.org/10.1038/s41467-020-17044-4
29 S S Lyu, Q P Cheng, Y H Liu, Y Tian, T Ding, Z Jiang, J Zhang, F Gao, L Dong, J Bao. et al.. Dopamine sacrificial coating strategy driving formation of highly active surface-exposed Ru sites on Ru/TiO2 catalysts in Fischer–Tropsch synthesis. Applied Catalysis B, 2020, 278 : 119261
https://doi.org/10.1016/j.apcatb.2020.119261
30 C Perego, R Millini. Porous materials in catalysis: challenges for mesoporous materials. Chemical Society Reviews, 2013, 42( 9): 3956– 3976
https://doi.org/10.1039/C2CS35244C
31 X Li, M U Nisa, Y Chen, Z H Li. Co-based catalysts supported on silica and carbon materials: effect of support property on cobalt species and Fischer–Tropsch synthesis performance. Industrial & Engineering Chemistry Research, 2019, 58( 8): 3459– 3467
https://doi.org/10.1021/acs.iecr.8b05451
32 L Shi, Y Zou, H Y He. H-1 NMR study of hydroxy groups in mesoporous molecular sieve SBA-15. Chemistry Letters, 2001, 30( 11): 1164– 1165
https://doi.org/10.1246/cl.2001.1164
33 S Singh, R Kumar, H D Setiabudi, S Nanda, D V N Vo. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: a state-of-the-art review. Applied Catalysis A, 2018, 559 : 57– 74
https://doi.org/10.1016/j.apcata.2018.04.015
34 X Li, Y Chen, M U Nisa, Z H Li. Combating poison with poison-irreducible Co2SiO4 as a promoter to modify Co-based catalysts in Fischer–Tropsch synthesis. Applied Catalysis B, 2020, 267 : 118377
https://doi.org/10.1016/j.apcatb.2019.118377
35 Z Luan, E M Maes, P A W van der Heide, D Zhao, R S Czernuszewicz, L Kevan. Incorporation of titanium into mesoporous silica molecular sieve SBA-15. Chemistry of Materials, 1999, 11( 12): 3680– 3686
https://doi.org/10.1021/cm9905141
36 D Zhao, Q Huo, J Feng, B F Chmelka, G Stucky. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120( 24): 6024– 6036
https://doi.org/10.1021/ja974025i
37 X Li, Y Chen, S Z Liu, N Zhao, X N Jiang, M Su, Z H Li. Enhanced gasoline selectivity through Fischer–Tropsch synthesis on a bifunctional catalyst: effects of active sites proximity and reaction temperature. Chemical Engineering Journal, 2021, 416 : 129180
https://doi.org/10.1016/j.cej.2021.129180
38 D C Song, J L Li. Effect of catalyst pore size on the catalytic performance of silica supported cobalt Fischer–Tropsch catalysts. Journal of Molecular Catalysis A, 2006, 247( 1): 206– 212
https://doi.org/10.1016/j.molcata.2005.11.021
39 K S Ha, G Kwak, K W Jun, J Hwang, J Lee. Ordered mesoporous carbon nanochannel reactors for high-performance Fischer–Tropsch synthesis. Chemical Communications, 2013, 49( 45): 5141– 5143
https://doi.org/10.1039/c3cc00297g
40 M R Boccuti, K M Rao, A Zecchina, G Leofanti, G Petrini. Spectroscopic characterization of silicalite and titanium-silicalite. Studies in Surface Science and Catalysis, 1989, 48 : 133– 144
https://doi.org/10.1016/S0167-2991(08)60677-1
41 T Zhang, Y Zuo, M Liu, C S Song, X W Guo. Synthesis of titanium silicalite-1 with high catalytic performance for 1-butene epoxidation by eliminating the extraframework Ti. ACS Omega, 2016, 1( 5): 1034– 1040
https://doi.org/10.1021/acsomega.6b00266
42 T T Nguyen, E W Qian. Synthesis of mesoporous Ti-inserted SBA-15 and CoMo/Ti-SBA-15 catalyst for hydrodesulfurization and hydrodearomatization. Microporous and Mesoporous Materials, 2018, 265 : 1– 7
https://doi.org/10.1016/j.micromeso.2018.01.026
43 M C Chao, H P Lin, C Y Mou, B W Cheng, C F Cheng. Synthesis of nano-sized mesoporous silicas with metal incorporation. Catalysis Today, 2004, 97( 1): 81– 87
https://doi.org/10.1016/j.cattod.2004.06.140
44 K Klaigaew, C Samart, C Chaiya, Y Yoneyama, N Tsubaki, P Reubroycharoen. Effect of preparation methods on activation of cobalt catalyst supported on silica fiber for Fischer–Tropsch synthesis. Chemical Engineering Journal, 2015, 278 : 166– 173
https://doi.org/10.1016/j.cej.2014.11.025
45 C B Wang, C W Tang, H C Tsai, S H Chien. Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catalysis Letters, 2006, 107( 3-4): 223– 230
https://doi.org/10.1007/s10562-005-0002-x
46 L Bian, W Wang, R Xia, Z Li. Ni-based catalyst derived from Ni/Al hydrotalcite-like compounds by the urea hydrolysis method for CO methanation. RSC Advances, 2016, 6( 1): 677– 686
https://doi.org/10.1039/C5RA19748A
47 J M Zowtiak, C H Bartholomew. The kinetics of H2 adsorption on and desorption from cobalt and the effects of support thereon. Journal of Catalysis, 1983, 83( 1): 107– 120
https://doi.org/10.1016/0021-9517(83)90034-9
48 N E Tsakoumis, R E Johnsen, W van Beek, M Ronning, E Rytter, A Holmen. Capturing metal-support interactions in situ during the reduction of a Re promoted Co/gamma-Al2O3 catalyst. Chemical Communications, 2016, 52( 15): 3239– 3242
https://doi.org/10.1039/C5CC09879C
49 J Wang, J Wang, X Huang, C Chen, Z Ma, L Jia, B Hou, D Li. Co-Al spinel oxide modified ordered mesoporous alumina supported cobalt-based catalysts for Fischer–Tropsch synthesis. International Journal of Hydrogen Energy, 2018, 43( 29): 13122– 13132
https://doi.org/10.1016/j.ijhydene.2018.04.093
50 Q Cheng, Y Tian, S Lyu, N Zhao, K Ma, T Ding, Z Jiang, L Wang, J Zhang, L Zheng, F Gao, L Dong, N Tsubaki, X Li. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Communications, 2018, 9( 1): 3250
https://doi.org/10.1038/s41467-018-05755-8
51 Q Cheng, N Zhao, S Lyu, Y Tian, F Gao, L Dong, Z Jiang, J Zhang, N Tsubaki, X Li. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer–Tropsch synthesis. Applied Catalysis B: Environmental, 2019, 248 : 73– 83
https://doi.org/10.1016/j.apcatb.2019.02.024
52 M Ojeda, R Nabar, A U Nilekar, A Ishikawa, M Mavrikakis, E Iglesia. CO activation pathways and the mechanism of Fischer–Tropsch synthesis. Journal of Catalysis, 2010, 272( 2): 287– 297
https://doi.org/10.1016/j.jcat.2010.04.012
[1] FCE-21073-OF-LX_suppl_1 Download
[1] Vinayak Hegde, Parimal Pandit, Pranita Rananaware, Varsha P. Brahmkhatri. Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production[J]. Front. Chem. Sci. Eng., 2022, 16(8): 1198-1210.
[2] Yifei Wang, Shouying Huang, Xinsheng Teng, Hongyu Wang, Jian Wang, Qiao Zhao, Yue Wang, Xinbin Ma. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time[J]. Front. Chem. Sci. Eng., 2020, 14(5): 802-812.
[3] Farouq TWAIQ,M.S. NASSER,Sagheer A. ONAIZI. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution[J]. Front. Chem. Sci. Eng., 2014, 8(4): 488-497.
[4] Tingting LIU, Lihong LIU, Jian LIU, Shaomin LIU, Shi Zhang QIAO. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore[J]. Front Chem Sci Eng, 2014, 8(1): 114-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed